Python-数据分析可视化实例图

news2024/11/24 5:48:34

Python-数据分析可视化实例图

一:3D纹理图

运行效果图:

在这里插入图片描述

Python代码:

import math
from typing import Union

import pyecharts.options as opts
from pyecharts.charts import Surface3D


def float_range(start: int, end: int, step: Union[int, float], round_number: int = 2):
    """
    浮点数 range
    :param start: 起始值
    :param end: 结束值
    :param step: 步长
    :param round_number: 精度
    :return: 返回一个 list
    """
    temp = []
    while True:
        if start < end:
            temp.append(round(start, round_number))
            start += step
        else:
            break
    return temp


def surface3d_data():
    for t0 in float_range(-3, 3, 0.05):
        y = t0
        for t1 in float_range(-3, 3, 0.05):
            x = t1
            z = math.sin(x ** 2 + y ** 2) * x / 3.14
            yield [x, y, z]


(
    Surface3D(init_opts=opts.InitOpts(width="1600px", height="800px"))
    .add(
        series_name="",
        shading="color",
        data=list(surface3d_data()),
        xaxis3d_opts=opts.Axis3DOpts(type_="value"),
        yaxis3d_opts=opts.Axis3DOpts(type_="value"),
        grid3d_opts=opts.Grid3DOpts(width=100, height=40, depth=100),
    )
    .set_global_opts(
        visualmap_opts=opts.VisualMapOpts(
            dimension=2,
            max_=1,
            min_=-1,
            range_color=[
                "#313695",
                "#4575b4",
                "#74add1",
                "#abd9e9",
                "#e0f3f8",
                "#ffffbf",
                "#fee090",
                "#fdae61",
                "#f46d43",
                "#d73027",
                "#a50026",
            ],
        )
    )
    .render("surface_wave.html")
)
二:3D散点图

运行效果图:

在这里插入图片描述

Python代码:

import asyncio
from aiohttp import TCPConnector, ClientSession

import pyecharts.options as opts
from pyecharts.charts import Scatter3D

async def get_json_data(url: str) -> dict:
    async with ClientSession(connector=TCPConnector(ssl=False)) as session:
        async with session.get(url=url) as response:
            return await response.json()

# 获取官方的数据
data = asyncio.run(
    get_json_data(
        url="https://echarts.apache.org/examples/data/asset/data/nutrients.json"
    )
)

# 列名映射
field_indices = {
    "calcium": 3,
    "calories": 12,
    "carbohydrate": 8,
    "fat": 10,
    "fiber": 5,
    "group": 1,
    "id": 16,
    "monounsat": 14,
    "name": 0,
    "polyunsat": 15,
    "potassium": 7,
    "protein": 2,
    "saturated": 13,
    "sodium": 4,
    "sugars": 9,
    "vitaminc": 6,
    "water": 11,
}

# 配置 config
config_xAxis3D = "protein"
config_yAxis3D = "fiber"
config_zAxis3D = "sodium"
config_color = "fiber"
config_symbolSize = "vitaminc"

# 构造数据
data = [
    [
        item[field_indices[config_xAxis3D]],
        item[field_indices[config_yAxis3D]],
        item[field_indices[config_zAxis3D]],
        item[field_indices[config_color]],
        item[field_indices[config_symbolSize]],
        index,
    ]
    for index, item in enumerate(data)
]

(
    Scatter3D(
        init_opts=opts.InitOpts(width="1440px", height="720px")
    )  # bg_color="black"
    .add(
        series_name="",
        data=data,
        xaxis3d_opts=opts.Axis3DOpts(
            name=config_xAxis3D,
            type_="value",
            # textstyle_opts=opts.TextStyleOpts(color="#fff"),
        ),
        yaxis3d_opts=opts.Axis3DOpts(
            name=config_yAxis3D,
            type_="value",
            # textstyle_opts=opts.TextStyleOpts(color="#fff"),
        ),
        zaxis3d_opts=opts.Axis3DOpts(
            name=config_zAxis3D,
            type_="value",
            # textstyle_opts=opts.TextStyleOpts(color="#fff"),
        ),
        grid3d_opts=opts.Grid3DOpts(width=100, height=100, depth=100),
    )
    .set_global_opts(
        visualmap_opts=[
            opts.VisualMapOpts(
                type_="color",
                is_calculable=True,
                dimension=3,
                pos_top="10",
                max_=79 / 2,
                range_color=[
                    "#1710c0",
                    "#0b9df0",
                    "#00fea8",
                    "#00ff0d",
                    "#f5f811",
                    "#f09a09",
                    "#fe0300",
                ],
            ),
            opts.VisualMapOpts(
                type_="size",
                is_calculable=True,
                dimension=4,
                pos_bottom="10",
                max_=2.4 / 2,
                range_size=[10, 40],
            ),
        ]
    )
    .render("scatter3d.html")
)
三:3D折线图

运行效果图:

在这里插入图片描述

Python代码:

import math

import pyecharts.options as opts
from pyecharts.charts import Line3D

week_en = "Saturday Friday Thursday Wednesday Tuesday Monday Sunday".split()
clock = (
    "12a 1a 2a 3a 4a 5a 6a 7a 8a 9a 10a 11a 12p "
    "1p 2p 3p 4p 5p 6p 7p 8p 9p 10p 11p".split()
)

data = []
for t in range(0, 25000):
    _t = t / 1000
    x = (1 + 0.25 * math.cos(75 * _t)) * math.cos(_t)
    y = (1 + 0.25 * math.cos(75 * _t)) * math.sin(_t)
    z = _t + 2.0 * math.sin(75 * _t)
    data.append([x, y, z])

(
    Line3D()
    .add(
        "",
        data,
        xaxis3d_opts=opts.Axis3DOpts(data=clock, type_="value"),
        yaxis3d_opts=opts.Axis3DOpts(data=week_en, type_="value"),
        grid3d_opts=opts.Grid3DOpts(width=100, height=100, depth=100),
    )
    .set_global_opts(
        visualmap_opts=opts.VisualMapOpts(
            dimension=2,
            max_=30,
            min_=0,
            range_color=[
                "#313695",
                "#4575b4",
                "#74add1",
                "#abd9e9",
                "#e0f3f8",
                "#ffffbf",
                "#fee090",
                "#fdae61",
                "#f46d43",
                "#d73027",
                "#a50026",
            ],
        )
    )
    .render("line3d_rectangular_projection.html")
)
四:3D柱状图

(一)运行效果图:

在这里插入图片描述

Python代码:

import random

from pyecharts import options as opts
from pyecharts.charts import Bar3D
from pyecharts.faker import Faker


data = [(i, j, random.randint(0, 12)) for i in range(6) for j in range(24)]
c = (
    Bar3D()
    .add(
        "",
        [[d[1], d[0], d[2]] for d in data],
        xaxis3d_opts=opts.Axis3DOpts(Faker.clock, type_="category"),
        yaxis3d_opts=opts.Axis3DOpts(Faker.week_en, type_="category"),
        zaxis3d_opts=opts.Axis3DOpts(type_="value"),
    )
    .set_global_opts(
        visualmap_opts=opts.VisualMapOpts(max_=20),
        title_opts=opts.TitleOpts(title="3D-基本示例"),
    )
    .render("bar3d_base.html")
)

(二)运行效果图:

在这里插入图片描述

Python代码:

import pyecharts.options as opts
from pyecharts.charts import Bar3D

hours = [
    "12a",
    "1a",
    "2a",
    "3a",
    "4a",
    "5a",
    "6a",
    "7a",
    "8a",
    "9a",
    "10a",
    "11a",
    "12p",
    "1p",
    "2p",
    "3p",
    "4p",
    "5p",
    "6p",
    "7p",
    "8p",
    "9p",
    "10p",
    "11p",
]
days = ["Saturday", "Friday", "Thursday", "Wednesday", "Tuesday", "Monday", "Sunday"]

data = [
    [0, 0, 5],
    [0, 1, 1],
    [0, 2, 0],
    [0, 3, 0],
    [0, 4, 0],
    [0, 5, 0],
    [0, 6, 0],
    [0, 7, 0],
    [0, 8, 0],
    [0, 9, 0],
    [0, 10, 0],
    [0, 11, 2],
    [0, 12, 4],
    [0, 13, 1],
    [0, 14, 1],
    [0, 15, 3],
    [0, 16, 4],
    [0, 17, 6],
    [0, 18, 4],
    [0, 19, 4],
    [0, 20, 3],
    [0, 21, 3],
    [0, 22, 2],
    [0, 23, 5],
    [1, 0, 7],
    [1, 1, 0],
    [1, 2, 0],
    [1, 3, 0],
    [1, 4, 0],
    [1, 5, 0],
    [1, 6, 0],
    [1, 7, 0],
    [1, 8, 0],
    [1, 9, 0],
    [1, 10, 5],
    [1, 11, 2],
    [1, 12, 2],
    [1, 13, 6],
    [1, 14, 9],
    [1, 15, 11],
    [1, 16, 6],
    [1, 17, 7],
    [1, 18, 8],
    [1, 19, 12],
    [1, 20, 5],
    [1, 21, 5],
    [1, 22, 7],
    [1, 23, 2],
    [2, 0, 1],
    [2, 1, 1],
    [2, 2, 0],
    [2, 3, 0],
    [2, 4, 0],
    [2, 5, 0],
    [2, 6, 0],
    [2, 7, 0],
    [2, 8, 0],
    [2, 9, 0],
    [2, 10, 3],
    [2, 11, 2],
    [2, 12, 1],
    [2, 13, 9],
    [2, 14, 8],
    [2, 15, 10],
    [2, 16, 6],
    [2, 17, 5],
    [2, 18, 5],
    [2, 19, 5],
    [2, 20, 7],
    [2, 21, 4],
    [2, 22, 2],
    [2, 23, 4],
    [3, 0, 7],
    [3, 1, 3],
    [3, 2, 0],
    [3, 3, 0],
    [3, 4, 0],
    [3, 5, 0],
    [3, 6, 0],
    [3, 7, 0],
    [3, 8, 1],
    [3, 9, 0],
    [3, 10, 5],
    [3, 11, 4],
    [3, 12, 7],
    [3, 13, 14],
    [3, 14, 13],
    [3, 15, 12],
    [3, 16, 9],
    [3, 17, 5],
    [3, 18, 5],
    [3, 19, 10],
    [3, 20, 6],
    [3, 21, 4],
    [3, 22, 4],
    [3, 23, 1],
    [4, 0, 1],
    [4, 1, 3],
    [4, 2, 0],
    [4, 3, 0],
    [4, 4, 0],
    [4, 5, 1],
    [4, 6, 0],
    [4, 7, 0],
    [4, 8, 0],
    [4, 9, 2],
    [4, 10, 4],
    [4, 11, 4],
    [4, 12, 2],
    [4, 13, 4],
    [4, 14, 4],
    [4, 15, 14],
    [4, 16, 12],
    [4, 17, 1],
    [4, 18, 8],
    [4, 19, 5],
    [4, 20, 3],
    [4, 21, 7],
    [4, 22, 3],
    [4, 23, 0],
    [5, 0, 2],
    [5, 1, 1],
    [5, 2, 0],
    [5, 3, 3],
    [5, 4, 0],
    [5, 5, 0],
    [5, 6, 0],
    [5, 7, 0],
    [5, 8, 2],
    [5, 9, 0],
    [5, 10, 4],
    [5, 11, 1],
    [5, 12, 5],
    [5, 13, 10],
    [5, 14, 5],
    [5, 15, 7],
    [5, 16, 11],
    [5, 17, 6],
    [5, 18, 0],
    [5, 19, 5],
    [5, 20, 3],
    [5, 21, 4],
    [5, 22, 2],
    [5, 23, 0],
    [6, 0, 1],
    [6, 1, 0],
    [6, 2, 0],
    [6, 3, 0],
    [6, 4, 0],
    [6, 5, 0],
    [6, 6, 0],
    [6, 7, 0],
    [6, 8, 0],
    [6, 9, 0],
    [6, 10, 1],
    [6, 11, 0],
    [6, 12, 2],
    [6, 13, 1],
    [6, 14, 3],
    [6, 15, 4],
    [6, 16, 0],
    [6, 17, 0],
    [6, 18, 0],
    [6, 19, 0],
    [6, 20, 1],
    [6, 21, 2],
    [6, 22, 2],
    [6, 23, 6],
]
data = [[d[1], d[0], d[2]] for d in data]


