线程池的原理和使用

news2025/1/11 0:23:09

ThreadPoolExecutor

为什么用线程池

线程池做的主要工作就是控制运行的线程的数量,处理过程中,将任务放入到队列中,然后线程创建后,启动这些任务,如果线程数量超过了最大数量的线程排队等候,等其它线程执行完毕,再从队列中取出任务来执行。

它的主要特点为:线程复用、控制最大并发数、管理线程

线程池中的任务是放入到阻塞队列中的

因此使用多线程有下列的好处

  • 降低资源消耗。通过重复利用已创建的线程,降低线程创建和销毁造成的消耗
  • 提高响应速度。当任务到达时,任务可以不需要等到线程创建就立即执行
  • 提高线程的可管理性。线程是稀缺资源,如果无线创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控

架构说明

Java中线程池是通过Executor框架实现的,该框架中用到了Executor,Executors(代表工具类),ExecutorService,ThreadPoolExecutor这几个类。

 

 

创建线程池

  • Executors.newFixedThreadPool(int i) :创建一个拥有 i 个线程的线程池
    • 执行长期的任务,性能好很多
    • 创建一个定长线程池,可控制线程数最大并发数,超出的线程会在队列中等待
  • Executors.newSingleThreadExecutor:创建一个只有1个线程的 单线程池
    • 一个任务一个任务执行的场景
    • 创建一个单线程化的线程池,它只会用唯一的工作线程来执行任务,保证所有任务按照指定顺序执行
  • Executors.newCacheThreadPool(); 创建一个可扩容的线程池
    • 执行很多短期异步的小程序或者负载教轻的服务器
    • 创建一个可缓存线程池,如果线程长度超过处理需要,可灵活回收空闲线程,如无可回收,则新建新线程
  • Executors.newScheduledThreadPool(int corePoolSize):线程池支持定时以及周期性执行任务,创建一个corePoolSize为传入参数,最大线程数为整形的最大数的线程池

具体使用,首先我们需要使用Executors工具类,进行创建线程池,这里创建了一个拥有5个线程的线程池

// 一池5个处理线程(用池化技术,一定要记得关闭)
ExecutorService threadPool = Executors.newFixedThreadPool(5);

// 创建一个只有一个线程的线程池
ExecutorService threadPool = Executors.newSingleThreadExecutor();

// 创建一个拥有N个线程的线程池,根据调度创建合适的线程
ExecutorService threadPool = Executors.newCacheThreadPool();

然后我们执行下面的的应用场景

模拟10个用户来办理业务,每个用户就是一个来自外部请求线程

我们需要使用 threadPool.execute执行业务,execute需要传入一个实现了Runnable接口的线程

threadPool.execute(() -> {
	System.out.println(Thread.currentThread().getName() + "\t 给用户办理业务");
});

然后我们使用完毕后关闭线程池

threadPool.shutdown();

完整代码 

/**
 * 第四种获取 / 使用 Java多线程的方式,通过线程池
 * @create: 2020-03-17-15:59
 */
public class MyThreadPoolDemo {
    public static void main(String[] args) {

        // Array  Arrays(辅助工具类)
        // Collection Collections(辅助工具类)
        // Executor Executors(辅助工具类)


        // 一池5个处理线程(用池化技术,一定要记得关闭)
        ExecutorService threadPool = Executors.newFixedThreadPool(5);

        // 模拟10个用户来办理业务,每个用户就是一个来自外部请求线程
        try {

            // 循环十次,模拟业务办理,让5个线程处理这10个请求
            for (int i = 0; i < 10; i++) {
                final int tempInt = i;
                threadPool.execute(() -> {
                    System.out.println(Thread.currentThread().getName() + "\t 给用户:" + tempInt + " 办理业务");
                });
            }
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            threadPool.shutdown();
        }

