[足式机器人]Part4 南科大高等机器人控制课 Ch08 Rigid Body Dynamics

news2024/11/25 14:34:33

本文仅供学习使用
本文参考:
B站:CLEAR_LAB
笔者带更新-运动学
课程主讲教师:
Prof. Wei Zhang

南科大高等机器人控制课 Ch08 Rigid Body Dynamics

  • 1. Spatial Vecocity
    • 1.1 Spatial vs. Conventional Accel
    • 1.2 Plueker Coordinate System and Basis Vectors
    • 1.3 Work with Moving Reference Frame
    • 1.4 Derivative of Adjoint
      • 1.4.1 Spatial Cross Product
      • 1.4.2 Spatial Acceleration with Moving Reference Frame
  • 2. Spatial Force(Wrench)
    • 2.1 Spatial Force in Pluecker Coordinate Systems
    • 2.2 Wrench-Twist Pair and Power
    • 2.3 Joint Torque
  • 3. Spatial Momentum
    • 3.1 Rotational Interial
    • 3.2 Change Reference for Momentum
    • 3.3 Spatial Inertia
  • 4. Newton-Euler Equation using Spatial Vectors
    • 4.1 Cross Product for Spatial Force and Momentum
    • 4.2 Newton-Euler Equation
    • 4.3 Derivations of Newton-Euler Equation


1. Spatial Vecocity

Given a rigid body with spatial velocity V = ( ω ⃗ , v ⃗ ) \mathcal{V} =\left( \vec{\omega},\vec{v} \right) V=(ω ,v ) , its spatial acceleration (coordinate-free)
A = V ˙ = [ ω ⃗ ˙ v ⃗ ˙ O ] , A = lim ⁡ δ → 0 V ( t + δ ) − V ( t ) δ \mathcal{A} =\dot{\mathcal{V}}=\left[ \begin{array}{c} \dot{\vec{\omega}}\\ \dot{\vec{v}}_{\mathrm{O}}\\ \end{array} \right] ,\mathcal{A} =\underset{\delta \rightarrow 0}{\lim}\frac{\mathcal{V} \left( t+\delta \right) -\mathcal{V} \left( t \right)}{\delta} A=V˙=[ω ˙v ˙O],A=δ0limδV(t+δ)V(t)
Recall that: v ⃗ O \vec{v}_{\mathrm{O}} v O i sthe velocity of the body-fixed particle coincident with frame origin o o o at the current time t t t

Note : ω ⃗ ˙ \dot{\vec{\omega}} ω ˙ is the angular acceleration of the body

v ⃗ ˙ O \dot{\vec{v}}_{\mathrm{O}} v ˙O is not the acceleration of any body-fixed point ! v ⃗ O = R ⃗ ˙ q ( t ) , v ⃗ ˙ O ≠ R ⃗ ¨ q ( t ) \vec{v}_{\mathrm{O}}=\dot{\vec{R}}_q\left( t \right) ,\dot{\vec{v}}_{\mathrm{O}}\ne \ddot{\vec{R}}_q\left( t \right) v O=R ˙q(t),v ˙O=R ¨q(t)
In face, v ⃗ ˙ O \dot{\vec{v}}_{\mathrm{O}} v ˙O gives the rate of change in stream velocity of body-fixed particles passing through o o o

1.1 Spatial vs. Conventional Accel

Suppose R ⃗ q ( t ) \vec{R}_q\left( t \right) R q(t) is the body fixed particle coincides with o o o at time t t t
So by definition , we have v ⃗ O ( t ) = R ⃗ ˙ q ( t ) \vec{v}_{\mathrm{O}}\left( t \right) =\dot{\vec{R}}_q\left( t \right) v O(t)=R ˙q(t) , however v ⃗ ˙ O ≠ R ⃗ ¨ q ( t ) \dot{\vec{v}}_{\mathrm{O}}\ne \ddot{\vec{R}}_q\left( t \right) v ˙O=R ¨q(t) , where R ⃗ ¨ q ( t ) \ddot{\vec{R}}_q\left( t \right) R ¨q(t) is the conventional acceleration of the body-fixed point q q q

At time t t t : R ⃗ q ( t ) = 0 \vec{R}_q\left( t \right) =0 R q(t)=0 , v ⃗ O ( t ) = R ⃗ ˙ q ( t ) \vec{v}_{\mathrm{O}}\left( t \right) =\dot{\vec{R}}_q\left( t \right) v O(t)=R ˙q(t)
At time t + δ t+\delta t+δ : R ⃗ q ′ ( t ) = 0 \vec{R}_{q^{\prime}}\left( t \right) =0 R q(t)=0 , v ⃗ O ( t + δ ) =    R ⃗ ˙ q ′ ( t + δ ) ≠ R ⃗ ˙ q ( t + δ ) \vec{v}_{\mathrm{O}}\left( t+\delta \right) =\,\,\dot{\vec{R}}_{q^{\prime}}\left( t+\delta \right) \ne \dot{\vec{R}}_q\left( t+\delta \right) v O(t+δ)=R ˙q(t+δ)=R ˙q(t+δ) —— q ′ q^{\prime} q another body-fixed particle

  • Note : q q q and q ′ q^{\prime} q are different points, lim ⁡ δ → 0 v ⃗ O ( t ) = v ⃗ O ( t + δ ) − v ⃗ O ( t ) δ = R ⃗ ˙ q ′ ( t + δ ) − R ⃗ q ( t ) δ \underset{\delta \rightarrow 0}{\lim}\vec{v}_{\mathrm{O}}\left( t \right) =\frac{\vec{v}_{\mathrm{O}}\left( t+\delta \right) -\vec{v}_{\mathrm{O}}\left( t \right)}{\delta}=\frac{\dot{\vec{R}}_{q^{\prime}}\left( t+\delta \right) -\vec{R}_q\left( t \right)}{\delta} δ0limv O(t)=δv O(t+δ)v O(t)=δR ˙q(t+δ)R q(t)