(
    Bar3D(init_opts=opts.InitOpts(width="1600px", height="800px"))
    .add(
        series_name="",
        data=data,
        xaxis3d_opts=opts.Axis3DOpts(type_="category", data=hours),
        yaxis3d_opts=opts.Axis3DOpts(type_="category", data=days),
        zaxis3d_opts=opts.Axis3DOpts(type_="value"),
    )
    .set_global_opts(
        visualmap_opts=opts.VisualMapOpts(
            max_=20,
            range_color=[
                "#313695",
                "#4575b4",
                "#74add1",
                "#abd9e9",
                "#e0f3f8",
                "#ffffbf",
                "#fee090",
                "#fdae61",
                "#f46d43",
                "#d73027",
                "#a50026",
            ],
        )
    )
    .render("bar3d_punch_card.html")
)

(三)运行效果图:

在这里插入图片描述

Python代码:

import random

from pyecharts import options as opts
from pyecharts.charts import Bar3D

x_data = y_data = list(range(10))


def generate_data():
    data = []
    for j in range(10):
        for k in range(10):
            value = random.randint(0, 9)
            data.append([j, k, value * 2 + 4])
    return data


bar3d = Bar3D()
for _ in range(10):
    bar3d.add(
        "",
        generate_data(),
        shading="lambert",
        xaxis3d_opts=opts.Axis3DOpts(data=x_data, type_="value"),
        yaxis3d_opts=opts.Axis3DOpts(data=y_data, type_="value"),
        zaxis3d_opts=opts.Axis3DOpts(type_="value"),
    )
bar3d.set_global_opts(title_opts=opts.TitleOpts("3D-堆叠柱状图示例"))
bar3d.set_series_opts(**{"stack": "stack"})
bar3d.render("bar3d_stack.html")
五:饼状图

(一)运行效果图:

在这里插入图片描述

Python代码:

from pyecharts import options as opts
from pyecharts.charts import Pie
from pyecharts.faker import Faker

v = Faker.choose()
c = (
    Pie()
    .add(
        "",
        [list(z) for z in zip(v, Faker.values())],
        radius=["30%", "75%"],
        center=["25%", "50%"],
        rosetype="radius",
        label_opts=opts.LabelOpts(is_show=False),
    )
    .add(
        "",
        [list(z) for z in zip(v, Faker.values())],
        radius=["30%", "75%"],
        center=["75%", "50%"],
        rosetype="area",
    )
    .set_global_opts(title_opts=opts.TitleOpts(title="Pie-玫瑰图示例"))
    .render("pie_rosetype.html")
)

(二)运行效果图:

在这里插入图片描述

Python代码:

from pyecharts import options as opts
from pyecharts.charts import Pie
from pyecharts.faker import Faker

c = (
    Pie()
    .add(
        "",
        [list(z) for z in zip(Faker.choose(), Faker.values())],
        radius=["40%", "55%"],
        label_opts=opts.LabelOpts(
            position="outside",
            formatter="{a|{a}}{abg|}\n{hr|}\n {b|{b}: }{c}  {per|{d}%}  ",
            background_color="#eee",
            border_color="#aaa",
            border_width=1,
            border_radius=4,
            rich={
                "a": {"color": "#999", "lineHeight": 22, "align": "center"},
                "abg": {
                    "backgroundColor": "#e3e3e3",
                    "width": "100%",
                    "align": "right",
                    "height": 22,
                    "borderRadius": [4, 4, 0, 0],
                },
                "hr": {
                    "borderColor": "#aaa",
                    "width": "100%",
                    "borderWidth": 0.5,
                    "height": 0,
                },
                "b": {"fontSize": 16, "lineHeight": 33},
                "per": {
                    "color": "#eee",
                    "backgroundColor": "#334455",
                    "padding": [2, 4],
                    "borderRadius": 2,
                },
            },
        ),
    )
    .set_global_opts(title_opts=opts.TitleOpts(title="Pie-富文本示例"))
    .render("pie_rich_label.html")
)

(三)运行效果图:

在这里插入图片描述

Python代码:

import pyecharts.options as opts
from pyecharts.charts import Pie

inner_x_data = ["直达", "营销广告", "搜索引擎"]
inner_y_data = [335, 679, 1548]
inner_data_pair = [list(z) for z in zip(inner_x_data, inner_y_data)]

outer_x_data = ["直达", "营销广告", "搜索引擎", "邮件营销", "联盟广告", "视频广告", "百度", "谷歌", "必应", "其他"]
outer_y_data = [335, 310, 234, 135, 1048, 251, 147, 102]
outer_data_pair = [list(z) for z in zip(outer_x_data, outer_y_data)]

(
    Pie(init_opts=opts.InitOpts(width="1600px", height="800px"))
    .add(
        series_name="访问来源",
        data_pair=inner_data_pair,
        radius=[0, "30%"],
        label_opts=opts.LabelOpts(position="inner"),
    )
    .add(
        series_name="访问来源",
        radius=["40%", "55%"],
        data_pair=outer_data_pair,
        label_opts=opts.LabelOpts(
            position="outside",
            formatter="{a|{a}}{abg|}\n{hr|}\n {b|{b}: }{c}  {per|{d}%}  ",
            background_color="#eee",
            border_color="#aaa",
            border_width=1,
            border_radius=4,
            rich={
                "a": {"color": "#999", "lineHeight": 22, "align": "center"},
                "abg": {
                    "backgroundColor": "#e3e3e3",
                    "width": "100%",
                    "align": "right",
                    "height": 22,
                    "borderRadius": [4, 4, 0, 0],
                },
                "hr": {
                    "borderColor": "#aaa",
                    "width": "100%",
                    "borderWidth": 0.5,
                    "height": 0,
                },
                "b": {"fontSize": 16, "lineHeight": 33},
                "per": {
                    "color": "#eee",
                    "backgroundColor": "#334455",
                    "padding": [2, 4],
                    "borderRadius": 2,
                },
            },
        ),
    )
    .set_global_opts(legend_opts=opts.LegendOpts(pos_left="left", orient="vertical"))
    .set_series_opts(
        tooltip_opts=opts.TooltipOpts(
            trigger="item", formatter="{a} <br/>{b}: {c} ({d}%)"
        )
    )
    .render("nested_pies.html")
)

(四)运行效果图:

在这里插入图片描述

Python代码:

from pyecharts import options as opts
from pyecharts.charts import Pie
from pyecharts.commons.utils import JsCode


fn = """
    function(params) {
        if(params.name == '其他')
            return '\\n\\n\\n' + params.name + ' : ' + params.value + '%';
        return params.name + ' : ' + params.value + '%';
    }
    """


def new_label_opts():
    return opts.LabelOpts(formatter=JsCode(fn), position="center")


c = (
    Pie()
    .add(
        "",
        [list(z) for z in zip(["剧情", "其他"], [25, 75])],
        center=["20%", "30%"],
        radius=[60, 80],
        label_opts=new_label_opts(),
    )
    .add(
        "",
        [list(z) for z in zip(["奇幻", "其他"], [24, 76])],
        center=["55%", "30%"],
        radius=[60, 80],
        label_opts=new_label_opts(),
    )
    .add(
        "",
        [list(z) for z in zip(["爱情", "其他"], [14, 86])],
        center=["20%", "70%"],
        radius=[60, 80],
        label_opts=new_label_opts(),
    )
    .add(
        "",
        [list(z) for z in zip(["惊悚", "其他"], [11, 89])],
        center=["55%", "70%"],
        radius=[60, 80],
        label_opts=new_label_opts(),
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title="Pie-多饼图基本示例"),
        legend_opts=opts.LegendOpts(
            type_="scroll", pos_top="20%", pos_left="80%", orient="vertical"
        ),
    )
    .render("mutiple_pie.html")
)

(5)运行效果图:

在这里插入图片描述

Python代码:

from pyecharts import options as opts
from pyecharts.charts import Pie
from pyecharts.faker import Faker

c = (
    Pie()
    .add(
        "",
        [list(z) for z in zip(Faker.choose(), Faker.values())],
        radius=["40%", "75%"],
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title="Pie-Radius"),
        legend_opts=opts.LegendOpts(orient="vertical", pos_top="15%", pos_left="2%"),
    )
    .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
    .render("pie_radius.html")
)
六:词云图

(一)运行效果图:

在这里插入图片描述

Python代码:

import pyecharts.options as opts
from pyecharts.charts import WordCloud



data = [
    ("生活资源", "999"),
    ("供热管理", "888"),
    ("供气质量", "777"),
    ("生活用水管理", "688"),
    ("一次供水问题", "588"),
    ("交通运输", "516"),
    ("城市交通", "515"),
    ("环境保护", "483"),
    ("房地产管理", "462"),
    ("城乡建设", "449"),
    ("社会保障与福利", "429"),
    ("社会保障", "407"),
    ("文体与教育管理", "406"),
    ("公共安全", "406"),
    ("公交运输管理", "386"),
    ("出租车运营管理", "385"),
    ("供热管理", "375"),
    ("市容环卫", "355"),
    ("自然资源管理", "355"),
    ("粉尘污染", "335"),
    ("噪声污染", "324"),
    ("土地资源管理", "304"),
    ("物业服务与管理", "304"),
    ("医疗卫生", "284"),
    ("粉煤灰污染", "284"),
    ("占道", "284"),
    ("供热发展", "254"),
    ("农村土地规划管理", "254"),
    ("生活噪音", "253"),
    ("供热单位影响", "253"),
    ("城市供电", "223"),
    ("房屋质量与安全", "223"),
    ("大气污染", "223"),
    ("房屋安全", "223"),
    ("文化活动", "223"),
    ("拆迁管理", "223"),
    ("公共设施", "223"),
    ("供气质量", "223"),
    ("供电管理", "223"),
    ("燃气管理", "152"),
    ("教育管理", "152"),
    ("医疗纠纷", "152"),
    ("执法监督", "152"),
    ("设备安全", "152"),
    ("政务建设", "152"),
    ("县区、开发区", "152"),
    ("宏观经济", "152"),
    ("教育管理", "112"),
    ("社会保障", "112"),
    ("生活用水管理", "112"),
    ("物业服务与管理", "112"),
    ("分类列表", "112"),
    ("农业生产", "112"),
    ("二次供水问题", "112"),
    ("城市公共设施", "92"),
    ("拆迁政策咨询", "92"),
    ("物业服务", "92"),
    ("物业管理", "92"),
    ("社会保障保险管理", "92"),
    ("低保管理", "92"),
    ("文娱市场管理", "72"),
    ("城市交通秩序管理", "72"),
    ("执法争议", "72"),
    ("商业烟尘污染", "72"),
    ("占道堆放", "71"),
    ("地上设施", "71"),
    ("水质", "71"),
    ("无水", "71"),
    ("供热单位影响", "71"),
    ("人行道管理", "71"),
    ("主网原因", "71"),
    ("集中供热", "71"),
    ("客运管理", "71"),
    ("国有公交(大巴)管理", "71"),
    ("工业粉尘污染", "71"),
    ("治安案件", "71"),
    ("压力容器安全", "71"),
    ("身份证管理", "71"),
    ("群众健身", "41"),
    ("工业排放污染", "41"),
    ("破坏森林资源", "41"),
    ("市场收费", "41"),
    ("生产资金", "41"),
    ("生产噪声", "41"),
    ("农村低保", "41"),
    ("劳动争议", "41"),
    ("劳动合同争议", "41"),
    ("劳动报酬与福利", "41"),
    ("医疗事故", "21"),
    ("停供", "21"),
    ("基础教育", "21"),
    ("职业教育", "21"),
    ("物业资质管理", "21"),
    ("拆迁补偿", "21"),
    ("设施维护", "21"),
    ("市场外溢", "11"),
    ("占道经营", "11"),
    ("树木管理", "11"),
    ("农村基础设施", "11"),
    ("无水", "11"),
    ("供气质量", "11"),
    ("停气", "11"),
    ("市政府工作部门(含部门管理机构、直属单位)", "11"),
    ("燃气管理", "11"),
    ("市容环卫", "11"),
    ("新闻传媒", "11"),
    ("人才招聘", "11"),
    ("市场环境", "11"),
    ("行政事业收费", "11"),
    ("食品安全与卫生", "11"),
    ("城市交通", "11"),
    ("房地产开发", "11"),
    ("房屋配套问题", "11"),
    ("物业服务", "11"),
    ("物业管理", "11"),
    ("占道", "11"),
    ("园林绿化", "11"),
    ("户籍管理及身份证", "11"),
    ("公交运输管理", "11"),
    ("公路(水路)交通", "11"),
    ("房屋与图纸不符", "11"),
    ("有线电视", "11"),
    ("社会治安", "11"),
    ("林业资源", "11"),
    ("其他行政事业收费", "11"),
    ("经营性收费", "11"),
    ("食品安全与卫生", "11"),
    ("体育活动", "11"),
    ("有线电视安装及调试维护", "11"),
    ("低保管理", "11"),
    ("劳动争议", "11"),
    ("社会福利及事务", "11"),
    ("一次供水问题", "11"),
]