    }
}

输出结果

pool-1-thread-1	 给用户:0 办理业务
pool-1-thread-5	 给用户:4 办理业务
pool-1-thread-1	 给用户:5 办理业务
pool-1-thread-4	 给用户:3 办理业务
pool-1-thread-2	 给用户:1 办理业务
pool-1-thread-3	 给用户:2 办理业务
pool-1-thread-2	 给用户:9 办理业务
pool-1-thread-4	 给用户:8 办理业务
pool-1-thread-1	 给用户:7 办理业务
pool-1-thread-5	 给用户:6 办理业务

我们能够看到,一共有5个线程,在给10个用户办理业务

底层原理

七大参数

线程池在创建的时候,一共有7大参数

  • corePoolSize:核心线程数,线程池中的常驻核心线程数
    • 在创建线程池后,当有请求任务来之后,就会安排池中的线程去执行请求任务,近似理解为今日当值线程
    • 当线程池中的线程数目达到corePoolSize后,就会把到达的队列放到缓存队列中
  • maximumPoolSize:线程池能够容纳同时执行的最大线程数,此值必须大于等于1、
    • 相当有扩容后的线程数,这个线程池能容纳的最多线程数
  • keepAliveTime:多余的空闲线程存活时间
    • 当线程池数量超过corePoolSize时,当空闲时间达到keepAliveTime值时,多余的空闲线程会被销毁,直到只剩下corePoolSize个线程为止
    • 默认情况下,只有当线程池中的线程数大于corePoolSize时,keepAliveTime才会起作用
  • unit:keepAliveTime的单位
  • workQueue:任务队列,被提交的但未被执行的任务(类似于银行里面的候客区)
    • LinkedBlockingQueue:链表阻塞队列
    • SynchronousBlockingQueue:同步阻塞队列
  • threadFactory:表示生成线程池中工作线程的线程工厂,用于创建线程池 一般用默认即可
  • handler:拒绝策略,表示当队列满了并且工作线程大于线程池的最大线程数(maximumPoolSize3)时,如何来拒绝请求执行的Runnable的策略

当营业窗口和阻塞队列中都满了时候,就需要设置拒绝策略

 

拒绝策略

以下所有拒绝策略都实现了RejectedExecutionHandler接口

  • AbortPolicy:默认,直接抛出RejectedExcutionException异常,阻止系统正常运行
  • DiscardPolicy:直接丢弃任务,不予任何处理也不抛出异常,如果运行任务丢失,这是一种好方案
  • CallerRunsPolicy:该策略既不会抛弃任务,也不会抛出异常,而是将某些任务回退到调用者
  • DiscardOldestPolicy:抛弃队列中等待最久的任务,然后把当前任务加入队列中尝试再次提交当前任务

线程池底层工作原理

线程池运行架构图

 

文字说明

  1. 在创建了线程池后,等待提交过来的任务请求

  2. 当调用execute()方法添加一个请求任务时,线程池会做出如下判断

    1. 如果正在运行的线程池数量小于corePoolSize,那么马上创建线程运行这个任务
    2. 如果正在运行的线程数量大于或等于corePoolSize,那么将这个任务放入队列
    3. 如果这时候队列满了,并且正在运行的线程数量还小于maximumPoolSize,那么还是创建非核心线程like运行这个任务;
    4. 如果队列满了并且正在运行的线程数量大于或等于maximumPoolSize,那么线程池会启动饱和拒绝策略来执行
  3. 当一个线程完成任务时,它会从队列中取下一个任务来执行

  4. 当一个线程无事可做操作一定的时间(keepAliveTime)时,线程池会判断:

    1. 如果当前运行的线程数大于corePoolSize,那么这个线程就被停掉
    2. 所以线程池的所有任务完成后,它会最终收缩到corePoolSize的大小

以顾客去银行办理业务为例,谈谈线程池的底层工作原理

  1. 最开始假设来了两个顾客,因为corePoolSize为2,因此这两个顾客直接能够去窗口办理
  2. 后面又来了三个顾客,因为corePool已经被顾客占用了,因此只有去候客区,也就是阻塞队列中等待
  3. 后面的人又陆陆续续来了,候客区可能不够用了,因此需要申请增加处理请求的窗口,这里的窗口指的是线程池中的线程数,以此来解决线程不够用的问题
  4. 假设受理窗口已经达到最大数,并且请求数还是不断递增,此时候客区和线程池都已经满了,为了防止大量请求冲垮线程池,已经需要开启拒绝策略
  5. 临时增加的线程会因为超过了最大存活时间,就会销毁,最后从最大数削减到核心数

为什么不用默认创建的线程池?