实际上只需考虑Twist最开始的定义,即速度 v ⃗ O \vec{v}_{\mathrm{O}} v O 并不是某一点的速度,而是考虑相对坐标系原点而言的虚拟点在该角速度下的瞬时速度( R ⃗ ˙ q ( t ) = v ⃗ O ( t ) + ω ⃗ ( t ) × R ⃗ q ( t ) \dot{\vec{R}}_q\left( t \right) =\vec{v}_{\mathrm{O}}\left( t \right) +\vec{\omega}\left( t \right) \times \vec{R}_q\left( t \right) R ˙q(t)=v O(t)+ω (t)×R q(t)),而与该坐标系所代表的真实点的运动无关( R ⃗ q ( t ) \vec{R}_q\left( t \right) R q(t) is the body fixed particle coincides with o o o at time t t t),即为:
R ⃗ ¨ q ( t ) = v ⃗ ˙ O ( t ) + ω ⃗ ˙ ( t ) × R ⃗ q ( t ) ↗ 0 + ω ⃗ ( t ) × R ⃗ ˙ q ( t ) = v ⃗ ˙ O ( t ) + ω ⃗ ( t ) × R ⃗ ˙ q ( t ) \ddot{\vec{R}}_q\left( t \right) =\dot{\vec{v}}_{\mathrm{O}}\left( t \right) +\dot{\vec{\omega}}\left( t \right) \times \vec{R}_q\left( t \right) _{\nearrow 0}+\vec{\omega}\left( t \right) \times \dot{\vec{R}}_q\left( t \right) =\dot{\vec{v}}_{\mathrm{O}}\left( t \right) +\vec{\omega}\left( t \right) \times \dot{\vec{R}}_q\left( t \right) R ¨q(t)=v ˙O(t)+ω ˙(t)×R q(t)0+ω (t)×R ˙q(t)=v ˙O(t)+ω (t)×R ˙q(t)

1.2 Plueker Coordinate System and Basis Vectors

按照向量的本质理解即可,这也是笔者为啥不是很喜欢旋量的原因。

Recall coordinate-free concept: let R ⃗ ∈ R 3 \vec{R}\in \mathbb{R} ^3 R R3 be a free vector with { O } \left\{ O \right\} {O} and { B } \left\{ B \right\} {B} frame coordinate R ⃗ O \vec{R}^O R O and R ⃗ B \vec{R}^B R B

矢量的变换:
在这里插入图片描述在这里插入图片描述

旋量的变换:
在这里插入图片描述
[ e B 1 O e B 2 O e B 3 O e B 4 O e B 4 O e B 5 O ] 6 × 6 = [ X B O ] = [ A d [ T B O ] ] \left[ \begin{array}{l} e_{\mathrm{B}1}^{O}& e_{\mathrm{B}2}^{O}& e_{\mathrm{B}3}^{O}& e_{\mathrm{B}4}^{O}& e_{\mathrm{B}4}^{O}& e_{\mathrm{B}5}^{O}\\ \end{array} \right] _{6\times 6}=\left[ X_{\mathrm{B}}^{O} \right] =\left[ Ad_{\left[ T_{\mathrm{B}}^{O} \right]} \right] [eB1OeB2OeB3OeB4OeB4OeB5O]6×6=[XBO]=[Ad[TBO]]
在这里插入图片描述
在这里插入图片描述

1.3 Work with Moving Reference Frame

Now let’s work with { O } \left\{ O \right\} {O} frame to find the derivative —— we need to compute : [ e ˙ B 1 O e ˙ B 2 O e ˙ B 3 O e ˙ B 4 O e ˙ B 4 O e ˙ B 5 O ] 6 × 6 = [ X ˙ B O ] = d d t [ A d [ T B O ] ] \left[ \begin{array}{l} \dot{e}_{\mathrm{B}1}^{O}& \dot{e}_{\mathrm{B}2}^{O}& \dot{e}_{\mathrm{B}3}^{O}& \dot{e}_{\mathrm{B}4}^{O}& \dot{e}_{\mathrm{B}4}^{O}& \dot{e}_{\mathrm{B}5}^{O}\\ \end{array} \right] _{6\times 6}=\left[ \dot{X}_{\mathrm{B}}^{O} \right] =\frac{\mathrm{d}}{\mathrm{d}t}\left[ Ad_{\left[ T_{\mathrm{B}}^{O} \right]} \right] [e˙B1Oe˙B2Oe˙B3Oe˙B4Oe˙B4Oe˙B5O]6×6=[X˙BO]=dtd[Ad[TBO]]

Let’s denote : [ T B O ] = ( [ Q ] , R ⃗ ) ⇒ d d t ( [ [ Q ] 0 R ⃗ ~ [ Q ] [ Q ] ] ) = [ [ Q ˙ ] 0 ( R ⃗ ~ [ Q ] ) ′ [ Q ˙ ] ] \left[ T_{\mathrm{B}}^{O} \right] =\left( \left[ Q \right] ,\vec{R} \right) \Rightarrow \frac{\mathrm{d}}{\mathrm{d}t}\left( \left[ \begin{matrix} \left[ Q \right]& 0\\ \tilde{\vec{R}}\left[ Q \right]& \left[ Q \right]\\ \end{matrix} \right] \right) =\left[ \begin{matrix} \left[ \dot{Q} \right]& 0\\ \left( \tilde{\vec{R}}\left[ Q \right] \right) ^{\prime}& \left[ \dot{Q} \right]\\ \end{matrix} \right] [TBO]=([Q],R )dtd([[Q]R ~[Q]0[Q]])= [Q˙](R ~[Q])0[Q˙]

{ B } \left\{ B \right\} {B} frame has instantaneous velocity V B = [ ω ⃗ v ⃗ O ] \mathcal{V} _B=\left[ \begin{array}{c} \vec{\omega}\\ \vec{v}_{\mathrm{O}}\\ \end{array} \right] VB=[ω v O]

1.4 Derivative of Adjoint

Note : [ Q ˙ ] = ω ⃗ × [ Q ] , R ⃗ ˙ = v ⃗ O + ω ⃗ × R ⃗ , [ Q ] ω ⃗ ~ = [ Q ] ω ⃗ ~ [ Q ] T , ω ⃗ 1 × ω ⃗ 2 ~ = ω ⃗ ~ 1 ω ⃗ ~ 2 − ω ⃗ ~ 2 ω ⃗ ~ 1 \left[ \dot{Q} \right] =\vec{\omega}\times \left[ Q \right] ,\dot{\vec{R}}=\vec{v}_{\mathrm{O}}+\vec{\omega}\times \vec{R},\widetilde{\left[ Q \right] \vec{\omega}}=\left[ Q \right] \tilde{\vec{\omega}}\left[ Q \right] ^{\mathrm{T}},\widetilde{\vec{\omega}_1\times \vec{\omega}_2}=\tilde{\vec{\omega}}_1\tilde{\vec{\omega}}_2-\tilde{\vec{\omega}}_2\tilde{\vec{\omega}}_1 [Q˙]=ω ×[Q],R ˙=v O+ω ×R ,[Q]ω =[Q]ω ~[Q]T,ω 1×ω 2 =ω ~1ω ~2ω ~2ω ~1(Jacobi’s Identity)