(
    WordCloud()
    .add(series_name="热点分析", data_pair=data, word_size_range=[6, 66])
    .set_global_opts(
        title_opts=opts.TitleOpts(
            title="热点分析", title_textstyle_opts=opts.TextStyleOpts(font_size=23)
        ),
        tooltip_opts=opts.TooltipOpts(is_show=True),
    )
    .render("basic_wordcloud.html")
)

(二)运行效果图:

在这里插入图片描述

Python代码:

from pyecharts import options as opts
from pyecharts.charts import WordCloud

words = [
    ("花鸟市场", 1446),
    ("汽车", 928),
    ("视频", 906),
    ("电视", 825),
    ("Lover Boy 88", 514),
    ("动漫", 486),
    ("音乐", 53),
    ("直播", 163),
    ("广播电台", 86),
    ("戏曲曲艺", 17),
    ("演出票务", 6),
    ("给陌生的你听", 1),
    ("资讯", 1437),
    ("商业财经", 422),
    ("娱乐八卦", 353),
    ("军事", 331),
    ("科技资讯", 313),
    ("社会时政", 307),
    ("时尚", 43),
    ("网络奇闻", 15),
    ("旅游出行", 438),
    ("景点类型", 957),
    ("国内游", 927),
    ("远途出行方式", 908),
    ("酒店", 693),
    ("关注景点", 611),
    ("旅游网站偏好", 512),
    ("出国游", 382),
    ("交通票务", 312),
    ("旅游方式", 187),
    ("旅游主题", 163),
    ("港澳台", 104),
    ("本地周边游", 3),
    ("小卖家", 1331),
    ("全日制学校", 941),
    ("基础教育科目", 585),
    ("考试培训", 473),
    ("语言学习", 358),
    ("留学", 246),
    ("K12课程培训", 207),
    ("艺术培训", 194),
    ("技能培训", 104),
    ("IT培训", 87),
    ("高等教育专业", 63),
    ("家教", 48),
    ("体育培训", 23),
    ("职场培训", 5),
    ("金融财经", 1328),
    ("银行", 765),
    ("股票", 452),
    ("保险", 415),
    ("贷款", 253),
    ("基金", 211),
    ("信用卡", 180),
    ("外汇", 138),
    ("P2P", 116),
    ("贵金属", 98),
    ("债券", 93),
    ("网络理财", 92),
    ("信托", 90),
    ("征信", 76),
    ("期货", 76),
    ("公积金", 40),
    ("银行理财", 36),
    ("银行业务", 30),
    ("典当", 7),
    ("海外置业", 1),
    ("汽车", 1309),
    ("汽车档次", 965),
    ("汽车品牌", 900),
    ("汽车车型", 727),
    ("购车阶段", 461),
    ("二手车", 309),
    ("汽车美容", 260),
    ("新能源汽车", 173),
    ("汽车维修", 155),
    ("租车服务", 136),
    ("车展", 121),
    ("违章查询", 76),
    ("汽车改装", 62),
    ("汽车用品", 37),
    ("路况查询", 32),
    ("汽车保险", 28),
    ("陪驾代驾", 4),
    ("网络购物", 1275),
    ("做我的猫", 1088),
    ("只想要你知道", 907),
    ("团购", 837),
    ("比价", 201),
    ("海淘", 195),
    ("移动APP购物", 179),
    ("支付方式", 119),
    ("代购", 43),
    ("体育健身", 1234),
    ("体育赛事项目", 802),
    ("运动项目", 405),
    ("体育类赛事", 337),
    ("健身项目", 199),
    ("健身房健身", 78),
    ("运动健身", 77),
    ("家庭健身", 36),
    ("健身器械", 29),
    ("办公室健身", 3),
    ("商务服务", 1201),
    ("法律咨询", 508),
    ("化工材料", 147),
    ("广告服务", 125),
    ("会计审计", 115),
    ("人员招聘", 101),
    ("印刷打印", 66),
    ("知识产权", 32),
    ("翻译", 22),
    ("安全安保", 9),
    ("公关服务", 8),
    ("商旅服务", 2),
    ("展会服务", 2),
    ("特许经营", 1),
    ("休闲爱好", 1169),
    ("收藏", 412),
    ("摄影", 393),
    ("温泉", 230),
    ("博彩彩票", 211),
    ("美术", 207),
    ("书法", 139),
    ("DIY手工", 75),
    ("舞蹈", 23),
    ("钓鱼", 21),
    ("棋牌桌游", 17),
    ("KTV", 6),
    ("密室", 5),
    ("采摘", 4),
    ("电玩", 1),
    ("真人CS", 1),
    ("轰趴", 1),
    ("家电数码", 1111),
    ("手机", 885),
    ("电脑", 543),
    ("大家电", 321),
    ("家电关注品牌", 253),
    ("网络设备", 162),
    ("摄影器材", 149),
    ("影音设备", 133),
    ("办公数码设备", 113),
    ("生活电器", 67),
    ("厨房电器", 54),
    ("智能设备", 45),
    ("个人护理电器", 22),
    ("服饰鞋包", 1047),
    ("服装", 566),
    ("饰品", 289),
    ("鞋", 184),
    ("箱包", 168),
    ("奢侈品", 137),
    ("母婴亲子", 1041),
    ("孕婴保健", 505),
    ("母婴社区", 299),
    ("早教", 103),
    ("奶粉辅食", 66),
    ("童车童床", 41),
    ("关注品牌", 271),
    ("宝宝玩乐", 30),
    ("母婴护理服务", 25),
    ("纸尿裤湿巾", 16),
    ("妈妈用品", 15),
    ("宝宝起名", 12),
    ("童装童鞋", 9),
    ("胎教", 8),
    ("宝宝安全", 1),
    ("宝宝洗护用品", 1),
    ("软件应用", 1018),
    ("系统工具", 896),
    ("理财购物", 440),
    ("生活实用", 365),
    ("影音图像", 256),
    ("社交通讯", 214),
    ("手机美化", 39),
    ("办公学习", 28),
    ("应用市场", 23),
    ("母婴育儿", 14),
    ("游戏", 946),
    ("手机游戏", 565),
    ("PC游戏", 353),
    ("网页游戏", 254),
    ("游戏机", 188),
    ("模拟辅助", 166),
    ("个护美容", 942),
    ("护肤品", 177),
    ("彩妆", 133),
    ("美发", 80),
    ("香水", 50),
    ("个人护理", 46),
    ("美甲", 26),
    ("SPA美体", 21),
    ("花鸟萌宠", 914),
    ("绿植花卉", 311),
    ("狗", 257),
    ("其他宠物", 131),
    ("水族", 125),
    ("猫", 122),
    ("动物", 81),
    ("鸟", 67),
    ("宠物用品", 41),
    ("宠物服务", 26),
    ("书籍阅读", 913),
    ("网络小说", 483),
    ("关注书籍", 128),
    ("文学", 105),
    ("报刊杂志", 77),
    ("人文社科", 22),
    ("建材家居", 907),
    ("装修建材", 644),
    ("家具", 273),
    ("家居风格", 187),
    ("家居家装关注品牌", 140),
    ("家纺", 107),
    ("厨具", 47),
    ("灯具", 43),
    ("家居饰品", 29),
    ("家居日常用品", 10),
    ("生活服务", 883),
    ("物流配送", 536),
    ("家政服务", 108),
    ("摄影服务", 49),
    ("搬家服务", 38),
    ("物业维修", 37),
    ("婚庆服务", 24),
    ("二手回收", 24),
    ("鲜花配送", 3),
    ("维修服务", 3),
    ("殡葬服务", 1),
    ("求职创业", 874),
    ("创业", 363),
    ("目标职位", 162),
    ("目标行业", 50),
    ("兼职", 21),
    ("期望年薪", 20),
    ("实习", 16),
    ("雇主类型", 10),
    ("星座运势", 789),
    ("星座", 316),
    ("算命", 303),
    ("解梦", 196),
    ("风水", 93),
    ("面相分析", 47),
    ("手相", 32),
    ("公益", 90),
]

c = (
    WordCloud()
    .add(
        "",
        words,
        word_size_range=[20, 100],
        textstyle_opts=opts.TextStyleOpts(font_family="cursive"),
    )
    .set_global_opts(title_opts=opts.TitleOpts(title="自定义文字样式"))
    .render("wordcloud_custom_font_style.html")
)

(三)运行效果图:

在这里插入图片描述

Python代码:

from pyecharts import options as opts
from pyecharts.charts import WordCloud
from pyecharts.globals import SymbolType

words = [
    ("Sam S Club", 10000),
    ("Macys", 6181),
    ("Amy Schumer", 4386),
    ("Jurassic World", 4055),
    ("Charter Communications", 2467),
    ("Chick Fil A", 2244),
    ("Planet Fitness", 1868),
    ("Pitch Perfect", 1484),
    ("Express", 1112),
    ("Home", 865),
    ("Johnny Depp", 847),
    ("Lena Dunham", 582),
    ("Lewis Hamilton", 555),
    ("KXAN", 550),
    ("Mary Ellen Mark", 462),
    ("Farrah Abraham", 366),
    ("Rita Ora", 360),
    ("Serena Williams", 282),
    ("NCAA baseball tournament", 273),
    ("Point Break", 265),
]
c = (
    WordCloud()
    .add("", words, word_size_range=[20, 100], shape=SymbolType.DIAMOND)
    .set_global_opts(title_opts=opts.TitleOpts(title="WordCloud-shape-diamond"))
    .render("wordcloud_diamond.html")
)
七:雷达图

(一)运行效果图:

在这里插入图片描述

Python代码:

import pyecharts.options as opts
from pyecharts.charts import Radar

v1 = [[4300, 10000, 28000, 35000, 50000, 19000]]
v2 = [[5000, 14000, 28000, 31000, 42000, 21000]]

(
    Radar(init_opts=opts.InitOpts(width="1280px", height="720px", bg_color="#CCCCCC"))
    .add_schema(
        schema=[
            opts.RadarIndicatorItem(name="销售(sales)", max_=6500),
            opts.RadarIndicatorItem(name="管理(Administration)", max_=16000),
            opts.RadarIndicatorItem(name="信息技术(Information Technology)", max_=30000),
            opts.RadarIndicatorItem(name="客服(Customer Support)", max_=38000),
            opts.RadarIndicatorItem(name="研发(Development)", max_=52000),
            opts.RadarIndicatorItem(name="市场(Marketing)", max_=25000),
        ],
        splitarea_opt=opts.SplitAreaOpts(
            is_show=True, areastyle_opts=opts.AreaStyleOpts(opacity=1)
        ),
        textstyle_opts=opts.TextStyleOpts(color="#fff"),
    )
    .add(
        series_name="预算分配(Allocated Budget)",
        data=v1,
        linestyle_opts=opts.LineStyleOpts(color="#CD0000"),
    )
    .add(
        series_name="实际开销(Actual Spending)",
        data=v2,
        linestyle_opts=opts.LineStyleOpts(color="#5CACEE"),
    )
    .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
    .set_global_opts(
        title_opts=opts.TitleOpts(title="基础雷达图"), legend_opts=opts.LegendOpts()
    )
    .render("basic_radar_chart.html")
)

(二)运行效果图:

在这里插入图片描述

Python代码:

from pyecharts import options as opts
from pyecharts.charts import Radar

data = [{"value": [4, -4, 2, 3, 0, 1], "name": "预算分配"}]
c_schema = [
    {"name": "销售", "max": 4, "min": -4},
    {"name": "管理", "max": 4, "min": -4},
    {"name": "技术", "max": 4, "min": -4},
    {"name": "客服", "max": 4, "min": -4},
    {"name": "研发", "max": 4, "min": -4},
    {"name": "市场", "max": 4, "min": -4},
]
c = (
    Radar()
    .set_colors(["#4587E7"])
    .add_schema(
        schema=c_schema,
        shape="circle",
        center=["50%", "50%"],
        radius="80%",
        angleaxis_opts=opts.AngleAxisOpts(
            min_=0,
            max_=360,
            is_clockwise=False,
            interval=5,
            axistick_opts=opts.AxisTickOpts(is_show=False),
            axislabel_opts=opts.LabelOpts(is_show=False),
            axisline_opts=opts.AxisLineOpts(is_show=False),
            splitline_opts=opts.SplitLineOpts(is_show=False),
        ),
        radiusaxis_opts=opts.RadiusAxisOpts(
            min_=-4,
            max_=4,
            interval=2,
            splitarea_opts=opts.SplitAreaOpts(
                is_show=True, areastyle_opts=opts.AreaStyleOpts(opacity=1)
            ),
        ),
        polar_opts=opts.PolarOpts(),
        splitarea_opt=opts.SplitAreaOpts(is_show=False),
        splitline_opt=opts.SplitLineOpts(is_show=False),
    )
    .add(
        series_name="预算",
        data=data,
        areastyle_opts=opts.AreaStyleOpts(opacity=0.1),
        linestyle_opts=opts.LineStyleOpts(width=1),
    )
    .render("radar_angle_radius_axis.html")
)
八:漏斗图