线程池创建的方法有:固定数的,单一的,可变的,那么在实际开发中,应该使用哪个?

我们一个都不用,在生产环境中是使用自己自定义的

为什么不用 Executors 中JDK提供的?

根据阿里巴巴手册:并发控制这章

  • 线程资源必须通过线程池提供,不允许在应用中自行显式创建线程
    • 使用线程池的好处是减少在创建和销毁线程上所消耗的时间以及系统资源的开销,解决资源不足的问题,如果不使用线程池,有可能造成系统创建大量同类线程而导致消耗完内存或者“过度切换”的问题
  • 线程池不允许使用Executors去创建,而是通过 ThreadPoolExecutor 的方式,这样的处理方式让写的同学更加明确线程池的运行规则,规避资源耗尽的风险
    • Executors返回的线程池对象弊端如下:
      • FixedThreadPool和SingleThreadPool:
        • 运行的请求队列长度为:Integer.MAX_VALUE,可能会堆积大量的请求,从而导致OOM
      • CacheThreadPool和ScheduledThreadPool
        • 运行的请求队列长度为:Integer.MAX_VALUE,线程数上限太大导致oom

手写线程池

采用默认拒绝策略

从上面我们知道,因为默认的Executors创建的线程池,底层都是使用LinkBlockingQueue作为阻塞队列的,而LinkBlockingQueue虽然是有界的,但是它的界限是 Integer.MAX_VALUE 大概有20多亿,可以相当是无界的了,因此我们要使用ThreadPoolExecutor自己手动创建线程池,然后指定阻塞队列的大小

下面我们创建了一个 核心线程数为2,最大线程数为5,并且阻塞队列数为3的线程池

        // 手写线程池
        final Integer corePoolSize = 2;
        final Integer maximumPoolSize = 5;
        final Long keepAliveTime = 1L;

        // 自定义线程池,只改变了LinkBlockingQueue的队列大小
        ExecutorService executorService = new ThreadPoolExecutor(
                corePoolSize,
                maximumPoolSize,
                keepAliveTime,
                TimeUnit.SECONDS,
                new LinkedBlockingQueue<>(3),
                Executors.defaultThreadFactory(),
                new ThreadPoolExecutor.AbortPolicy());

然后使用for循环,模拟10个用户来进行请求

      // 模拟10个用户来办理业务,每个用户就是一个来自外部请求线程
        try {

            // 循环十次,模拟业务办理,让5个线程处理这10个请求
            for (int i = 0; i < 10; i++) {
                final int tempInt = i;
                executorService.execute(() -> {
                    System.out.println(Thread.currentThread().getName() + "\t 给用户:" + tempInt + " 办理业务");
                });
            }
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            executorService.shutdown();
        }

 但是在用户执行到第九个的时候,触发了异常,程序中断

pool-1-thread-1	 给用户:0 办理业务
pool-1-thread-4	 给用户:6 办理业务
pool-1-thread-3	 给用户:5 办理业务
pool-1-thread-2	 给用户:1 办理业务
pool-1-thread-2	 给用户:4 办理业务
pool-1-thread-5	 给用户:7 办理业务
pool-1-thread-4	 给用户:2 办理业务
pool-1-thread-3	 给用户:3 办理业务
java.util.concurrent.RejectedExecutionException: Task com.moxi.interview.study.thread.MyThreadPoolDemo$$Lambda$1/1747585824@4dd8dc3 rejected from java.util.concurrent.ThreadPoolExecutor@6d03e736[Running, pool size = 5, active threads = 3, queued tasks = 0, completed tasks = 5]
	at java.util.concurrent.ThreadPoolExecutor$AbortPolicy.rejectedExecution(ThreadPoolExecutor.java:2047)
	at java.util.concurrent.ThreadPoolExecutor.reject(ThreadPoolExecutor.java:823)
	at java.util.concurrent.ThreadPoolExecutor.execute(ThreadPoolExecutor.java:1369)
	at com.moxi.interview.study.thread.MyThreadPoolDemo.main(MyThreadPoolDemo.java:34)