After some computation :
d d t [ A d [ T B O ] ] = [ ω ⃗ ~ 0 v ⃗ ~ O ω ⃗ ~ ] [ A d [ T B O ] ] = [ X ˙ B O ] \frac{\mathrm{d}}{\mathrm{d}t}\left[ Ad_{\left[ T_{\mathrm{B}}^{O} \right]} \right] =\left[ \begin{matrix} \tilde{\vec{\omega}}& 0\\ \tilde{\vec{v}}_{\mathrm{O}}& \tilde{\vec{\omega}}\\ \end{matrix} \right] \left[ Ad_{\left[ T_{\mathrm{B}}^{O} \right]} \right] =\left[ \dot{X}_{\mathrm{B}}^{O} \right] dtd[Ad[TBO]]=[ω ~v ~O0ω ~][Ad[TBO]]=[X˙BO]

Define : [ ω ⃗ ~ 0 v ⃗ ~ O ω ⃗ ~ ] = V ~ B \left[ \begin{matrix} \tilde{\vec{\omega}}& 0\\ \tilde{\vec{v}}_{\mathrm{O}}& \tilde{\vec{\omega}}\\ \end{matrix} \right] =\tilde{\mathcal{V}}_B [ω ~v ~O0ω ~]=V~B
{ [ Q ˙ B O ] = ω ⃗ ~ B [ Q B O ] [ X ˙ B O ] = V ~ B [ X ˙ B O ] \begin{cases} \left[ \dot{Q}_{\mathrm{B}}^{O} \right] =\tilde{\vec{\omega}}_B\left[ Q_{\mathrm{B}}^{O} \right]\\ \left[ \dot{X}_{\mathrm{B}}^{O} \right] =\tilde{\mathcal{V}}_B\left[ \dot{X}_{\mathrm{B}}^{O} \right]\\ \end{cases} [Q˙BO]=ω ~B[QBO][X˙BO]=V~B[X˙BO]
In coordinate free: e ˙ B 1 O = V ~ B e B 1 O \dot{e}_{\mathrm{B}1}^{O}=\tilde{\mathcal{V}}_Be_{\mathrm{B}1}^{O} e˙B1O=V~BeB1O

1.4.1 Spatial Cross Product

Given two spatial velocities(twists) V 1 \mathcal{V} _1 V1 and V 2 \mathcal{V} _2 V2 , their spatial product is
V 1 × V 2 = [ ω ⃗ 1 v ⃗ 1 O ] × [ ω ⃗ 2 v ⃗ 2 O ] = [ ω ⃗ 1 × ω ⃗ 2 ω ⃗ 1 × v ⃗ 2 O + v ⃗ 1 O × ω ⃗ 2 ] \mathcal{V} _1\times \mathcal{V} _2=\left[ \begin{array}{c} \vec{\omega}_1\\ {\vec{v}_1}_{\mathrm{O}}\\ \end{array} \right] \times \left[ \begin{array}{c} \vec{\omega}_2\\ {\vec{v}_2}_{\mathrm{O}}\\ \end{array} \right] =\left[ \begin{array}{c} \vec{\omega}_1\times \vec{\omega}_2\\ \vec{\omega}_1\times {\vec{v}_2}_{\mathrm{O}}+{\vec{v}_1}_{\mathrm{O}}\times \vec{\omega}_2\\ \end{array} \right] V1×V2=[ω 1v 1O]×[ω 2v 2O]=[ω 1×ω 2ω 1×v 2O+v 1O×ω 2]

Matrix representation : V 1 × V 2 = V ~ 1 V 2 , V ~ 1 = [ ω ⃗ ~ 1 0 v ⃗ ~ 1 O ω ⃗ ~ 1 ] \mathcal{V} _1\times \mathcal{V} _2=\tilde{\mathcal{V}}_1\mathcal{V} _2,\tilde{\mathcal{V}}_1=\left[ \begin{matrix} \tilde{\vec{\omega}}_1& 0\\ {\tilde{\vec{v}}_1}_{\mathrm{O}}& \tilde{\vec{\omega}}_1\\ \end{matrix} \right] V1×V2=V~1V2,V~1=[ω ~1v ~1O0ω ~1]

Roughly speaking, when a motion V \mathcal{V} V is moving with a spatial velocity Z \mathcal{Z} Z (e.g. it is attached to a moving frame) but is otherwise not changing , then
V ˙ = Z × V \dot{\mathcal{V}}=\mathcal{Z} \times \mathcal{V} V˙=Z×V

  • Propertries

Assume A is moving wrt O O O with velocity V A \mathcal{V} _{\mathrm{A}} VA : [ X ˙ A O ] = V ~ A O [ X A O ] \left[ \dot{X}_{\mathrm{A}}^{O} \right] =\tilde{\mathcal{V}}_{\mathrm{A}}^{O}\left[ X_{\mathrm{A}}^{O} \right] [X˙AO]=V~AO[XAO]
[ X ] V ~ = [ X ] V ~ [ X ] T \widetilde{\left[ X \right] \mathcal{V} }=\left[ X \right] \tilde{\mathcal{V}}\left[ X \right] ^{\mathrm{T}} [X]V =[X]V~[X]T for any transformation [ X ] \left[ X \right] [X] and twist V \mathcal{V} V

1.4.2 Spatial Acceleration with Moving Reference Frame

Consider a body with velocity V B o d y \mathcal{V} _{\mathrm{Body}} VBody (wrt inertia frame), and V B o d y O \mathcal{V} _{\mathrm{Body}}^{O} VBodyO and V B o d y B \mathcal{V} _{\mathrm{Body}}^{B} VBodyB be its Plueker coordinates wrt { O } \left\{ O \right\} {O} and { B } \left\{ B \right\} {B} :
A B o d y B = d d t ( V B o d y B ) + V ~ B O B V B o d y B \mathcal{A} _{\mathrm{Body}}^{B}=\frac{\mathrm{d}}{\mathrm{d}t}\left( \mathcal{V} _{\mathrm{Body}}^{B} \right) +\tilde{\mathcal{V}}_{\mathrm{BO}}^{B}\mathcal{V} _{\mathrm{Body}}^{B} ABodyB=dtd(VBodyB)+V~BOBVBodyB
A B o d y O = [ X B O ] A B o d y B \mathcal{A} _{\mathrm{Body}}^{O}=\left[ X_{\mathrm{B}}^{O} \right] \mathcal{A} _{\mathrm{Body}}^{B} ABodyO=[XBO]ABodyB