(一)运行效果图:

在这里插入图片描述

Python代码:

from pyecharts import options as opts
from pyecharts.charts import Funnel
from pyecharts.faker import Faker


c = (
    Funnel()
    .add(
        "漏斗图",
        [list(z) for z in zip(Faker.choose(), Faker.values())],
        label_opts=opts.LabelOpts(position="inside"),
    )
    .set_global_opts(title_opts=opts.TitleOpts(title="Funnel-Label(inside)"))
    .render("funnel_label_inside.html")
)

(一)运行效果图:

在这里插入图片描述

Python代码:

from pyecharts import options as opts
from pyecharts.charts import Funnel
from pyecharts.faker import Faker

c = (
    Funnel()
    .add(
        "漏斗图",
        [list(z) for z in zip(Faker.choose(), Faker.values())],
        sort_="ascending",
        label_opts=opts.LabelOpts(position="inside"),
    )
    .set_global_opts(title_opts=opts.TitleOpts(title="Funnel-Sort(ascending)"))
    .render("funnel_sort_ascending.html")
)
九:地理坐标图

(一)运行效果图:

在这里插入图片描述

Python代码:

from pyecharts import options as opts
from pyecharts.charts import Geo
from pyecharts.globals import ChartType, SymbolType

c = (
    Geo()
    .add_schema(
        maptype="china",
        itemstyle_opts=opts.ItemStyleOpts(color="#323c48", border_color="#111"),
    )
    .add(
        "",
        [("广州", 55), ("北京", 66), ("杭州", 77), ("重庆", 88)],
        type_=ChartType.EFFECT_SCATTER,
        color="white",
    )
    .add(
        "geo",
        [("广州", "上海"), ("广州", "北京"), ("广州", "杭州"), ("广州", "重庆")],
        type_=ChartType.LINES,
        effect_opts=opts.EffectOpts(
            symbol=SymbolType.ARROW, symbol_size=6, color="blue"
        ),
        linestyle_opts=opts.LineStyleOpts(curve=0.2),
    )
    .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
    .set_global_opts(title_opts=opts.TitleOpts(title=""))
    .render("地理坐标图(4).html")
)

(二)运行效果图:

在这里插入图片描述

Python代码:

from pyecharts import options as opts
from pyecharts.charts import Map
from pyecharts.faker import Faker

c = (
    Map()
    .add("世界地图", [list(z) for z in zip(Faker.country, Faker.values())], "world")
    .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
    .set_global_opts(
        title_opts=opts.TitleOpts(title="世界地图(平面)"),
        visualmap_opts=opts.VisualMapOpts(max_=200),
    )
    .render("世界地图(平面).html")
)
十:K线图烛台

(一)运行效果图:

在这里插入图片描述

Python代码:

from pyecharts import options as opts
from pyecharts.charts import Kline

data = [
    [2320.26, 2320.26, 2287.3, 2362.94],
    [2300, 2291.3, 2288.26, 2308.38],
    [2295.35, 2346.5, 2295.35, 2345.92],
    [2347.22, 2358.98, 2337.35, 2363.8],
    [2360.75, 2382.48, 2347.89, 2383.76],
    [2383.43, 2385.42, 2371.23, 2391.82],
    [2377.41, 2419.02, 2369.57, 2421.15],
    [2425.92, 2428.15, 2417.58, 2440.38],
    [2411, 2433.13, 2403.3, 2437.42],
    [2432.68, 2334.48, 2427.7, 2441.73],
    [2430.69, 2418.53, 2394.22, 2433.89],
    [2416.62, 2432.4, 2414.4, 2443.03],
    [2441.91, 2421.56, 2418.43, 2444.8],
    [2420.26, 2382.91, 2373.53, 2427.07],
    [2383.49, 2397.18, 2370.61, 2397.94],
    [2378.82, 2325.95, 2309.17, 2378.82],
    [2322.94, 2314.16, 2308.76, 2330.88],
    [2320.62, 2325.82, 2315.01, 2338.78],
    [2313.74, 2293.34, 2289.89, 2340.71],
    [2297.77, 2313.22, 2292.03, 2324.63],
    [2322.32, 2365.59, 2308.92, 2366.16],
    [2364.54, 2359.51, 2330.86, 2369.65],
    [2332.08, 2273.4, 2259.25, 2333.54],
    [2274.81, 2326.31, 2270.1, 2328.14],
    [2333.61, 2347.18, 2321.6, 2351.44],
    [2340.44, 2324.29, 2304.27, 2352.02],
    [2326.42, 2318.61, 2314.59, 2333.67],
    [2314.68, 2310.59, 2296.58, 2320.96],
    [2309.16, 2286.6, 2264.83, 2333.29],
    [2282.17, 2263.97, 2253.25, 2286.33],
    [2255.77, 2270.28, 2253.31, 2276.22],
]

c = (
    Kline()
    .add_xaxis(["2017/7/{}".format(i + 1) for i in range(31)])
    .add_yaxis(
        "kline",
        data,
        markline_opts=opts.MarkLineOpts(
            data=[opts.MarkLineItem(type_="max", value_dim="close")]
        ),
    )
    .set_global_opts(
        xaxis_opts=opts.AxisOpts(is_scale=True),
        yaxis_opts=opts.AxisOpts(
            is_scale=True,
            splitarea_opts=opts.SplitAreaOpts(
                is_show=True, areastyle_opts=opts.AreaStyleOpts(opacity=1)
            ),
        ),
        title_opts=opts.TitleOpts(title=""),
    )
    .render("K线图烛台(7).html")
)

(二)运行效果图:

在这里插入图片描述

Python代码:

from typing import List, Sequence, Union
from pyecharts import options as opts
from pyecharts.commons.utils import JsCode
from pyecharts.charts import Kline, Line, Bar, Grid