这是因为触发了拒绝策略,而我们设置的拒绝策略是默认的AbortPolicy,也就是抛异常的

触发条件是,请求的线程大于 阻塞队列大小 + 最大线程数 = 8 的时候,也就是说第9个线程来获取线程池中的线程时,就会抛出异常从而报错退出。

采用CallerRunsPolicy拒绝策略

当我们更好其它的拒绝策略时,采用CallerRunsPolicy拒绝策略,也称为回退策略,就是把任务丢回原来的请求开启线程着,我们看运行结果

pool-1-thread-1	 给用户:0 办理业务
pool-1-thread-5	 给用户:7 办理业务
pool-1-thread-4	 给用户:6 办理业务
main	 给用户:8 办理业务
pool-1-thread-3	 给用户:5 办理业务
pool-1-thread-2	 给用户:1 办理业务
pool-1-thread-3	 给用户:9 办理业务
pool-1-thread-4	 给用户:4 办理业务
pool-1-thread-5	 给用户:3 办理业务
pool-1-thread-1	 给用户:2 办理业务

我们发现,输出的结果里面出现了main线程,因为线程池出发了拒绝策略,把任务回退到main线程,然后main线程对任务进行处理

采用 DiscardPolicy 拒绝策略

pool-1-thread-1	 给用户:0 办理业务
pool-1-thread-3	 给用户:5 办理业务
pool-1-thread-1	 给用户:2 办理业务
pool-1-thread-2	 给用户:1 办理业务
pool-1-thread-1	 给用户:4 办理业务
pool-1-thread-5	 给用户:7 办理业务
pool-1-thread-4	 给用户:6 办理业务
pool-1-thread-3	 给用户:3 办理业务

采用DiscardPolicy拒绝策略会,线程池会自动把后面的任务都直接丢弃,也不报异常,当任务无关紧要的时候,可以采用这个方式

采用DiscardOldestPolicy拒绝策略

pool-1-thread-1	 给用户:0 办理业务
pool-1-thread-4	 给用户:6 办理业务
pool-1-thread-1	 给用户:4 办理业务
pool-1-thread-3	 给用户:5 办理业务
pool-1-thread-2	 给用户:1 办理业务
pool-1-thread-1	 给用户:9 办理业务
pool-1-thread-4	 给用户:8 办理业务
pool-1-thread-5	 给用户:7 办理业务

这个策略和刚刚差不多,会把最久的队列中的任务替换掉

线程池的合理参数

生产环境中如何配置 corePoolSize 和 maximumPoolSize

这个是根据具体业务来配置的,分为CPU密集型和IO密集型

  • CPU密集型

CPU密集的意思是该任务需要大量的运算,而没有阻塞,CPU一直全速运行

CPU密集任务只有在真正的多核CPU上才可能得到加速(通过多线程)

而在单核CPU上,无论你开几个模拟的多线程该任务都不可能得到加速,因为CPU总的运算能力就那些

CPU密集型任务配置尽可能少的线程数量:

一般公式:CPU核数 + 1个线程数

  • IO密集型

由于IO密集型任务线程并不是一直在执行任务,则尽可能多的分配线程,如 CPU核数 * 2

IO密集型,即该任务需要大量的IO操作,即大量的阻塞

在单线程上运行IO密集型的任务会导致浪费大量的CPU运算能力花费在等待上

所以IO密集型任务中使用多线程可以大大的加速程序的运行,即使在单核CPU上,这种加速主要就是利用了被浪费掉的阻塞时间。

IO密集时,大部分线程都被阻塞,故需要多配置线程数:

