【深度学习目标检测】八、基于yolov5的抽烟识别(python,深度学习)

news2025/1/9 23:14:05

YOLOv5是目标检测领域一种非常优秀的模型,其具有以下几个优势:

1. 高精度:YOLOv5相比于其前身YOLOv4,在目标检测精度上有了显著的提升。YOLOv5使用了一系列的改进,如更深的网络结构、更多的特征层和更高分辨率的输入图像,以提升精度。

2. 高效性能:YOLOv5在目标检测任务中具有很高的处理速度和实时性。相比于其他目标检测模型,YOLOv5采用了更少的计算量和参数数量,因此它在目标检测任务中具有更快的推理速度。

3. 简单易用:YOLOv5是一个开源项目,源代码公开,并且提供了预训练的模型权重。这使得使用YOLOv5进行目标检测变得非常方便,无需从头开始训练模型,只需进行适当的微调即可。

4. 多平台适用:YOLOv5可以在多种平台上运行,包括PC端、嵌入式设备和移动设备等。这使得YOLOv5可以在各种场景下应用,如自动驾驶、智能安防、人脸识别等。

5. 多功能:YOLOv5可以检测和分类多个不同的目标类别,包括人、车辆、动物等。此外,YOLOv5还可以检测出目标的位置和大小,并提供相应的置信度。

总之,YOLOv5具有高精度、高效性能、简单易用、多平台适用和多功能等优势,使其成为目标检测领域中的一种前沿模型。

参考:【深度学习目标检测】四、基于深度学习的抽烟识别(python,yolov8)

本文介绍了基于Yolov5的抽烟检测模型,包括训练过程和数据准备过程,同时提供了推理的代码。对准备计算机视觉相关的毕业设计的同学有着一定的帮助。

效果如下图:

检测结果如下图(检测效果有所欠缺):

一、安装YoloV5

yolov5和yolov8是同个团队开发的,官方文档:主页 - Ultralytics YOLOv8 文档

安装部分参考:官方安装教程

二、数据集准备

抽烟数据集共包含705个训练图片,78个验证图片,图片示例如下:

原始的数据格式为VOC格式,本文提供转换好的yolov5格式数据集,,可以直接放入yolov5中训练,数据集地址(yolov5和yolov8格式一致):抽烟数据集yolov5格式

三、修改yolov8配置文件

1、修改数据集配置文件

将path替换成自己的数据集路径:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO 2017 dataset http://cocodataset.org by Microsoft
# Example usage: yolo train data=coco.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── coco  ← downloads here (20.1 GB)
 
 
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: datasets/smoke/pp_smoke-yolov8  # 更改为自己的数据集路径,建议绝对路ing
train: images/train 
val: images/val  
test: images/val  
 
# Classes
names:
  
  0: smoke
 

2、配置模型文件

模型配置文件如下,将nc改成1:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv5 object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/yolov5

# Parameters
nc: 1  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov5n.yaml' will call yolov5.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]
  s: [0.33, 0.50, 1024]
  m: [0.67, 0.75, 1024]
  l: [1.00, 1.00, 1024]
  x: [1.33, 1.25, 1024]

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc]],  # Detect(P3, P4, P5)
  ]

3、训练模型

使用如下命令开始训练(将相关路径改成自己的路径,建议改成绝对路径):

yolo detect train project=deploy name=yolov5_smoke exist_ok=True optimizer=auto val=True amp=True epochs=100  imgsz=640 model=ultralytics/ultralytics/cfg/models/v5/yolov5_smoke.yaml  data=ultralytics/ultralytics/cfg/datasets/smoke.yaml

4、评估模型

使用如下命令评估:

yolo detect val imgsz=640 model=deploy/yolov5_smoke/weights/best.pt data=ultralytics/ultralytics/cfg/datasets/smoke.yaml

5、推理

推理代码如下:

from PIL import Image
from ultralytics import YOLO

# 加载预训练的YOLOv5n模型
model = YOLO('best.pt')

# 在'bus.jpg'上运行推理
image_path = 'smoke_a526.jpg'
results = model(image_path)  # 结果列表

# 展示结果
for r in results:
    im_array = r.plot()  # 绘制包含预测结果的BGR numpy数组
    im = Image.fromarray(im_array[..., ::-1])  # RGB PIL图像
    im.show()  # 显示图像
    im.save('results.jpg')  # 保存图像

四、相关资料

本文在训练好的模型和推理代码:推理代码和权重

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1319680.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

硬件基础-电阻

电阻 1.品牌 厚声、风华,三星、罗姆、松下、KOA 2.分类 插件 碳膜电阻:精度-5 J 是在高阻,高压和高温应用中 属负温度系数电阻 金属膜:-1 F 贴片 电阻标识:(含义:阻值大小和精度&a…

使用DETR 训练VOC数据集和自己的数据集

一、数据准备 DETR用的是COCO格式的数据集。 如果要用DETR训练自己的数据集,直接利用Labelimg标注成COCO格式。如果是VOC数据集的话,要做一个格式转换,yolo格式的数据集,转换成coco格式 COCO数据集的格式类似这样,a…

【改进YOLOv8】磁瓦缺陷分类系统:改进LSKNet骨干网络的YOLOv8

1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 研究背景与意义 近年来,随着智能制造产业的不断发展,基于人工智能与机器视觉的自动化产品缺陷检测技术在各行各业中得到了广泛应用。磁瓦作为永磁电机的主…

verilog基础语法-计数器

概述: 计数器是FPGA开发中最常用的电路,列如通讯中记录时钟个数,跑马灯中时间记录,存储器中地址的控制等等。本节给出向上计数器,上下计数器以及双向计数器案例。 内容 1. 向上计数器 2.向下计数器 3.向上向下计数…