# 数据
echarts_data = [
    ["2015-10-16", 18.4, 18.58, 18.33, 18.79, 67.00, 1, 0.04, 0.11, 0.09],
    ["2015-10-19", 18.56, 18.25, 18.19, 18.56, 55.00, 0, -0.00, 0.08, 0.09],
    ["2015-10-20", 18.3, 18.22, 18.05, 18.41, 37.00, 0, 0.01, 0.09, 0.09],
    ["2015-10-21", 18.18, 18.69, 18.02, 18.98, 89.00, 0, 0.03, 0.10, 0.08],
    ["2015-10-22", 18.42, 18.29, 18.22, 18.48, 43.00, 0, -0.06, 0.05, 0.08],
    ["2015-10-23", 18.26, 18.19, 18.08, 18.36, 46.00, 0, -0.10, 0.03, 0.09],
    ["2015-10-26", 18.33, 18.07, 17.98, 18.35, 65.00, 0, -0.15, 0.03, 0.10],
    ["2015-10-27", 18.08, 18.04, 17.88, 18.13, 37.00, 0, -0.19, 0.03, 0.12],
    ["2015-10-28", 17.96, 17.86, 17.82, 17.99, 35.00, 0, -0.24, 0.03, 0.15],
    ["2015-10-29", 17.85, 17.81, 17.8, 17.93, 27.00, 0, -0.24, 0.06, 0.18],
    ["2015-10-30", 17.79, 17.93, 17.78, 18.08, 43.00, 0, -0.22, 0.11, 0.22],
    ["2015-11-02", 17.78, 17.83, 17.78, 18.04, 27.00, 0, -0.20, 0.15, 0.25],
    ["2015-11-03", 17.84, 17.9, 17.84, 18.06, 34.00, 0, -0.12, 0.22, 0.28],
    ["2015-11-04", 17.97, 18.36, 17.85, 18.39, 62.00, 0, -0.00, 0.30, 0.30],
    ["2015-11-05", 18.3, 18.57, 18.18, 19.08, 177.00, 0, 0.07, 0.33, 0.30],
    ["2015-11-06", 18.53, 18.68, 18.3, 18.71, 95.00, 0, 0.12, 0.35, 0.29],
    ["2015-11-09", 18.75, 19.08, 18.75, 19.98, 202.00, 1, 0.16, 0.35, 0.27],
    ["2015-11-10", 18.85, 18.64, 18.56, 18.99, 85.00, 0, 0.09, 0.29, 0.25],
    ["2015-11-11", 18.64, 18.44, 18.31, 18.64, 50.00, 0, 0.06, 0.27, 0.23],
    ["2015-11-12", 18.55, 18.27, 18.17, 18.57, 43.00, 0, 0.05, 0.25, 0.23],
    ["2015-11-13", 18.13, 18.14, 18.09, 18.34, 35.00, 0, 0.05, 0.24, 0.22],
    ["2015-11-16", 18.01, 18.1, 17.93, 18.17, 34.00, 0, 0.07, 0.25, 0.21],
    ["2015-11-17", 18.2, 18.14, 18.08, 18.45, 58.00, 0, 0.11, 0.25, 0.20],
    ["2015-11-18", 18.23, 18.16, 18.0, 18.45, 47.00, 0, 0.13, 0.25, 0.19],
    ["2015-11-19", 18.08, 18.2, 18.05, 18.25, 32.00, 0, 0.15, 0.24, 0.17],
    ["2015-11-20", 18.15, 18.15, 18.11, 18.29, 36.00, 0, 0.13, 0.21, 0.15],
    ["2015-11-23", 18.16, 18.19, 18.12, 18.34, 47.00, 0, 0.11, 0.18, 0.13],
    ["2015-11-24", 18.23, 17.88, 17.7, 18.23, 62.00, 0, 0.03, 0.13, 0.11],
    ["2015-11-25", 17.85, 17.73, 17.56, 17.85, 66.00, 0, -0.03, 0.09, 0.11],
    ["2015-11-26", 17.79, 17.53, 17.5, 17.92, 63.00, 0, -0.10, 0.06, 0.11],
    ["2015-11-27", 17.51, 17.04, 16.9, 17.51, 67.00, 0, -0.16, 0.05, 0.13],
    ["2015-11-30", 17.07, 17.2, 16.98, 17.32, 55.00, 0, -0.12, 0.09, 0.15],
    ["2015-12-01", 17.28, 17.11, 16.91, 17.28, 39.00, 0, -0.09, 0.12, 0.16],
    ["2015-12-02", 17.13, 17.91, 17.05, 17.99, 102.00, 0, -0.01, 0.17, 0.18],
    ["2015-12-03", 17.8, 17.78, 17.61, 17.98, 71.00, 0, -0.09, 0.14, 0.18],
    ["2015-12-04", 17.6, 17.25, 17.13, 17.69, 51.00, 0, -0.18, 0.10, 0.19],
    ["2015-12-07", 17.2, 17.39, 17.15, 17.45, 43.00, 0, -0.19, 0.12, 0.22],
    ["2015-12-08", 17.3, 17.42, 17.18, 17.62, 45.00, 0, -0.23, 0.13, 0.24],
    ["2015-12-09", 17.33, 17.39, 17.32, 17.59, 44.00, 0, -0.29, 0.13, 0.28],
    ["2015-12-10", 17.39, 17.26, 17.21, 17.65, 44.00, 0, -0.37, 0.13, 0.32],
    ["2015-12-11", 17.23, 16.92, 16.66, 17.26, 114.00, 1, -0.44, 0.15, 0.37],
    ["2015-12-14", 16.75, 17.06, 16.5, 17.09, 94.00, 0, -0.44, 0.21, 0.44],
    ["2015-12-15", 17.03, 17.03, 16.9, 17.06, 46.00, 0, -0.44, 0.28, 0.50],
    ["2015-12-16", 17.08, 16.96, 16.87, 17.09, 30.00, 0, -0.40, 0.36, 0.56],
    ["2015-12-17", 17.0, 17.1, 16.95, 17.12, 50.00, 0, -0.30, 0.47, 0.62],
    ["2015-12-18", 17.09, 17.52, 17.04, 18.06, 156.00, 0, -0.14, 0.59, 0.66],
    ["2015-12-21", 17.43, 18.23, 17.35, 18.45, 152.00, 1, 0.02, 0.69, 0.68],
    ["2015-12-22", 18.14, 18.27, 18.06, 18.32, 94.00, 0, 0.08, 0.72, 0.68],
    ["2015-12-23", 18.28, 18.19, 18.17, 18.71, 108.00, 0, 0.13, 0.73, 0.67],
    ["2015-12-24", 18.18, 18.14, 18.01, 18.31, 37.00, 0, 0.19, 0.74, 0.65],
    ["2015-12-25", 18.22, 18.33, 18.2, 18.36, 48.00, 0, 0.26, 0.75, 0.62],
    ["2015-12-28", 18.35, 17.84, 17.8, 18.39, 48.00, 0, 0.27, 0.72, 0.59],
    ["2015-12-29", 17.83, 17.94, 17.71, 17.97, 36.00, 0, 0.36, 0.73, 0.55],
    ["2015-12-30", 17.9, 18.26, 17.55, 18.3, 71.00, 1, 0.43, 0.71, 0.50],
    ["2015-12-31", 18.12, 17.99, 17.91, 18.33, 72.00, 0, 0.40, 0.63, 0.43],
    ["2016-01-04", 17.91, 17.28, 17.16, 17.95, 37.00, 1, 0.34, 0.55, 0.38],
    ["2016-01-05", 17.17, 17.23, 17.0, 17.55, 51.00, 0, 0.37, 0.51, 0.33],
    ["2016-01-06", 17.2, 17.31, 17.06, 17.33, 31.00, 0, 0.37, 0.46, 0.28],
    ["2016-01-07", 17.15, 16.67, 16.51, 17.15, 19.00, 0, 0.30, 0.37, 0.22],
    ["2016-01-08", 16.8, 16.81, 16.61, 17.06, 60.00, 0, 0.29, 0.32, 0.18],
    ["2016-01-11", 16.68, 16.04, 16.0, 16.68, 65.00, 0, 0.20, 0.24, 0.14],
    ["2016-01-12", 16.03, 15.98, 15.88, 16.25, 46.00, 0, 0.20, 0.21, 0.11],
    ["2016-01-13", 16.21, 15.87, 15.78, 16.21, 57.00, 0, 0.20, 0.18, 0.08],
    ["2016-01-14", 15.55, 15.89, 15.52, 15.96, 42.00, 0, 0.20, 0.16, 0.05],
    ["2016-01-15", 15.87, 15.48, 15.45, 15.92, 34.00, 1, 0.17, 0.11, 0.02],
    ["2016-01-18", 15.39, 15.42, 15.36, 15.7, 26.00, 0, 0.21, 0.10, -0.00],
    ["2016-01-19", 15.58, 15.71, 15.35, 15.77, 38.00, 0, 0.25, 0.09, -0.03],
    ["2016-01-20", 15.56, 15.52, 15.24, 15.68, 38.00, 0, 0.23, 0.05, -0.07],
    ["2016-01-21", 15.41, 15.3, 15.28, 15.68, 35.00, 0, 0.21, 0.00, -0.10],
    ["2016-01-22", 15.48, 15.28, 15.13, 15.49, 30.00, 0, 0.21, -0.02, -0.13],
    ["2016-01-25", 15.29, 15.48, 15.2, 15.49, 21.00, 0, 0.20, -0.06, -0.16],
    ["2016-01-26", 15.33, 14.86, 14.78, 15.39, 30.00, 0, 0.12, -0.13, -0.19],
    ["2016-01-27", 14.96, 15.0, 14.84, 15.22, 51.00, 0, 0.13, -0.14, -0.20],
    ["2016-01-28", 14.96, 14.72, 14.62, 15.06, 25.00, 0, 0.10, -0.17, -0.22],
    ["2016-01-29", 14.75, 14.99, 14.62, 15.08, 36.00, 0, 0.13, -0.17, -0.24],
    ["2016-02-01", 14.98, 14.72, 14.48, 15.18, 27.00, 0, 0.10, -0.21, -0.26],
    ["2016-02-02", 14.65, 14.85, 14.65, 14.95, 18.00, 0, 0.11, -0.21, -0.27],
    ["2016-02-03", 14.72, 14.67, 14.55, 14.8, 23.00, 0, 0.10, -0.24, -0.29],
    ["2016-02-04", 14.79, 14.88, 14.69, 14.93, 22.00, 0, 0.13, -0.24, -0.30],
    ["2016-02-05", 14.9, 14.86, 14.78, 14.93, 16.00, 0, 0.12, -0.26, -0.32],
    ["2016-02-15", 14.5, 14.66, 14.47, 14.82, 19.00, 0, 0.11, -0.28, -0.34],
    ["2016-02-16", 14.77, 14.94, 14.72, 15.05, 26.00, 0, 0.14, -0.28, -0.35],
    ["2016-02-17", 14.95, 15.03, 14.88, 15.07, 38.00, 0, 0.12, -0.31, -0.37],
    ["2016-02-18", 14.95, 14.9, 14.87, 15.06, 28.00, 0, 0.07, -0.35, -0.39],
    ["2016-02-19", 14.9, 14.75, 14.68, 14.94, 22.00, 0, 0.03, -0.38, -0.40],
    ["2016-02-22", 14.88, 15.01, 14.79, 15.11, 38.00, 1, 0.01, -0.40, -0.40],
    ["2016-02-23", 15.01, 14.83, 14.72, 15.01, 24.00, 0, -0.09, -0.45, -0.40],
    ["2016-02-24", 14.75, 14.81, 14.67, 14.87, 21.00, 0, -0.17, -0.48, -0.39],
    ["2016-02-25", 14.81, 14.25, 14.21, 14.81, 51.00, 1, -0.27, -0.50, -0.37],
    ["2016-02-26", 14.35, 14.45, 14.28, 14.57, 28.00, 0, -0.26, -0.46, -0.33],
    ["2016-02-29", 14.43, 14.56, 14.04, 14.6, 48.00, 0, -0.25, -0.41, -0.29],
    ["2016-03-01", 14.56, 14.65, 14.36, 14.78, 32.00, 0, -0.21, -0.36, -0.25],
    ["2016-03-02", 14.79, 14.96, 14.72, 14.97, 60.00, 0, -0.13, -0.29, -0.22],
    ["2016-03-03", 14.95, 15.15, 14.91, 15.19, 53.00, 1, -0.05, -0.23, -0.21],
    ["2016-03-04", 15.14, 15.97, 15.02, 16.02, 164.00, 1, 0.06, -0.17, -0.20],
    ["2016-03-07", 15.9, 15.78, 15.65, 16.0, 41.00, 0, 0.04, -0.19, -0.21],
    ["2016-03-08", 15.78, 15.96, 15.21, 15.99, 45.00, 0, 0.05, -0.19, -0.21],
    ["2016-03-09", 15.73, 16.05, 15.41, 16.08, 74.00, 0, 0.03, -0.20, -0.22],
    ["2016-03-10", 15.82, 15.66, 15.65, 15.98, 19.00, 0, -0.02, -0.23, -0.22],
    ["2016-03-11", 15.59, 15.76, 15.42, 15.78, 32.00, 0, 0.01, -0.22, -0.22],
    ["2016-03-14", 15.78, 15.72, 15.65, 16.04, 31.00, 0, 0.03, -0.20, -0.22],
    ["2016-03-15", 15.81, 15.86, 15.6, 15.99, 35.00, 0, 0.10, -0.18, -0.23],
    ["2016-03-16", 15.88, 16.42, 15.79, 16.45, 123.00, 0, 0.17, -0.16, -0.24],
    ["2016-03-17", 16.39, 16.23, 16.11, 16.4, 46.00, 0, 0.14, -0.20, -0.26],
    ["2016-03-18", 16.39, 16.17, 16.04, 16.4, 59.00, 0, 0.13, -0.22, -0.28],
    ["2016-03-21", 16.21, 16.22, 16.11, 16.44, 50.00, 0, 0.12, -0.24, -0.30],
    ["2016-03-22", 16.27, 16.19, 16.16, 16.42, 33.00, 0, 0.10, -0.27, -0.32],
    ["2016-03-23", 16.26, 16.18, 16.18, 16.29, 19.00, 0, 0.08, -0.30, -0.33],
    ["2016-03-24", 16.18, 16.11, 16.01, 16.23, 23.00, 0, 0.04, -0.33, -0.35],
    ["2016-03-25", 16.12, 16.13, 16.1, 16.2, 15.00, 0, 0.00, -0.35, -0.35],
    ["2016-03-28", 16.15, 15.85, 15.81, 16.2, 22.00, 0, -0.06, -0.38, -0.35],
    ["2016-03-29", 15.9, 15.79, 15.76, 16.05, 19.00, 0, -0.06, -0.37, -0.34],
    ["2016-03-30", 15.79, 16.24, 15.78, 16.3, 29.00, 0, -0.03, -0.35, -0.33],
    ["2016-03-31", 16.3, 16.09, 16.02, 16.35, 25.00, 0, -0.07, -0.37, -0.33],
    ["2016-04-01", 16.18, 16.27, 15.98, 16.3, 38.00, 0, -0.08, -0.36, -0.32],
    ["2016-04-05", 16.13, 16.34, 16.07, 16.37, 39.00, 0, -0.13, -0.37, -0.31],
    ["2016-04-06", 16.21, 16.26, 16.19, 16.35, 30.00, 0, -0.20, -0.39, -0.29],
    ["2016-04-07", 16.32, 16.1, 16.05, 16.35, 29.00, 1, -0.26, -0.39, -0.26],
    ["2016-04-08", 16.0, 16.16, 15.98, 16.21, 22.00, 0, -0.28, -0.37, -0.23],
    ["2016-04-11", 16.16, 16.31, 16.15, 16.57, 31.00, 0, -0.30, -0.33, -0.19],
    ["2016-04-12", 16.41, 16.29, 16.12, 16.41, 17.00, 0, -0.31, -0.30, -0.14],
    ["2016-04-13", 16.39, 16.48, 16.0, 16.68, 40.00, 0, -0.30, -0.25, -0.10],
    ["2016-04-14", 16.5, 16.46, 16.37, 16.68, 22.00, 0, -0.27, -0.19, -0.06],
    ["2016-04-15", 16.56, 16.93, 16.46, 17.04, 58.00, 0, -0.20, -0.12, -0.02],
    ["2016-04-18", 16.76, 17.06, 16.72, 17.27, 50.00, 0, -0.16, -0.07, 0.01],
    ["2016-04-19", 17.21, 17.11, 17.02, 17.23, 30.00, 0, -0.12, -0.02, 0.03],
    ["2016-04-20", 17.11, 17.33, 16.8, 17.36, 78.00, 0, -0.04, 0.03, 0.05],
    ["2016-04-21", 17.27, 17.69, 17.17, 17.93, 79.00, 0, 0.05, 0.08, 0.06],
    ["2016-04-22", 17.6, 17.87, 17.56, 18.02, 55.00, 0, 0.09, 0.10, 0.05],
    ["2016-04-25", 17.75, 17.9, 17.41, 17.96, 39.00, 1, 0.11, 0.09, 0.04],
    ["2016-04-26", 17.81, 17.91, 17.6, 17.95, 39.00, 0, 0.12, 0.08, 0.02],
    ["2016-04-27", 17.9, 17.88, 17.81, 17.95, 25.00, 0, 0.12, 0.06, 0.00],
    ["2016-04-28", 17.93, 17.88, 17.67, 17.93, 28.00, 0, 0.11, 0.04, -0.01],
    ["2016-04-29", 17.87, 17.75, 17.73, 17.92, 19.00, 0, 0.08, 0.01, -0.03],
    ["2016-05-03", 17.79, 17.7, 17.56, 17.85, 35.00, 0, 0.05, -0.01, -0.04],
    ["2016-05-04", 17.7, 17.65, 17.59, 17.71, 24.00, 0, 0.02, -0.04, -0.05],
    ["2016-05-05", 17.65, 17.62, 17.46, 17.7, 20.00, 0, -0.03, -0.06, -0.05],
    ["2016-05-06", 17.62, 17.32, 17.3, 17.65, 29.00, 0, -0.10, -0.09, -0.05],
    ["2016-05-09", 17.33, 17.3, 17.21, 17.45, 23.00, 0, -0.13, -0.10, -0.03],
    ["2016-05-10", 17.11, 17.04, 16.98, 17.41, 28.00, 0, -0.15, -0.09, -0.01],
    ["2016-05-11", 17.06, 17.15, 17.06, 17.32, 20.00, 0, -0.12, -0.05, 0.01],
    ["2016-05-12", 17.02, 17.46, 17.02, 17.58, 26.00, 0, -0.07, -0.01, 0.03],
    ["2016-05-13", 17.41, 17.57, 17.34, 17.62, 23.00, 0, -0.06, 0.01, 0.03],
    ["2016-05-16", 17.55, 17.5, 17.48, 17.64, 37.00, 0, -0.06, 0.01, 0.04],
    ["2016-05-17", 17.49, 17.48, 17.39, 17.53, 13.00, 0, -0.03, 0.03, 0.05],
    ["2016-05-18", 17.41, 17.82, 17.39, 17.87, 46.00, 0, 0.01, 0.06, 0.06],
    ["2016-05-19", 17.74, 17.81, 17.67, 17.86, 17.00, 0, -0.01, 0.05, 0.05],
    ["2016-05-20", 17.76, 17.88, 17.7, 17.93, 14.00, 0, -0.03, 0.04, 0.06],
    ["2016-05-23", 17.88, 17.52, 17.48, 17.97, 16.00, 0, -0.09, 0.02, 0.06],
    ["2016-05-24", 17.51, 17.33, 17.32, 17.51, 8.00, 0, -0.09, 0.03, 0.07],