参考公式:CPU核数 / (1 - 阻塞系数) 阻塞系数在0.8 ~ 0.9左右

例如:8核CPU:8/ (1 - 0.9) = 80个线程数

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/129980.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

7.移动端笔记-less基础

1.css的弊端 CSS需要书写大量的看似没有逻辑的代码&#xff0c;冗余度高不方便维护&#xff0c;不利于复用没有很好的计算能力 2.Less介绍 简单说&#xff1a;Less是CSS预处理语言&#xff0c;扩展了CSS的动态性 CSS的扩展语言&#xff0c;也成为CSS的预处理器。在CSS基础上…

论文精读:Centernet:Objects as Points

论文地址:https://arxiv.org/pdf/1904.07850.pdf 代码地址:https://github. com/xingyizhou/CenterNet. Abstract 基于anchor的目标检测算法通常会列举大量可能存在对象位置的列表&#xff0c;这是浪费的、低效的。作者采用了一种不同的方法。将一个对象建模为单个点——其边…

魔术小游戏

魔术游戏一、问题描述二、基本流程三、具体步骤1.在集合中随机生成起始牌2.菜单栏3.找到包含[选中牌]的一组牌在大集合中的索引4.洗牌5.发牌四、完整代码五、效果展示一、问题描述 这是一个魔术游戏&#xff0c;将15张牌分为三组&#xff0c;每组5张&#xff0c;让玩家从中任选…

填鸭表单|2022年度总结功能发布

自从我们在2020年发布了开源版本以来&#xff0c;我们结识了许多社区伙伴。在和这些社区伙伴的接触中&#xff0c;我们深刻地感受到了“做产品的感觉&#xff0c;令人振奋且充满激情”。 我们认为&#xff0c;专注于做一件事情&#xff0c;持续深耕&#xff0c;时间自然会给出…

C#语言实例源码系列-实现对文件进行加密保护

专栏分享点击跳转>Unity3D特效百例点击跳转>案例项目实战源码点击跳转>游戏脚本-辅助自动化点击跳转>Android控件全解手册 &#x1f449;关于作者 众所周知&#xff0c;人生是一个漫长的流程&#xff0c;不断克服困难&#xff0c;不断反思前进的过程。在这个过程中…

jmeter压测使用实践

环境搭建篇见https://blog.csdn.net/weixin_42498050/article/details/12847945 参考Jmter压测使用实践 jmeter压测实战总结 搭建 Apache Jmeter 分布式压测与监控 Jmeter常用断言 1. 添加线程组 测试计划 &#xff08;右键->添加->Threads&#xff08;Users&#x…

做了这么久的自动化测试现在才知道API 接口测试还能...

接口测试作为最常用的集成测试方法的一部分&#xff0c;通过直接调用被测试的接口来确定系统在功能性、可靠性、安全性和性能方面是否能达到预期&#xff0c;有些情况是功能测试无法覆盖的&#xff0c;所以接口测试是非常必要的。首先需要对接口测试的基本信息做一些了解&#…

Linux如何安装BeyondCompare

博客主页&#xff1a;https://tomcat.blog.csdn.net 博主昵称&#xff1a;农民工老王 主要领域&#xff1a;Java、Linux、K8S 期待大家的关注&#x1f496;点赞&#x1f44d;收藏⭐留言&#x1f4ac; 目录安装yumtar.gz使用示例BeyondCompare是一款广受好评的文本对比工具。本…

文件上传漏洞渗透与攻防(一)

目录 前言 文件上传漏洞原理 Webshell介绍 一句话木马&#xff1a; 小马&#xff1a; 大马&#xff1a; Webshell集合&#xff1a; 网站控制工具 文件上传漏洞危害 文件上传漏洞靶场练习 Pass-01 Pass-02 Pass-03 Pass-04 Pass-06 Pass-07 Pass-08 Pass-09 Pass-10 Pas…

Java并发编程(二)

线程方法 API Thread 类 API&#xff1a; 方法说明public void start()启动一个新线程&#xff0c;Java虚拟机调用此线程的 run 方法public void run()线程启动后调用该方法public void setName(String name)给当前线程取名字public void getName()获取当前线程的名字 线程存…