A B o d y O = d d t ( V B o d y O ) = d d t ( [ X B O ] V B o d y B ) = [ X ˙ B O ] V B o d y B + [ X B O ] V ˙ B o d y B = V ~ B O [ X B O ] V B o d y B + [ X B O ] V ˙ B o d y B = [ X B O ] ( [ X O B ] V ~ B O [ X B O ] V B o d y B + V ˙ B o d y B ) = [ X B O ] ( [ X O B ] V B O ~ V B o d y B + V ˙ B o d y B ) = [ X B O ] ( V ~ B O B V B o d y B + V ˙ B o d y B ) = [ X B O ] A B o d y B \mathcal{A} _{\mathrm{Body}}^{O}=\frac{\mathrm{d}}{\mathrm{d}t}\left( \mathcal{V} _{\mathrm{Body}}^{O} \right) =\frac{\mathrm{d}}{\mathrm{d}t}\left( \left[ X_{\mathrm{B}}^{O} \right] \mathcal{V} _{\mathrm{Body}}^{B} \right) =\left[ \dot{X}_{\mathrm{B}}^{O} \right] \mathcal{V} _{\mathrm{Body}}^{B}+\left[ X_{\mathrm{B}}^{O} \right] \dot{\mathcal{V}}_{\mathrm{Body}}^{B}=\tilde{\mathcal{V}}_{\mathrm{B}}^{O}\left[ X_{\mathrm{B}}^{O} \right] \mathcal{V} _{\mathrm{Body}}^{B}+\left[ X_{\mathrm{B}}^{O} \right] \dot{\mathcal{V}}_{\mathrm{Body}}^{B}=\left[ X_{\mathrm{B}}^{O} \right] \left( \left[ X_{\mathrm{O}}^{B} \right] \tilde{\mathcal{V}}_{\mathrm{B}}^{O}\left[ X_{\mathrm{B}}^{O} \right] \mathcal{V} _{\mathrm{Body}}^{B}+\dot{\mathcal{V}}_{\mathrm{Body}}^{B} \right) =\left[ X_{\mathrm{B}}^{O} \right] \left( \widetilde{\left[ X_{\mathrm{O}}^{B} \right] \mathcal{V} _{\mathrm{B}}^{O}}\mathcal{V} _{\mathrm{Body}}^{B}+\dot{\mathcal{V}}_{\mathrm{Body}}^{B} \right) =\left[ X_{\mathrm{B}}^{O} \right] \left( \tilde{\mathcal{V}}_{\mathrm{BO}}^{B}\mathcal{V} _{\mathrm{Body}}^{B}+\dot{\mathcal{V}}_{\mathrm{Body}}^{B} \right) =\left[ X_{\mathrm{B}}^{O} \right] \mathcal{A} _{\mathrm{Body}}^{B} ABodyO=dtd(VBodyO)=dtd([XBO]VBodyB)=[X˙BO]VBodyB+[XBO]V˙BodyB=V~BO[XBO]VBodyB+[XBO]V˙BodyB=[XBO]([XOB]V~BO[XBO]VBodyB+V˙BodyB)=[XBO]([XOB]VBO VBodyB+V˙BodyB)=[XBO](V~BOBVBodyB+V˙BodyB)=[XBO]ABodyB

EXAMPLE:
在这里插入图片描述

2. Spatial Force(Wrench)

Consider a rigid body with many forces on it and fix an arbitrary point O O O in space
在这里插入图片描述
The net effect of these forces can be expressed as:

  • A force f f f , acting along a line passing through O O O —— f ⃗ = ∑ f ⃗ i i \vec{f}=\sum{\vec{f}_{\mathrm{i}}}_{\mathrm{i}} f =f ii
  • A moment m ⃗ O \vec{m}_{\mathrm{O}} m O about point O O O —— m ⃗ O = ∑ R ⃗ P i O × f ⃗ i \vec{m}_{\mathrm{O}}=\sum{\vec{R}_{\mathrm{Pi}}^{O}\times \vec{f}_{\mathrm{i}}} m O=R PiO×f i

Spatial Force(Wrench) : is given by the 6D vector
F = [ m ⃗ O f ⃗ ] \mathcal{F} =\left[ \begin{array}{c} \vec{m}_{\mathrm{O}}\\ \vec{f}\\ \end{array} \right] F=[m Of ]

What is we choose reference point to Q Q Q?
m ⃗ Q = ∑ R ⃗ P i Q × f ⃗ i = ∑ ( R ⃗ O Q + R ⃗ P i O ) × f ⃗ i = m ⃗ O + ∑ R ⃗ O Q × f ⃗ i \vec{m}_{\mathrm{Q}}=\sum{\vec{R}_{\mathrm{Pi}}^{Q}\times \vec{f}_{\mathrm{i}}}=\sum{\left( \vec{R}_{\mathrm{O}}^{Q}+\vec{R}_{\mathrm{Pi}}^{O} \right) \times \vec{f}_{\mathrm{i}}}=\vec{m}_{\mathrm{O}}+\sum{\vec{R}_{\mathrm{O}}^{Q}\times \vec{f}_{\mathrm{i}}} m Q=R PiQ×f i=(R OQ+R PiO)×f i=m O+R OQ×f i

2.1 Spatial Force in Pluecker Coordinate Systems

Given a frame { A } \left\{ A \right\} {A}, the Plueker coordinate of a spatial force F \mathcal{F} F is given by F A = [ m ⃗ O A f ⃗ A ] \mathcal{F} ^A=\left[ \begin{array}{c} \vec{m}_{\mathrm{O}}^{A}\\ \vec{f}^A\\ \end{array} \right] FA=[m OAf A]