    ["2016-05-25", 17.59, 17.55, 17.44, 17.59, 10.00, 0, -0.03, 0.07, 0.08],
    ["2016-05-26", 17.5, 17.69, 17.5, 17.8, 12.00, 0, 0.00, 0.09, 0.09],
    ["2016-05-27", 17.77, 17.66, 17.62, 17.77, 7.00, 0, 0.03, 0.10, 0.09],
    ["2016-05-30", 17.75, 17.84, 17.62, 17.87, 20.00, 0, 0.08, 0.12, 0.08],
    ["2016-05-31", 17.88, 18.0, 17.81, 18.03, 41.00, 0, 0.10, 0.12, 0.07],
    ["2016-06-01", 18.09, 17.83, 17.73, 18.09, 22.00, 0, 0.08, 0.10, 0.06],
    ["2016-06-02", 17.82, 17.73, 17.66, 17.88, 10.00, 0, 0.07, 0.08, 0.05],
    ["2016-06-03", 17.8, 17.78, 17.71, 17.83, 9.00, 0, 0.08, 0.08, 0.04],
    ["2016-06-06", 17.73, 17.64, 17.56, 17.83, 12.00, 0, 0.07, 0.06, 0.03],
    ["2016-06-07", 17.76, 17.8, 17.59, 17.87, 11.00, 0, 0.08, 0.06, 0.02],
    ["2016-06-08", 17.75, 17.77, 17.65, 17.84, 9.00, 0, 0.04, 0.03, 0.01],
    ["2016-06-13", 17.58, 17.32, 17.29, 17.79, 16.00, 0, -0.02, -0.01, 0.00],
    ["2016-06-14", 17.33, 17.38, 17.29, 17.5, 10.00, 0, -0.01, 0.00, 0.00],
    ["2016-06-15", 17.25, 17.39, 17.25, 17.46, 18.00, 0, 0.00, 0.01, 0.00],
    ["2016-06-16", 17.26, 17.4, 17.26, 17.46, 22.00, 0, 0.01, 0.01, 0.00],
    ["2016-06-17", 17.38, 17.5, 17.37, 17.67, 13.00, 0, 0.03, 0.02, 0.00],
    ["2016-06-20", 17.62, 17.51, 17.42, 17.63, 15.00, 0, 0.03, 0.01, -0.00],
    ["2016-06-21", 17.53, 17.54, 17.5, 17.7, 11.00, 0, 0.02, 0.00, -0.01],
    ["2016-06-22", 17.5, 17.5, 17.46, 17.6, 10.00, 0, -0.01, -0.01, -0.01],
    ["2016-06-23", 17.52, 17.26, 17.24, 17.53, 16.00, 0, -0.04, -0.03, -0.01],
    ["2016-06-24", 17.26, 17.25, 17.18, 17.38, 60.00, 0, -0.03, -0.02, -0.00],
    ["2016-06-27", 17.25, 17.28, 17.18, 17.33, 19.00, 0, -0.01, -0.00, 0.00],
    ["2016-06-28", 17.25, 17.29, 17.21, 17.32, 13.00, 0, 0.02, 0.01, 0.00],
    ["2016-06-29", 17.31, 17.45, 17.27, 17.49, 21.00, 0, 0.07, 0.04, 0.00],
    ["2016-06-30", 17.47, 17.5, 17.39, 17.55, 17.00, 0, 0.11, 0.04, -0.01],
    ["2016-07-01", 17.5, 17.63, 17.49, 17.66, 10.00, 0, 0.14, 0.05, -0.03],
    ["2016-07-04", 17.63, 17.72, 17.63, 17.92, 17.00, 0, 0.16, 0.03, -0.05],
    ["2016-07-05", 17.79, 17.56, 17.45, 17.79, 18.00, 0, 0.14, 0.00, -0.07],
    ["2016-07-06", 17.53, 17.42, 17.31, 17.54, 20.00, 0, 0.14, -0.02, -0.09],
    ["2016-07-07", 17.41, 17.51, 17.35, 17.52, 15.00, 0, 0.16, -0.03, -0.11],
    ["2016-07-08", 17.5, 17.39, 17.35, 17.51, 15.00, 0, 0.16, -0.05, -0.13],
    ["2016-07-11", 17.49, 17.48, 17.4, 17.55, 16.00, 0, 0.17, -0.07, -0.15],
    ["2016-07-12", 17.48, 17.71, 17.46, 17.75, 25.00, 0, 0.16, -0.10, -0.18],
    ["2016-07-13", 17.13, 17.05, 17.02, 17.39, 28.00, 0, 0.07, -0.17, -0.20],
    ["2016-07-14", 17.07, 17.09, 17.0, 17.16, 12.00, 0, 0.08, -0.17, -0.21],
    ["2016-07-15", 17.08, 17.14, 17.08, 17.17, 11.00, 0, 0.09, -0.18, -0.22],
    ["2016-07-18", 17.15, 17.26, 17.13, 17.49, 24.00, 0, 0.10, -0.19, -0.23],
    ["2016-07-19", 17.26, 17.12, 17.09, 17.33, 13.00, 0, 0.07, -0.21, -0.25],
    ["2016-07-20", 17.1, 17.07, 17.02, 17.14, 11.00, 0, 0.06, -0.23, -0.26],
    ["2016-07-21", 17.07, 17.24, 17.07, 17.27, 14.00, 0, 0.07, -0.23, -0.27],
    ["2016-07-22", 17.25, 17.08, 17.03, 17.25, 10.00, 0, 0.04, -0.26, -0.28],
    ["2016-07-25", 17.09, 17.12, 17.01, 17.18, 8.00, 0, 0.04, -0.26, -0.28],
    ["2016-07-26", 17.05, 17.17, 17.05, 17.2, 11.00, 0, 0.04, -0.27, -0.29],
    ["2016-07-27", 17.2, 17.37, 16.89, 17.38, 32.00, 0, 0.02, -0.28, -0.29],
    ["2016-07-28", 17.19, 17.14, 17.09, 17.29, 19.00, 0, -0.04, -0.32, -0.30],
    ["2016-07-29", 17.15, 17.16, 17.04, 17.23, 12.00, 0, -0.08, -0.33, -0.29],
    ["2016-08-01", 17.15, 17.18, 17.1, 17.24, 19.00, 0, -0.13, -0.34, -0.28],
    ["2016-08-02", 17.21, 17.15, 17.12, 17.25, 9.00, 0, -0.19, -0.36, -0.26],
    ["2016-08-03", 17.08, 17.07, 17.01, 17.16, 9.00, 0, -0.25, -0.36, -0.24],
    ["2016-08-04", 17.11, 17.06, 16.98, 17.12, 11.00, 1, -0.29, -0.35, -0.20],
    ["2016-08-05", 17.06, 17.1, 17.05, 17.15, 16.00, 0, -0.33, -0.32, -0.16],
    ["2016-08-08", 17.14, 17.13, 17.07, 17.15, 13.00, 0, -0.35, -0.29, -0.11],
    ["2016-08-09", 17.13, 17.17, 17.1, 17.2, 25.00, 0, -0.35, -0.24, -0.06],
    ["2016-08-10", 17.17, 17.28, 17.15, 17.29, 18.00, 0, -0.31, -0.17, -0.01],
    ["2016-08-11", 17.3, 17.45, 17.26, 17.87, 31.00, 0, -0.24, -0.09, 0.03],
    ["2016-08-12", 17.51, 17.99, 17.47, 18.0, 44.00, 0, -0.14, -0.00, 0.07],
    ["2016-08-15", 18.1, 18.42, 18.02, 18.99, 81.00, 0, -0.09, 0.04, 0.09],
    ["2016-08-16", 18.64, 18.31, 18.12, 18.87, 60.00, 0, -0.10, 0.05, 0.10],
    ["2016-08-17", 18.43, 18.4, 18.31, 18.68, 21.00, 0, -0.08, 0.08, 0.11],
    ["2016-08-18", 18.33, 18.23, 18.13, 18.65, 32.00, 0, -0.07, 0.09, 0.13],
    ["2016-08-19", 18.34, 18.62, 18.31, 18.75, 39.00, 0, 0.00, 0.14, 0.14],
    ["2016-08-22", 18.62, 18.69, 18.51, 18.8, 20.00, 0, 0.01, 0.14, 0.13],
    ["2016-08-23", 18.61, 18.66, 18.52, 19.0, 28.00, 0, 0.01, 0.14, 0.13],
    ["2016-08-24", 18.66, 18.62, 18.43, 18.7, 19.00, 0, 0.00, 0.13, 0.13],
    ["2016-08-25", 18.57, 18.51, 18.19, 18.64, 19.00, 0, -0.00, 0.13, 0.13],
    ["2016-08-26", 18.49, 18.55, 18.44, 18.6, 16.00, 0, 0.01, 0.13, 0.13],
    ["2016-08-29", 18.46, 18.27, 18.03, 18.48, 20.00, 0, 0.01, 0.13, 0.13],
    ["2016-08-30", 18.24, 18.44, 18.23, 18.52, 19.00, 0, 0.07, 0.17, 0.13],
    ["2016-08-31", 18.36, 18.63, 18.36, 18.76, 15.00, 0, 0.13, 0.18, 0.12],
    ["2016-09-01", 18.6, 18.62, 18.55, 18.78, 15.00, 0, 0.16, 0.18, 0.10],
    ["2016-09-02", 18.52, 18.68, 18.48, 18.72, 17.00, 0, 0.19, 0.17, 0.08],
    ["2016-09-05", 18.68, 18.75, 18.57, 18.82, 19.00, 0, 0.20, 0.15, 0.05],
    ["2016-09-06", 18.75, 18.51, 18.43, 18.78, 17.00, 0, 0.18, 0.11, 0.02],
    ["2016-09-07", 18.51, 18.56, 18.4, 18.62, 17.00, 0, 0.17, 0.08, -0.00],
    ["2016-09-08", 18.58, 18.53, 18.48, 18.63, 8.00, 0, 0.13, 0.04, -0.03],
    ["2016-09-09", 18.52, 18.33, 18.31, 18.57, 8.00, 0, 0.06, -0.02, -0.05],
    ["2016-09-12", 18.16, 17.9, 17.81, 18.18, 28.00, 0, -0.02, -0.07, -0.06],
    ["2016-09-13", 17.91, 17.91, 17.9, 18.08, 13.00, 0, -0.05, -0.08, -0.05],
    ["2016-09-14", 17.99, 17.54, 17.48, 17.99, 22.00, 0, -0.09, -0.09, -0.05],
    ["2016-09-19", 17.55, 17.81, 17.55, 17.88, 16.00, 0, -0.06, -0.06, -0.03],
    ["2016-09-20", 17.8, 17.74, 17.67, 17.85, 10.00, 0, -0.06, -0.05, -0.02],
    ["2016-09-21", 17.75, 17.88, 17.75, 17.95, 7.00, 0, -0.03, -0.03, -0.02],
    ["2016-09-22", 17.99, 17.97, 17.88, 18.17, 12.00, 0, -0.02, -0.02, -0.01],
    ["2016-09-23", 17.99, 17.98, 17.93, 18.09, 13.00, 0, -0.01, -0.01, -0.01],
    ["2016-09-26", 17.91, 18.0, 17.85, 18.09, 14.00, 0, -0.00, -0.01, -0.01],
    ["2016-09-27", 17.97, 18.07, 17.94, 18.1, 10.00, 0, 0.00, -0.01, -0.01],
    ["2016-09-28", 18.06, 17.89, 17.83, 18.06, 10.00, 0, -0.00, -0.01, -0.01],
    ["2016-09-29", 17.96, 18.0, 17.92, 18.07, 10.00, 0, 0.03, 0.01, -0.01],
    ["2016-09-30", 17.96, 18.0, 17.95, 18.1, 8.00, 0, 0.06, 0.02, -0.01],
    ["2016-10-10", 18.03, 18.3, 18.03, 18.38, 19.00, 0, 0.11, 0.04, -0.02],
    ["2016-10-11", 18.33, 18.33, 18.26, 18.49, 12.00, 0, 0.10, 0.02, -0.04],
    ["2016-10-12", 18.28, 18.15, 18.1, 18.31, 10.00, 0, 0.07, -0.02, -0.05],
    ["2016-10-13", 18.15, 18.09, 18.05, 18.21, 10.00, 0, 0.06, -0.03, -0.06],
    ["2016-10-14", 18.1, 18.1, 18.0, 18.15, 12.00, 0, 0.04, -0.05, -0.07],
    ["2016-10-17", 18.07, 17.86, 17.83, 18.1, 12.00, 0, 0.01, -0.07, -0.08],
    ["2016-10-18", 17.86, 17.93, 17.84, 17.99, 14.00, 0, 0.03, -0.07, -0.08],
    ["2016-10-19", 17.93, 17.88, 17.83, 18.05, 11.00, 0, 0.03, -0.07, -0.08],
    ["2016-10-20", 17.9, 17.89, 17.83, 17.98, 12.00, 0, 0.05, -0.06, -0.09],
    ["2016-10-21", 17.91, 17.91, 17.82, 17.93, 12.00, 0, 0.07, -0.06, -0.09],
    ["2016-10-24", 17.93, 18.31, 17.86, 18.42, 29.00, 0, 0.11, -0.05, -0.10],
    ["2016-10-25", 18.31, 18.13, 18.09, 18.46, 19.00, 0, 0.06, -0.09, -0.12],
    ["2016-10-26", 18.12, 17.97, 17.95, 18.15, 14.00, 0, 0.02, -0.12, -0.13],
    ["2016-10-27", 18.06, 17.81, 17.77, 18.06, 21.00, 0, -0.01, -0.13, -0.13],
    ["2016-10-28", 17.8, 17.9, 17.8, 18.05, 20.00, 0, -0.01, -0.13, -0.13],
    ["2016-10-31", 17.87, 17.86, 17.72, 17.96, 12.00, 0, -0.02, -0.14, -0.13],
    ["2016-11-01", 17.87, 17.98, 17.79, 17.99, 18.00, 0, -0.03, -0.14, -0.12],
    ["2016-11-02", 17.86, 17.84, 17.76, 17.94, 30.00, 0, -0.06, -0.15, -0.12],
    ["2016-11-03", 17.83, 17.93, 17.79, 17.97, 27.00, 0, -0.07, -0.14, -0.11],
    ["2016-11-04", 17.9, 17.91, 17.87, 18.0, 26.00, 0, -0.09, -0.15, -0.10],
    ["2016-11-07", 17.91, 17.89, 17.85, 17.93, 20.00, 0, -0.11, -0.14, -0.09],
    ["2016-11-08", 17.92, 17.99, 17.89, 18.06, 26.00, 0, -0.12, -0.13, -0.07],
    ["2016-11-09", 18.0, 17.89, 17.77, 18.08, 34.00, 0, -0.15, -0.13, -0.06],
    ["2016-11-10", 17.95, 18.0, 17.94, 18.11, 27.00, 0, -0.15, -0.11, -0.03],
    ["2016-11-11", 17.95, 18.02, 17.93, 18.08, 27.00, 0, -0.17, -0.10, -0.01],
    ["2016-11-14", 18.0, 18.04, 17.95, 18.25, 35.00, 0, -0.18, -0.08, 0.01],
    ["2016-11-15", 18.1, 18.18, 18.03, 18.24, 25.00, 0, -0.18, -0.06, 0.04],
    ["2016-11-16", 18.23, 18.12, 18.05, 18.29, 23.00, 0, -0.21, -0.04, 0.06],
    ["2016-11-17", 18.11, 18.12, 18.01, 18.14, 27.00, 0, -0.21, -0.01, 0.09],
    ["2016-11-18", 18.12, 18.1, 18.03, 18.16, 18.00, 0, -0.19, 0.03, 0.12],
    ["2016-11-21", 18.08, 18.34, 18.08, 18.68, 41.00, 0, -0.13, 0.08, 0.15],
    ["2016-11-22", 18.37, 18.37, 18.28, 18.49, 52.00, 0, -0.09, 0.12, 0.17],
    ["2016-11-23", 18.4, 18.84, 18.37, 18.9, 66.00, 0, -0.02, 0.17, 0.18],
    ["2016-11-24", 18.77, 18.74, 18.61, 18.97, 26.00, 0, -0.02, 0.17, 0.18],
    ["2016-11-25", 18.8, 18.99, 18.66, 19.02, 40.00, 0, -0.01, 0.18, 0.19],
    ["2016-11-28", 19.1, 18.65, 18.52, 19.2, 85.00, 0, -0.06, 0.16, 0.19],
    ["2016-11-29", 18.65, 18.75, 18.51, 18.76, 49.00, 0, -0.06, 0.17, 0.20],
    ["2016-11-30", 18.76, 18.55, 18.47, 18.82, 39.00, 0, -0.08, 0.17, 0.21],
    ["2016-12-01", 18.55, 18.49, 18.41, 18.64, 53.00, 0, -0.06, 0.19, 0.22],
    ["2016-12-02", 18.53, 18.49, 18.24, 18.54, 48.00, 0, -0.02, 0.21, 0.23],
    ["2016-12-05", 18.39, 18.66, 18.34, 18.67, 50.00, 0, 0.03, 0.25, 0.23],
    ["2016-12-06", 18.66, 18.6, 18.57, 18.78, 31.00, 0, 0.08, 0.26, 0.23],
    ["2016-12-07", 18.65, 18.62, 18.58, 18.71, 12.00, 0, 0.15, 0.29, 0.21],
    ["2016-12-08", 18.67, 18.76, 18.62, 18.88, 26.00, 0, 0.25, 0.32, 0.19],
    ["2016-12-09", 18.76, 19.2, 18.75, 19.34, 62.00, 0, 0.34, 0.33, 0.16],
    ["2016-12-12", 19.16, 19.25, 18.9, 19.65, 79.00, 1, 0.34, 0.28, 0.11],
    ["2016-12-13", 19.09, 18.88, 18.81, 19.2, 24.00, 0, 0.27, 0.20, 0.06],
    ["2016-12-14", 18.8, 18.82, 18.8, 19.14, 32.00, 0, 0.23, 0.13, 0.02],
    ["2016-12-15", 18.73, 18.24, 18.2, 18.73, 36.00, 0, 0.13, 0.05, -0.01],
    ["2016-12-16", 18.24, 18.18, 18.12, 18.4, 24.00, 0, 0.10, 0.02, -0.03],
    ["2016-12-19", 18.15, 18.01, 17.93, 18.18, 24.00, 0, 0.06, -0.02, -0.05],
    ["2016-12-20", 17.99, 17.79, 17.7, 17.99, 29.00, 1, 0.02, -0.05, -0.05],
    ["2016-12-21", 17.83, 17.81, 17.77, 17.98, 30.00, 0, 0.00, -0.05, -0.06],
    ["2016-12-22", 17.85, 17.72, 17.65, 17.85, 21.00, 0, -0.03, -0.07, -0.06],
    ["2016-12-23", 17.77, 17.6, 17.54, 17.77, 18.00, 0, -0.04, -0.08, -0.05],
    ["2016-12-26", 17.56, 17.75, 17.39, 17.77, 16.00, 0, -0.04, -0.07, -0.05],
    ["2016-12-27", 17.73, 17.71, 17.65, 17.82, 10.00, 0, -0.06, -0.07, -0.04],
    ["2016-12-28", 17.72, 17.62, 17.49, 17.77, 26.00, 0, -0.09, -0.07, -0.03],
    ["2016-12-29", 17.6, 17.49, 17.43, 17.62, 28.00, 0, -0.09, -0.06, -0.02],
    ["2016-12-30", 17.53, 17.6, 17.47, 17.61, 22.00, 0, -0.05, -0.03, -0.01],
    ["2017-01-03", 17.6, 17.92, 17.57, 17.98, 28.00, 1, 0.00, 0.00, 0.00],
]