实战演练 | 使用 Navicat Premium 自动运行数据库复制

与同步&#xff08;使两个数据库的模式和数据同步的一次性过程&#xff09;不同&#xff0c;复制是一个连续&#xff08;自动&#xff09;在两个数据库之间重现数据的过程&#xff08;尽管模式更新也是可能的&#xff09;。复制可以异步完成&#xff0c;因此不需要永久连接两个…

【Lniux】目录的权限,默认权限,粘滞位详细讲解

大家好&#xff0c;今天详细讲解一些关于目录权限的细节 很多细节都是通过问答方式&#xff0c;希望大家可以先自己思考一下答案然后再听我的分析 欢迎指正错误&#xff0c;我们共同成长 目录 1.目录的权限 2.默认权限 3.粘滞位 1.目录的权限 如果我们要进图一个目录只需要…

ArcGIS基础实验操作100例--实验25统一多分辨率栅格数据

本实验专栏来自于汤国安教授《地理信息系统基础实验操作100例》一书 实验平台&#xff1a;ArcGIS 10.6 实验数据&#xff1a;请访问实验1&#xff08;传送门&#xff09; 基础编辑篇--实验25 统一多分辨率栅格数据 目录 一、实验背景 二、实验数据 三、实验步骤 &#xff0…

springboot admin-server的使用

指标监控可视化文档&#xff1a; 用于管理 Spring Boot 应用程序的管理 UI Spring Boot Admin Reference Guide 一、创建项目 就勾选Spring Web项目即可 二、基础设置 (1) 依赖引入 <dependency><groupId>de.codecentric</groupId><artifactId>sp…

Android: Binder: 彻底顿悟Android Binder

Binder机制可谓是Android 知识体系的重中之中&#xff0c;作为偏底层的基础组件&#xff0c;平时我们很少关注它&#xff0c;但是它却无处不在&#xff0c;这也是android面试考察点之一&#xff0c;本篇将从流程上将Binder通信过一遍。 文章目录 1&#xff1a;Binder作用 2&…

STM32F7-Discovery使用ITM作为调试工具

关于代码的调试手段&#xff0c;我在自己的一篇文章(http://bbs.ickey.cn/index.php?appgroup&actopic&id54944链接中的《STM32F030 Nucleo-开发调试的经验USART的重要性.pdf》)中已经详细谈到&#xff0c;为什么在调试中我们通常使用J-Link或ULINK或ST-Link(ST)或Ope…

机器学习——细节补充

1.matplotlib与seaborn的区别 来源&#xff1a;https://geek-docs.com/matplotlib/matplotlib-ask-answer/difference-between-matplotlib-and-seaborn.html 2.%matplotlib inline使图片嵌入notebook&#xff0c;而不需要使用show()方法 3.IPython与python&#xff1a;IPyth…

中小企业如何选择进销存软件?

企业信息化转型趋势的推动&#xff0c;让很多中小企业也开启了转型的探索。对于企业&#xff0c;一款合适的进销存管理软件&#xff0c;绝对是转型之路上的必备工具&#xff0c;可以帮助企业对经营中的采购、库存、销售等环节进行有效管理监督。 目前&#xff0c;市面上的各种…

three.js 的渲染结构

理解three.js 的渲染结构 1 three.js 的渲染 Three.js 封装了场景、灯光、阴影、材质、纹理和三维算法&#xff0c;让你不必再直接用WebGL 开发项目。three.js 在渲染三维场景时&#xff0c;需要创建很多对象&#xff0c;并将它们关联在一起。 下图便是一个基本的three.js 渲…

Python通知Epic白嫖游戏信息

每周都有免费游戏 - Epic Games 近期看到Epic在送游戏&#xff0c;目前每周都会有活动白嫖。 身为白嫖党&#xff0c;肯定要操作一下。 游戏列表&#xff1a;Epic Games Store 每周免费游戏&#xff08;331&#xff09; | indienova GameDB 游戏库 大致思路&#xff1a; 1、…