Coordinate transform :
{ f ⃗ A = [ Q B A ] f ⃗ B m ⃗ O A = [ Q B A ] m ⃗ O B + R ⃗ B A × [ Q B A ] f ⃗ B ⇒ F A = [ X B A ] T F B = [ X B A ] ∗ F B \begin{cases} \vec{f}^A=\left[ Q_{\mathrm{B}}^{A} \right] \vec{f}^B\\ \vec{m}_{\mathrm{O}}^{A}=\left[ Q_{\mathrm{B}}^{A} \right] \vec{m}_{\mathrm{O}}^{B}+\vec{R}_{\mathrm{B}}^{A}\times \left[ Q_{\mathrm{B}}^{A} \right] \vec{f}^B\\ \end{cases}\Rightarrow \mathcal{F} ^A=\left[ X_{\mathrm{B}}^{A} \right] ^{\mathrm{T}}\mathcal{F} ^B=\left[ X_{\mathrm{B}}^{A} \right] ^*\mathcal{F} ^B {f A=[QBA]f Bm OA=[QBA]m OB+R BA×[QBA]f BFA=[XBA]TFB=[XBA]FB

2.2 Wrench-Twist Pair and Power

Recall that for a point mass with linear velocity v ⃗ \vec{v} v and a linear force f ⃗ \vec{f} f . Then we know that the power (instantaneous work done by f ⃗ \vec{f} f ) is given by : f ⃗ ⋅ v ⃗ = f ⃗ T v ⃗ \vec{f}\cdot \vec{v}=\vec{f}^{\mathrm{T}}\vec{v} f v =f Tv

This relation can be generalized to spatial force (i.e. wrench) and spatial velocity (i.e. twist)

Suppose a rigid body has a twist V A = ( ω ⃗ A , v ⃗ O A ) \mathcal{V} ^A=\left( \vec{\omega}^A,\vec{v}_{\mathrm{O}}^{A} \right) VA=(ω A,v OA) and a wrench F A = ( m ⃗ O A , f ⃗ A ) \mathcal{F} ^A=\left( \vec{m}_{\mathrm{O}}^{A},\vec{f}^A \right) FA=(m OA,f A) acts on the body. Then the power is simply
P = ( V A ) T F A = ( F A ) T V A = ( ω ⃗ A ) T m ⃗ O A + ( v ⃗ O A ) T f ⃗ A P=\left( \mathcal{V} ^A \right) ^{\mathrm{T}}\mathcal{F} ^A=\left( \mathcal{F} ^A \right) ^{\mathrm{T}}\mathcal{V} ^A=\left( \vec{\omega}^A \right) ^{\mathrm{T}}\vec{m}_{\mathrm{O}}^{A}+\left( \vec{v}_{\mathrm{O}}^{A} \right) ^{\mathrm{T}}\vec{f}^A P=(VA)TFA=(FA)TVA=(ω A)Tm OA+(v OA)Tf A

2.3 Joint Torque

Consider a link attached to a 1-dof joint(r.g. revolute or prismatic). be the screw axis of the joint. Then the power produced by the joint is V = S ^ θ ˙ \mathcal{V} =\hat{\mathcal{S}}\dot{\theta} V=S^θ˙

F \mathcal{F} F be the wrench provided by the joint. Then the power produced by the joint is P = ( V ) T F = ( S ^ θ ˙ ) T F = ( S ^ T F ) θ ˙ = τ θ ˙ P=\left( \mathcal{V} \right) ^{\mathrm{T}}\mathcal{F} =\left( \hat{\mathcal{S}}\dot{\theta} \right) ^{\mathrm{T}}\mathcal{F} =\left( \hat{\mathcal{S}}^{\mathrm{T}}\mathcal{F} \right) \dot{\theta}=\tau \dot{\theta} P=(V)TF=(S^θ˙)TF=(S^TF)θ˙=τθ˙

τ = S ^ T F = F T S ^ \tau =\hat{\mathcal{S}}^{\mathrm{T}}\mathcal{F} =\mathcal{F} ^{\mathrm{T}}\hat{\mathcal{S}} τ=S^TF=FTS^ is the projection of the wrench onto the screw axis, i.e. the effective part of the wrench

Often times, τ \tau τ is referred to as joint “torque” or generalized force

3. Spatial Momentum

笔者待整理: 链接

3.1 Rotational Interial

  • Recall momentum for point mass:

笔者待整理: 链接

在这里插入图片描述

H = [ h ⃗ p ⃗ ] ∈ R 6 \mathcal{H} =\left[ \begin{array}{c} \vec{h}\\ \vec{p}\\ \end{array} \right] \in \mathbb{R} ^6 H=[h p ]R6

3.2 Change Reference for Momentum

  • Spatial momentum transforms in the same way as spatial forces:
    H A = [ X C A ] ∗ H C \mathcal{H} ^A=\left[ X_{\mathrm{C}}^{A} \right] ^*\mathcal{H} ^C HA=[XCA]HC
    H C = [ h ⃗ B o d y / C C p ⃗ C ] , H A = [ h ⃗ A A p ⃗ A ] = [ [ Q C A ] h ⃗ B o d y / C C − R ⃗ ~ C A [ Q C A ] p ⃗ C [ Q C A ] p ⃗ C ] = [ [ Q C A ] − R ⃗ ~ C A [ Q C A ] 0 [ Q C A ] ] [ h ⃗ B o d y / C C p ⃗ C ] = [ X C A ] ∗ [ h ⃗ B o d y / C C p ⃗ C ] \mathcal{H} ^C=\left[ \begin{array}{c} \vec{h}_{\mathrm{Body}/\mathrm{C}}^{C}\\ \vec{p}^C\\ \end{array} \right] ,\mathcal{H} ^A=\left[ \begin{array}{c} \vec{h}_{\mathrm{A}}^{A}\\ \vec{p}^A\\ \end{array} \right] =\left[ \begin{array}{c} \left[ Q_{\mathrm{C}}^{A} \right] \vec{h}_{\mathrm{Body}/\mathrm{C}}^{C}-\tilde{\vec{R}}_{\mathrm{C}}^{A}\left[ Q_{\mathrm{C}}^{A} \right] \vec{p}^C\\ \left[ Q_{\mathrm{C}}^{A} \right] \vec{p}^C\\ \end{array} \right] =\left[ \begin{matrix} \left[ Q_{\mathrm{C}}^{A} \right]& -\tilde{\vec{R}}_{\mathrm{C}}^{A}\left[ Q_{\mathrm{C}}^{A} \right]\\ 0& \left[ Q_{\mathrm{C}}^{A} \right]\\ \end{matrix} \right] \left[ \begin{array}{c} \vec{h}_{\mathrm{Body}/\mathrm{C}}^{C}\\ \vec{p}^C\\ \end{array} \right] =\left[ X_{\mathrm{C}}^{A} \right] ^*\left[ \begin{array}{c} \vec{h}_{\mathrm{Body}/\mathrm{C}}^{C}\\ \vec{p}^C\\ \end{array} \right] HC=[h Body/CCp C],HA=[h AAp A]=[[QCA]h Body/CCR ~CA[QCA]p C[QCA]p C]=[[QCA]0R ~CA[QCA][QCA]][h Body/CCp C]=[XCA][h Body/CCp C]