def split_data(origin_data) -> dict:
    datas = []
    times = []
    vols = []
    macds = []
    difs = []
    deas = []

    for i in range(len(origin_data)):
        datas.append(origin_data[i][1:])
        times.append(origin_data[i][0:1][0])
        vols.append(origin_data[i][5])
        macds.append(origin_data[i][7])
        difs.append(origin_data[i][8])
        deas.append(origin_data[i][9])
    vols = [int(v) for v in vols]

    return {
        "datas": datas,
        "times": times,
        "vols": vols,
        "macds": macds,
        "difs": difs,
        "deas": deas,
    }


def split_data_part() -> Sequence:
    mark_line_data = []
    idx = 0
    tag = 0
    vols = 0
    for i in range(len(data["times"])):
        if data["datas"][i][5] != 0 and tag == 0:
            idx = i
            vols = data["datas"][i][4]
            tag = 1
        if tag == 1:
            vols += data["datas"][i][4]
        if data["datas"][i][5] != 0 or tag == 1:
            mark_line_data.append(
                [
                    {
                        "xAxis": idx,
                        "yAxis": float("%.2f" % data["datas"][idx][3])
                        if data["datas"][idx][1] > data["datas"][idx][0]
                        else float("%.2f" % data["datas"][idx][2]),
                        "value": vols,
                    },
                    {
                        "xAxis": i,
                        "yAxis": float("%.2f" % data["datas"][i][3])
                        if data["datas"][i][1] > data["datas"][i][0]
                        else float("%.2f" % data["datas"][i][2]),
                    },
                ]
            )
            idx = i
            vols = data["datas"][i][4]
            tag = 2
        if tag == 2:
            vols += data["datas"][i][4]
        if data["datas"][i][5] != 0 and tag == 2:
            mark_line_data.append(
                [
                    {
                        "xAxis": idx,
                        "yAxis": float("%.2f" % data["datas"][idx][3])
                        if data["datas"][i][1] > data["datas"][i][0]
                        else float("%.2f" % data["datas"][i][2]),
                        "value": str(float("%.2f" % (vols / (i - idx + 1)))) + " M",
                    },
                    {
                        "xAxis": i,
                        "yAxis": float("%.2f" % data["datas"][i][3])
                        if data["datas"][i][1] > data["datas"][i][0]
                        else float("%.2f" % data["datas"][i][2]),
                    },
                ]
            )
            idx = i
            vols = data["datas"][i][4]
    return mark_line_data


def calculate_ma(day_count: int):
    result: List[Union[float, str]] = []

    for i in range(len(data["times"])):
        if i < day_count:
            result.append("-")
            continue
        sum_total = 0.0
        for j in range(day_count):
            sum_total += float(data["datas"][i - j][1])
        result.append(abs(float("%.2f" % (sum_total / day_count))))
    return result


def draw_chart():
    kline = (
        Kline()
        .add_xaxis(xaxis_data=data["times"])
        .add_yaxis(
            series_name="",
            y_axis=data["datas"],
            itemstyle_opts=opts.ItemStyleOpts(
                color="#ef232a",
                color0="#14b143",
                border_color="#ef232a",
                border_color0="#14b143",
            ),
            markpoint_opts=opts.MarkPointOpts(
                data=[
                    opts.MarkPointItem(type_="max", name="最大值"),
                    opts.MarkPointItem(type_="min", name="最小值"),
                ]
            ),
            markline_opts=opts.MarkLineOpts(
                label_opts=opts.LabelOpts(
                    position="middle", color="blue", font_size=15
                ),
                data=split_data_part(),
                symbol=["circle", "none"],
            ),
        )
        .set_series_opts(
            markarea_opts=opts.MarkAreaOpts(is_silent=True, data=split_data_part())
        )
        .set_global_opts(
            title_opts=opts.TitleOpts(title="K线周期图表", pos_left="0"),
            xaxis_opts=opts.AxisOpts(
                type_="category",
                is_scale=True,
                boundary_gap=False,
                axisline_opts=opts.AxisLineOpts(is_on_zero=False),
                splitline_opts=opts.SplitLineOpts(is_show=False),
                split_number=20,
                min_="dataMin",
                max_="dataMax",
            ),
            yaxis_opts=opts.AxisOpts(
                is_scale=True, splitline_opts=opts.SplitLineOpts(is_show=True)
            ),
            tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="line"),
            datazoom_opts=[
                opts.DataZoomOpts(
                    is_show=False, type_="inside", xaxis_index=[0, 0], range_end=100
                ),
                opts.DataZoomOpts(
                    is_show=True, xaxis_index=[0, 1], pos_top="97%", range_end=100
                ),
                opts.DataZoomOpts(is_show=False, xaxis_index=[0, 2], range_end=100),
            ],
            # 三个图的 axis 连在一块
            # axispointer_opts=opts.AxisPointerOpts(
            #     is_show=True,
            #     link=[{"xAxisIndex": "all"}],
            #     label=opts.LabelOpts(background_color="#777"),
            # ),
        )
    )

    kline_line = (
        Line()
        .add_xaxis(xaxis_data=data["times"])
        .add_yaxis(
            series_name="MA5",
            y_axis=calculate_ma(day_count=5),
            is_smooth=True,
            linestyle_opts=opts.LineStyleOpts(opacity=0.5),
            label_opts=opts.LabelOpts(is_show=False),
        )
        .set_global_opts(
            xaxis_opts=opts.AxisOpts(
                type_="category",
                grid_index=1,
                axislabel_opts=opts.LabelOpts(is_show=False),
            ),
            yaxis_opts=opts.AxisOpts(
                grid_index=1,
                split_number=3,
                axisline_opts=opts.AxisLineOpts(is_on_zero=False),
                axistick_opts=opts.AxisTickOpts(is_show=False),
                splitline_opts=opts.SplitLineOpts(is_show=False),
                axislabel_opts=opts.LabelOpts(is_show=True),
            ),
        )
    )
    # Overlap Kline + Line
    overlap_kline_line = kline.overlap(kline_line)