迷你型洗衣机好用吗?高性价比的四款内衣洗衣机推荐

不得不说内衣洗衣机的发明解放了我们的双手,而我们从小到大就有这个意识,贴身衣物不可以和普通的衣服一起丢进去洗衣机一起,而内衣裤上不仅有肉眼看见的污渍还有手上根本无法消灭的细菌,但是有一款专门可以将衣物上的细菌杀除的内…

机器学习——自领域适应作业

任务 游戏里面的话有很多跟现实不一样的情况。 想办法让中间的特征更加的接近,让feat A适应feat B,产生相对正常的输出。 在有标签数据和没有数据的上面进行训练,并能预测绘画图像。 数据集 训练5000张总数,每类有500张测试100…

人工智能数据挖掘:发掘信息的新境界

导言 人工智能数据挖掘作为信息时代的利器,通过智能算法和大数据技术的结合,为企业、学术研究和社会决策提供了前所未有的洞察力。本文将深入探讨人工智能在数据挖掘领域的应用、技术挑战以及对未来的影响。 1. 人工智能数据挖掘的基本原理 数…

Python学习笔记(一)Anaconda开发环境介绍与搭建

本文介绍了Python学习中常用的开发环境Anaconda,以及如何搭建和使用Anaconda。Anaconda是一个集成了许多模块和包管理工具的软件集合,可以管理Python解释器、模块和虚拟环境。文章还比较了conda和pip这两个包管理工具的区别,并介绍了Anaconda…

Unity实现GoF23种设计模式

文章目录 Unity实现GoF23种设计模式概要一、创建型模式(Creational Patterns):二、结构型模式(Structural Patterns):三、行为型模式(Behavioral Patterns):Unity实现GoF23种设计模式概要 GoF所提出的23种设计模式主要基于以下面向对象设计原则: 对接口编程而不是对实…

Lambda表达式的简单理解

1. 初识lambda表达式 Lambda表达式是Java SE 8中一个重要的新特性。lambda表达式允许你通过表达式来代替功能接口。 lambda表达式就和方法一样,它提供了一个正常的参数列表和一个使用这些参数的主体(body,可以是一个表达式或一个代码块)。 Lambda 表达式(Lambda exp…

✺ch4——管理3D图形数据

目录 缓冲区和顶点属性统一变量顶点属性插值应用变换矩阵一个3D立方体示例渲染一个对象的多个副本——实例化在同一场景中渲染多个不同模型矩阵栈应对“Z冲突”伪影图元的其他选项性能优先的编程方法 使用 OpenGL 渲染 3D 图形通常需要将若干数据集发送给 OpenGL 着色器管线。举…

DS哈希查找—线性探测再散列

Description 定义哈希函数为H(key) key%11,输入表长(大于、等于11)。输入关键字集合,用线性探测再散列构建哈希表,并查找给定关键字。 –程序要求– 若使用C只能include一个头文件iostream;若使用C语言…

giee 添加公匙 流程记录

一、安装 百度网盘CSDN4文件夹下,或者官网下载:https://git-scm.com/downloads 二、生成密钥 1.右击打开git bash 2.$ ssh-keygen -t rsa -C “个人邮箱地址”,按3个回车,密码为空。 3.在C:\Users{windows用户名}.ssh目录下得到…

玩转字词句魔法:打造超强样本集的数据增强策略,句式变换揭秘同义句生成与回译在数据增强中的创新应用

NLP专栏简介:数据增强、智能标注、意图识别算法|多分类算法、文本信息抽取、多模态信息抽取、可解释性分析、性能调优、模型压缩算法等 专栏详细介绍:NLP专栏简介:数据增强、智能标注、意图识别算法|多分类算法、文本信息抽取、多模态信息抽取…

【PHP】一个邮箱点击验证的完整示例

目录 1.效果展示 2.发送验证码 3.进行验证 以绑定邮箱为例,注册验证的话修改判断逻辑 1.效果展示 2.发送验证码 /*** 发点击验证* 参数 email*/public function sendClick(){$param $this->request->post();// 邮箱email的validate规则验证,略…

酒精壁炉,现代取暖的便携选择

酒精壁炉作为现代室内取暖的一种选择,具有独特的特点和工作原理。酒精壁炉采用酒精作为燃料,为家庭提供舒适的温暖,同时具备一定的安全性和便携性。 酒精壁炉通常由金属或陶瓷制成,内部设有专门的燃烧器,用于燃烧酒精燃…

SpringBoot使用@DS配置 多数据源 【mybatisplus druid datasource mysql】

项目最近需要使用多数据源,不同的mapper分别读取不同的链接,本项目使用了mybatisplus druid 来配置多数据源,基于mysql数据库。 目录 1.引入依赖 ​2.配置文件 application.yaml 3.Mapper中使用DS切换数据源 4.使用DS的注意事项 1.引入依…

用uniapp写一个点击左侧可以滑动的menu

完成后的图片(点击左侧右边或滑动,滑动右边左侧的选中也会变化): 数据js (classifyData): export default[{"name": "女装","foods": [{"name": &q…

ansible(不能交互)

1、定义 基于python开发的一个配置管理和应用部署工具,在自动化运维中异军突起,类似于xshell一键输入的工具,不需要每次都切换主机进行操作,只要有一台ansible的固定主机,就可以实现所有节点的操作。不需要agent客户端…

[足式机器人]Part4 南科大高等机器人控制课 Ch08 Rigid Body Dynamics

本文仅供学习使用 本文参考: B站:CLEAR_LAB 笔者带更新-运动学 课程主讲教师: Prof. Wei Zhang 南科大高等机器人控制课 Ch08 Rigid Body Dynamics 1. Spatial Vecocity1.1 Spatial vs. Conventional Accel1.2 Plueker Coordinate System and…