3.3 Spatial Inertia

Inertia of a rigid body defines linear relationship between velocity and momentum

Spacial inertia I \mathcal{I} I is the one such that
H = I V \mathcal{H} =\mathcal{I} \mathcal{V} H=IV
Let { M } \left\{ M \right\} {M} be a frame whose origin coincide with CoM. Then
I B o d y / C o M M = [ I B o d y / C o M M 0 0 m t o t a l E 3 × 3 ] G \mathcal{I} _{\mathrm{Body}/\mathrm{CoM}}^{M}=\left[ \begin{matrix} I_{\mathrm{Body}/\mathrm{CoM}}^{M}& 0\\ 0& m_{\mathrm{total}}E_{3\times 3}\\ \end{matrix} \right] G IBody/CoMM=[IBody/CoMM00mtotalE3×3]G

  • Spatial inertia wrt another frame { F } \left\{ F \right\} {F}:
    I F = [ X M F ] ∗ I M [ X F M ] \mathcal{I} ^F=\left[ X_{\mathrm{M}}^{F} \right] ^*\mathcal{I} ^M\left[ X_{\mathrm{F}}^{M} \right] IF=[XMF]IM[XFM]

Special case : [ Q F M ] = E 3 × 3 \left[ Q_{\mathrm{F}}^{M} \right] =E_{3\times 3} [QFM]=E3×3
[ X M F ] = [ E 3 × 3 0 R ⃗ ~ M F E 3 × 3 ] ⇒ I F = [ I M + m t o t a l R ⃗ ~ M F T R ⃗ ~ M F m t o t a l R ⃗ ~ M F m t o t a l R ⃗ ~ M F m t o t a l E 3 × 3 ] \left[ X_{\mathrm{M}}^{F} \right] =\left[ \begin{matrix} E_{3\times 3}& 0\\ \tilde{\vec{R}}_{\mathrm{M}}^{F}& E_{3\times 3}\\ \end{matrix} \right] \Rightarrow \mathcal{I} ^F=\left[ \begin{matrix} \mathcal{I} ^M+m_{\mathrm{total}}{\tilde{\vec{R}}_{\mathrm{M}}^{F}}^{\mathrm{T}}\tilde{\vec{R}}_{\mathrm{M}}^{F}& m_{\mathrm{total}}\tilde{\vec{R}}_{\mathrm{M}}^{F}\\ m_{\mathrm{total}}\tilde{\vec{R}}_{\mathrm{M}}^{F}& m_{\mathrm{total}}E_{3\times 3}\\ \end{matrix} \right] [XMF]=[E3×3R ~MF0E3×3]IF= IM+mtotalR ~MFTR ~MFmtotalR ~MFmtotalR ~MFmtotalE3×3

4. Newton-Euler Equation using Spatial Vectors

4.1 Cross Product for Spatial Force and Momentum

Assume frame A A A is moving with velocity V A A \mathcal{V} _{\mathrm{A}}^{A} VAA
( d d t F ) A = d d t F A + V A × ∗ F A \left( \frac{\mathrm{d}}{\mathrm{d}t}\mathcal{F} \right) ^A=\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{F} ^A+\mathcal{V} ^A\times ^*\mathcal{F} ^A (dtdF)A=dtdFA+VA×FA
( d d t H ) A = d d t H A + V A × ∗ H A \left( \frac{\mathrm{d}}{\mathrm{d}t}\mathcal{H} \right) ^A=\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{H} ^A+\mathcal{V} ^A\times ^*\mathcal{H} ^A (dtdH)A=dtdHA+VA×HA

where × ∗ \times ^* × defined as V = [ ω ⃗ v ⃗ ] , F = [ m ⃗ f ⃗ ] , V × ∗ F = [ ω ⃗ ~ m ⃗ + v ⃗ ~ f ⃗ ω ⃗ ~ f ⃗ ] \mathcal{V} =\left[ \begin{array}{c} \vec{\omega}\\ \vec{v}\\ \end{array} \right] ,\mathcal{F} =\left[ \begin{array}{c} \vec{m}\\ \vec{f}\\ \end{array} \right] ,\mathcal{V} \times ^*\mathcal{F} =\left[ \begin{array}{c} \tilde{\vec{\omega}}\vec{m}+\tilde{\vec{v}}\vec{f}\\ \tilde{\vec{\omega}}\vec{f}\\ \end{array} \right] V=[ω v ],F=[m f ],V×F=[ω ~m +v ~f ω ~f ], or equivately V × ∗ ~ = [ ω ⃗ ~ v ⃗ ~ 0 ω ⃗ ~ ] \widetilde{\mathcal{V} \times ^*}=\left[ \begin{matrix} \tilde{\vec{\omega}}& \tilde{\vec{v}}\\ 0& \tilde{\vec{\omega}}\\ \end{matrix} \right] V× =[ω ~0v ~ω ~]

Fact : V × ∗ ~ = V ~ T \widetilde{\mathcal{V} \times ^*}=\tilde{\mathcal{V}}^{\mathrm{T}} V× =V~T

4.2 Newton-Euler Equation

  • Newton-Euler equation :
    F = d d t H = I A + V ~ T I V \mathcal{F} =\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{H} =\mathcal{I} \mathcal{A} +\tilde{\mathcal{V}}^{\mathrm{T}}\mathcal{I} \mathcal{V} F=dtdH=IA+V~TIV
    (due to velocity is changing and account for the face that inertia is moving)

Adopting spatial vectors, the Newton-Euler equation has the same form in any frame