    # Bar-1
    bar_1 = (
        Bar()
        .add_xaxis(xaxis_data=data["times"])
        .add_yaxis(
            series_name="Volumn",
            y_axis=data["vols"],
            xaxis_index=1,
            yaxis_index=1,
            label_opts=opts.LabelOpts(is_show=False),

            itemstyle_opts=opts.ItemStyleOpts(
                color=JsCode(
                    """
                function(params) {
                    var colorList;
                    if (barData[params.dataIndex][1] > barData[params.dataIndex][0]) {
                        colorList = '#ef232a';
                    } else {
                        colorList = '#14b143';
                    }
                    return colorList;
                }
                """
                )
            ),
        )
        .set_global_opts(
            xaxis_opts=opts.AxisOpts(
                type_="category",
                grid_index=1,
                axislabel_opts=opts.LabelOpts(is_show=False),
            ),
            legend_opts=opts.LegendOpts(is_show=False),
        )
    )

    # Bar-2 (Overlap Bar + Line)
    bar_2 = (
        Bar()
        .add_xaxis(xaxis_data=data["times"])
        .add_yaxis(
            series_name="MACD",
            y_axis=data["macds"],
            xaxis_index=2,
            yaxis_index=2,
            label_opts=opts.LabelOpts(is_show=False),
            itemstyle_opts=opts.ItemStyleOpts(
                color=JsCode(
                    """
                        function(params) {
                            var colorList;
                            if (params.data >= 0) {
                              colorList = '#ef232a';
                            } else {
                              colorList = '#14b143';
                            }
                            return colorList;
                        }
                        """
                )
            ),
        )
        .set_global_opts(
            xaxis_opts=opts.AxisOpts(
                type_="category",
                grid_index=2,
                axislabel_opts=opts.LabelOpts(is_show=False),
            ),
            yaxis_opts=opts.AxisOpts(
                grid_index=2,
                split_number=4,
                axisline_opts=opts.AxisLineOpts(is_on_zero=False),
                axistick_opts=opts.AxisTickOpts(is_show=False),
                splitline_opts=opts.SplitLineOpts(is_show=False),
                axislabel_opts=opts.LabelOpts(is_show=True),
            ),
            legend_opts=opts.LegendOpts(is_show=False),
        )
    )

    line_2 = (
        Line()
        .add_xaxis(xaxis_data=data["times"])
        .add_yaxis(
            series_name="DIF",
            y_axis=data["difs"],
            xaxis_index=2,
            yaxis_index=2,
            label_opts=opts.LabelOpts(is_show=False),
        )
        .add_yaxis(
            series_name="DIF",
            y_axis=data["deas"],
            xaxis_index=2,
            yaxis_index=2,
            label_opts=opts.LabelOpts(is_show=False),
        )
        .set_global_opts(legend_opts=opts.LegendOpts(is_show=False))
    )
    # 最下面的柱状图和折线图
    overlap_bar_line = bar_2.overlap(line_2)

    # 最后的 Grid
    grid_chart = Grid(init_opts=opts.InitOpts(width="1400px", height="800px"))

    # demo 中的代码也是用全局变量传的
    grid_chart.add_js_funcs("var barData = {}".format(data["datas"]))

    # K线图和 MA5 的折线图
    grid_chart.add(
        overlap_kline_line,
        grid_opts=opts.GridOpts(pos_left="3%", pos_right="1%", height="60%"),
    )
    # Volumn 柱状图
    grid_chart.add(
        bar_1,
        grid_opts=opts.GridOpts(
            pos_left="3%", pos_right="1%", pos_top="71%", height="10%"
        ),
    )
    # MACD DIFS DEAS
    grid_chart.add(
        overlap_bar_line,
        grid_opts=opts.GridOpts(
            pos_left="3%", pos_right="1%", pos_top="82%", height="14%"
        ),
    )
    grid_chart.render("K线图烛台(10).html")


if __name__ == "__main__":
    data = split_data(origin_data=echarts_data)
    draw_chart()

注意:由于HTML代码量太大,所以以上代码只写了Python代码

且以上只是可视化实例图其中的一小部分,完整的可视化实例图及其源代码我已上传至资源文件,待审核完成后大家就可以自行下载了

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1317421.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

整合SpringSecurity

目录 前言 数据库设计 用户表 角色表 用户角色表 权限表 角色权限表 插入数据 表的实体类 用户表实体类 角色表实体类 权限表实体类 mapper层接口 UserMapper RoleMapper AuthorityMapper 封装登录信息 统一响应结果 上下文相关类 jwt令牌工具类 依赖导入…

[Verilog] Verilog 基本格式和语法

主页&#xff1a; 元存储博客 全文 3000 字 文章目录 1. 声明格式1.1 模块声明1.2 输入输出声明1.3 内部信号声明1.4 内部逻辑声明1.5 连接声明1.6 数据类型声明1.7 运算符和表达式1.8 控制结构 2. 书写格式2.1 大小写2.2 换行2.3 语句结束符2.4 注释2.5 标识符2.6 关键字 1. 声…

docker入门小结

docker是什么&#xff1f;它有什么优势&#xff1f; 快速获取开箱即用的程序 docker使得所有的应用传输就像我们日常通过聊天工具文件传输一样&#xff0c;发送方将程序传输到超级码头而接收方也只需通过超级码头进行获取即可&#xff0c;就像一只鲸鱼拖着货物来回运输一样。…

linux一次性调度执行_at命令

........................................................................................................................................................... 9.1 一次性调度执行 Schedule one-time tasks with at. ............................................…

早上好,我的leetcode 【hash】(第二期)

写在前面&#xff1a;坚持才是最难的事情 C代码还是不方便写&#xff0c;改用python了&#xff0c;TAT 文章目录 1.两数之和49. 字母异位词分组128.最长连续序列 1.两数之和 你好&#xff0c;梦开始的地方~ https://leetcode.cn/problems/two-sum/description/?envTypestudy…

n维随机变量、n维随机变量的分布函数

设随机试验E的样本空间是&#xff0c;其中表示样本点。 设是定义在上的随机变量&#xff0c;由它们构成一个n维向量&#xff0c;叫做n维随机向量&#xff0c;也叫n维随机变量。 对于任意n个实数&#xff0c;n元函数 称为n维随机变量的分布函数&#xff0c;也叫联合分布函数。

qt 标准对话框的简单介绍

qt常见的标准对话框主要有,标准文件对话框QFileDialog,标准颜色对话框QColorDialog,标准字体对话框QFontDialog,标准输入对话框QInputDialog,标准消息框QMessageBox...... 1. 标准文件对话框QFileDialog,使用函数getOpenFileName()获取用户选择的文件. //qt 函数getOpenFileN…

geolife笔记:比较不同轨迹相似度方法

1 问题描述 在geolife 笔记&#xff1a;将所有轨迹放入一个DataFrame-CSDN博客中&#xff0c;已经将所有的轨迹放入一个DataFrame中了&#xff0c;我们现在需要比较&#xff0c;在不同的轨迹距离度量方法下&#xff0c;轨迹相似度的效果。 这里采用论文笔记&#xff1a;Deep R…

arthas 线上排查问题基本使用

一、下载 [arthas下载地址]: 下载完成 解压即可使用 二、启动 java -Dfile.encodingUTF-8 -jar arthas-boot.jar 如果直接使用java -jar启动 可能会出现乱码 三、使用 启动成功之后 arthas会自动扫描当前服务器上的jvm进程 选择需要挂载的jvm进程 假如需要挂在坐标【1】的…

【MySQL】(DDL) 数据类型 和 表操作-修改 删除

目录 介绍&#xff1a; 1.数值类型 3.日期类型 修改表&#xff1a; 示列&#xff1a; 介绍&#xff1a; 在之前建表语句内&#xff0c;用到了 int cvarchar &#xff0c;那么在mysql内除了 以上的数据类型 还有那些常见数据类型 mysql 中的数据类型有很多种 &#xff0c…

机器学习 | 决策树 Decision Tree

—— 分而治之&#xff0c;逐个击破 把特征空间划分区域 每个区域拟合简单模型 分级分类决策 1、核心思想和原理 举例&#xff1a; 特征选择、节点分类、阈值确定 2、信息嫡 熵本身代表不确定性&#xff0c;是不确定性的一种度量。 熵越大&#xff0c;不确定性越高&#xff0c;…

maui中实现加载更多 RefreshView跟ListView 跳转到详情页 传参(3)

效果如图 这里的很多数据是通过传参过来的的。 代码 例表页加入跳转功能&#xff1a; <ListView ItemsSource"{Binding Items}" ItemAppearing"OnItemAppearing" ItemTapped"OnItemTapped" RowHeight"70" Margin"20"…

【C++11特性篇】一文助小白轻松理解 C++中的【左值&左值引用】【右值&右值引用】

前言 大家好吖&#xff0c;欢迎来到 YY 滴C系列 &#xff0c;热烈欢迎&#xff01; 本章主要内容面向接触过C的老铁 主要内容含&#xff1a; 欢迎订阅 YY滴C专栏&#xff01;更多干货持续更新&#xff01;以下是传送门&#xff01; 目录 一.【左值&#xff06;左值引用】&…

【漏洞复现】CVE-2023-36076:smanga漫画阅读系统 远程命令执行 漏洞复现 附POC 附SQL注入和任意文件读取

漏洞描述 无需配置,docker直装的漫画流媒体阅读工具。以emby plex为灵感,为解决漫画阅读需求而开发的漫画阅读器。在windows环境部署smanga安装环境面板,首先安装小皮面板,下载smanga项目,导入数据库,登录smanga,windows部署smanga。 /php/manga/delete.php接口处存在未…

arthas获取spring bean

参考文章 arthas获取spring bean 写一个工具Util package com.example.lredisson.util;import org.springframework.beans.BeansException; import org.springframework.context.ApplicationContext; import org.springframework.context.ApplicationContextAware; import o…

工具在手,创作无忧:一键下载安装Auto CAD工具,让艺术创作更加轻松愉悦!

不要再浪费时间在网上寻找Auto CAD的安装包了&#xff01;因为你所需的一切都可以在这里找到&#xff01;作为全球领先的设计和绘图软件&#xff0c;Auto CAD为艺术家、设计师和工程师们提供了无限的创作潜力。不论是建筑设计、工业设计还是室内装饰&#xff0c;Auto CAD都能助…

ES-组合与聚合

ES组合查询 1 must 满足两个match才会被命中 GET /mergeindex/_search {"query": {"bool": {"must": [{"match": {"name": "liyong"}},{"match_phrase": {"desc": "liyong"}}]}}…

Next.js 学习笔记(一)——安装

安装 系统要求&#xff1a; Node.js 18.17 或更高版本支持 macOS、Windows&#xff08;包括 WSL&#xff09;和 Linux 自动安装 我们建议使用 create-next-app 启动一个新的 Next.js 应用程序&#xff0c;该应用程序会自动为你设置所有内容。要创建项目&#xff0c;请运行&…

HPV治疗期间如何预防重复感染?谭巍主任讲述具体方法

众所周知&#xff0c;人乳头瘤病毒(HPV)是一种常见的性传播疾病&#xff0c;感染后可能会引起生殖器疣、宫颈癌等疾病。在治疗期间&#xff0c;预防重复感染非常重要。今日将介绍一些预防HPV重复感染的方法。 1. 杜绝不洁性行为 在治疗期间&#xff0c;患者应该避免与感染HPV…

SQL、Jdbc、JdbcTemplate、Mybatics

数据库&#xff1a;查询&#xff08;show、select&#xff09;、创建&#xff08;create)、使用(use)、删除(drop)数据库 表&#xff1a;创建&#xff08;【字段】约束、数据类型&#xff09;、查询、修改&#xff08;alter *add&#xff09;、删除 DML&#xff1a;增加(inse…