4.3 Derivations of Newton-Euler Equation

d d t H O = d d t ( I O V O ) = I ˙ O V O + I O A O = d d t ( [ X B O ] ∗ I B [ X O B ] ) V O + I O A O = [ X ˙ B O ] ∗ I B [ X O B ] V O + [ X B O ] ∗ I B [ X ˙ O B ] V O + I O A O = V ~ B O T [ X B O ] ∗ I B [ X O B ] V O − [ X B O ] ∗ I B [ X O B ] V ~ B O T V O ↗ 0 + I O A O = V ~ B O T I O V O + I O A O \frac{\mathrm{d}}{\mathrm{d}t}\mathcal{H} ^O=\frac{\mathrm{d}}{\mathrm{d}t}\left( \mathcal{I} ^O\mathcal{V} ^O \right) =\dot{\mathcal{I}}^O\mathcal{V} ^O+\mathcal{I} ^O\mathcal{A} ^O=\frac{\mathrm{d}}{\mathrm{d}t}\left( \left[ X_{\mathrm{B}}^{O} \right] ^*\mathcal{I} ^B\left[ X_{\mathrm{O}}^{B} \right] \right) \mathcal{V} ^O+\mathcal{I} ^O\mathcal{A} ^O \\ =\left[ \dot{X}_{\mathrm{B}}^{O} \right] ^*\mathcal{I} ^B\left[ X_{\mathrm{O}}^{B} \right] \mathcal{V} ^O+\left[ X_{\mathrm{B}}^{O} \right] ^*\mathcal{I} ^B\left[ \dot{X}_{\mathrm{O}}^{B} \right] \mathcal{V} ^O+\mathcal{I} ^O\mathcal{A} ^O \\ ={\tilde{\mathcal{V}}_{\mathrm{B}}^{O}}^{\mathrm{T}}\left[ X_{\mathrm{B}}^{O} \right] ^*\mathcal{I} ^B\left[ X_{\mathrm{O}}^{B} \right] \mathcal{V} ^O-\left[ X_{\mathrm{B}}^{O} \right] ^*\mathcal{I} ^B\left[ X_{\mathrm{O}}^{B} \right] {\tilde{\mathcal{V}}_{\mathrm{B}}^{O}}^{\mathrm{T}}{\mathcal{V} ^O}_{\nearrow 0}+\mathcal{I} ^O\mathcal{A} ^O \\ ={\tilde{\mathcal{V}}_{\mathrm{B}}^{O}}^{\mathrm{T}}\mathcal{I} ^O\mathcal{V} ^O+\mathcal{I} ^O\mathcal{A} ^O dtdHO=dtd(IOVO)=I˙OVO+IOAO=dtd([XBO]IB[XOB])VO+IOAO=[X˙BO]IB[XOB]VO+[XBO]IB[X˙OB]VO+IOAO=V~BOT[XBO]IB[XOB]VO[XBO]IB[XOB]V~BOTVO0+IOAO=V~BOTIOVO+IOAO

Note :
{ [ X ˙ B O ] = V ~ B O [ X B O ] [ X B O ] [ X O B ] = E ⇒ [ X ˙ B O ] [ X O B ] + [ X B O ] [ X ˙ O B ] = 0 ⇒ [ X ˙ O B ] = − [ X O B ] [ X ˙ B O ] [ X O B ] = − [ X O B ] V ~ B O \begin{cases} \left[ \dot{X}_{\mathrm{B}}^{O} \right] =\tilde{\mathcal{V}}_{\mathrm{B}}^{O}\left[ X_{\mathrm{B}}^{O} \right]\\ \left[ X_{\mathrm{B}}^{O} \right] \left[ X_{\mathrm{O}}^{B} \right] =E\\ \end{cases}\Rightarrow \left[ \dot{X}_{\mathrm{B}}^{O} \right] \left[ X_{\mathrm{O}}^{B} \right] +\left[ X_{\mathrm{B}}^{O} \right] \left[ \dot{X}_{\mathrm{O}}^{B} \right] =0\Rightarrow \left[ \dot{X}_{\mathrm{O}}^{B} \right] =-\left[ X_{\mathrm{O}}^{B} \right] \left[ \dot{X}_{\mathrm{B}}^{O} \right] \left[ X_{\mathrm{O}}^{B} \right] =-\left[ X_{\mathrm{O}}^{B} \right] \tilde{\mathcal{V}}_{\mathrm{B}}^{O} {[X˙BO]=V~BO[XBO][XBO][XOB]=E[X˙BO][XOB]+[XBO][X˙OB]=0[X˙OB]=[XOB][X˙BO][XOB]=[XOB]V~BO
Frame B is attached to the body , V B = V B o d y , I B \mathcal{V} _B=\mathcal{V} _{Body},\mathcal{I} ^B VB=VBody,IB is constant

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1319649.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

二叉树的最大深度(LeetCode 104)

文章目录 1.问题描述2.难度等级3.热门指数4.解题思路方法一:深度优先搜索GolangC 方法二:广度优先搜索GolangC 参考文献 1.问题描述 给定一个二叉树 root ,返回其最大深度。 叉树的「最大深度」是指从根节点到最远叶子节点的最长路径上的节…

会旋转的树,你见过吗?

🎈个人主页:🎈 :✨✨✨初阶牛✨✨✨ 🐻强烈推荐优质专栏: 🍔🍟🌯C的世界(持续更新中) 🐻推荐专栏1: 🍔🍟🌯C语言初阶 🐻推荐专栏2: 🍔…

精选暖心的早安问候语图片,送一份温馨问候、送一串真诚祝福!

1、寒天催日短,风浪与云平;大雪随风降,祝福与您行;降温总无情,问候暖身心;短信虽礼轻,礼轻情意重!冬季渐深,温度渐冷,注意身体,健康养生!早上好! ​ 2、问候是明亮的灯塔&#xff0…

第二证券:激发资本市场数智新动能 实现高质量发展

12月15日至16日,深交所与港交所、广期所联合举行主题为“科技引领数智赋能”的2023年大湾区生意所科技大会。 本次大会深化贯彻落实中心经济作业会议精神和中心金融作业会议精神,聚焦工作数字化转型和科技立异前沿趋势,深化粤港澳大湾区协同…

C语言文件权限

前言 提笔不会忘字的人&#xff0c;提键盘却忘了编程语言&#xff0c;差点忘本了&#xff0c;用python&#xff0c;shell等脚本语言忘记C语言怎么用了&#xff0c;研究文件系统简单的文件读写不会写了&#xff0c;记录一下。 简单的文件读写 #include <unistd.h> #inc…

快猫视频模板源码定制开发 苹果CMS 可打包成双端APP

苹果CMS快猫视频网站模板源码&#xff0c;可用于开发双端APP&#xff0c;后台支持自定义参数&#xff0c;包括会员升级页面、视频、演员、专题、收藏和会员系统等完整模块。还可以直接指定某个分类下的视频为免费专区&#xff0c;具备完善的卡密支付体系&#xff0c;无需人工管…

Apipost检测接口工具的基本使用方法

&#x1f440; 今天言简意赅的介绍一款和postman一样好用的后端接口测试工具Apipost 专门用于测试后端接口的工具&#xff0c;可以生成接口使用文档官方下载网站&#xff1a;http://www.apipost.cn 傻瓜式安装—>register->项目->创建项目->APIs->新建目录&…

Spring Boot 3 + Vue 3 整合 WebSocket (STOMP协议) 实现广播和点对点实时消息

&#x1f680; 作者主页&#xff1a; 有来技术 &#x1f525; 开源项目&#xff1a; youlai-mall &#x1f343; vue3-element-admin &#x1f343; youlai-boot &#x1f33a; 仓库主页&#xff1a; Gitee &#x1f4ab; Github &#x1f4ab; GitCode &#x1f496; 欢迎点赞…

CTF竞赛密码学题目解析

CTF&#xff08;Capture The Flag&#xff09;竞赛是一个有趣的挑战。密码学是CTF竞赛中的核心元素之一&#xff0c;通常涉及解密、破译密码、理解加密算法等技能。以下是30个题目及答案&#xff0c;新入行的可以看看鸭。 题目及答案 1. Caesar Cipher 描述&#xff1a;给出一…

MinHash-LSH:如何解决医学大模型的大规模数据去重?

MinHash-LSH 最小哈希 局部敏感哈希&#xff1a;如何解决医学大模型的大规模数据去重&#xff1f; 大模型的数据问题MinHash-LSH 最小哈希 局部敏感哈希&#xff1a;大规模数据集去重优化Jaccard相似度&#xff1a;用于比较样本集之间的相似性降维技术 MinhashLSH – 局部敏感…

SCC-Tarjan算法,强连通分量算法,从dfs到Tarjan详解

文章目录 前言定义强连通强连通分量 Tarjan算法原理及实现概念引入搜索树有向边的分类强连通分量的根时间戳追溯值 算法原理从深搜到TarjanTarjan算法流程Tarjan算法代码实现 OJ练习&#xff1a; 前言 强连通分量是图论中的一个重要概念&#xff0c;它在许多领域都有广泛的应用…

Qt之使用QListView加载相册(富文本ToolTip)

一.效果 二.实现 #include "mainwindow.h" #include "ui_mainwindow.h"#include <QStandardItemModel> #include <QFont>MainWindow::MainWindow(QWidget *parent): QMainWindow(parent), ui(new Ui::MainWindow) {ui->setupUi(this);QFont…

SourceTree 免登录跳过初始设置

用于Windows和Mac的免费Git客户端。 Sourcetree简化了如何与Git存储库进行交互&#xff0c;这样您就可以集中精力编写代码。通过Sourcetree的简单Git GUI可视化和管理存储库。 SourceTree 安装之后需要使用账号登陆以授权&#xff0c;以前是可以不登陆的&#xff0c;但是现在是…

基于ssm办公自动化管理系统论文

摘 要 随着计算机应用的普及、成熟&#xff0c;越来越多公司开始采用网上信息管理系统&#xff0c;网上信息管理系统的运行可以有效的提高企业管理效率。因此&#xff0c;为满足企业办公管理方面的需求&#xff0c;开发了办公自动化管理系统。 本文重点阐述了办公自动化管理系…

c语言:输出1~100的数据以10×10格式

一、题目 以10*10的格式&#xff0c;输出1-100。 如图&#xff1a; 二、思路分析 此题的难点&#xff1a; 1、1-9的要向前空一格&#xff1b; 2、100要向前进一格 三、代码截图【带注释】 四、源代码【带注释】 #include <stdio.h> int main() { //分成三个部分&am…

Axure的交互与情形,事件,动作

交互样式 交互样式是指当用户与原型进行交互时&#xff0c;元素所呈现出的视觉效果。在Axure中&#xff0c;可以通过设置交互样式来调整元素在交互过程中的外观&#xff0c;例如改变颜色、大小、位置等。 交互事件 交互事件是指在用户与原型进行交互时触发的动作。在Axure中&…

计算机图形学头歌合集(题集附解)

目录 CG1-v1.0-点和直线的绘制 第1关&#xff1a;OpenGL点的绘制 第2关&#xff1a;OpenGL简单图形绘制 第3关&#xff1a;OpenGL直线绘制 第4关&#xff1a;0<1直线绘制-dda算法<> 第5关&#xff1a;0<1直线绘制-中点算法<> 第6关&#xff1a;一般直线绘…

使用Log4j与log4j2配置mybatisplus打印sql日志

环境&#xff1a;项目非完全spring项目&#xff0c;没有spring的配置文件。执行sql时老是不打印sql语句。因此进行修改&#xff0c;过程比较坎坷&#xff0c;记录一下。 我尝试使用log4j和log4j2进行配置 最终把这两种全部配置记录上 Log4j配置 如果项目用的是log4j需要进行配置…

nodejs配置express服务器,运行自动打开浏览器

查看专栏目录 Network 灰鸽宝典专栏主要关注服务器的配置&#xff0c;前后端开发环境的配置&#xff0c;编辑器的配置&#xff0c;网络服务的配置&#xff0c;网络命令的应用与配置&#xff0c;windows常见问题的解决等。 文章目录 设置方法&#xff1a;1&#xff0c;安装nodej…

全国软件供应链安全产教融合共同体成立大会在武汉成功举办

为深入学习贯彻党的二十大精神&#xff0c;落实《关于深化现代职业教育体系建设改革的意见》等要求&#xff0c;探索职业教育产教融合创新发展新生态&#xff0c;培养软件供应链安全人才体系&#xff0c;推动教育链、人才链、产业链、创新链的协同发展&#xff0c;12月16日 &am…