空间金字塔池化(SPP,Spatial Pyramid Pooling)系列

news2025/1/24 2:18:17

空间金字塔池化的作用是解决输入图片大小不一造成的缺陷,同时在目标识别中增加了精度。空间金字塔池化可以使得任意大小的特征图都能够转换成固定大小的特征向量,下面针对一些典型的空间金字塔进行盘点。

部分图片来自blog:空间金字塔池化改进 SPP / SPPF / SimSPPF / ASPP / RFB / SPPCSPC / SPPFCSPC_金字塔池化模块-CSDN博客, 侵删

(1)SPP, Spatial Pyramid Pooling

paper:Spatial Pyramid Pooling in Deep ConvolutionalNetworks for Visual Recognition

paper link: https://arxiv.org/abs/1406.4729

repo link: https://github.com/yifanjiang19/sppnet-pytorch

核心思想

把经典的金字塔池化结构Spatial Pyramid Pooling引入CNN中,从而使CNN可以处理任意尺寸的图片

框架

具有空间金字塔池化层的网络结构。这里256是conv5层的卷积核个数,conv5是最后一个卷积层。

code_pytorch

import math
import torch
import torch.nn as nn
from torch.nn import init
import functools
from torch.autograd import Variable
import numpy as np
import torch.nn.functional as F
class SPP_NET(nn.Module):
    '''
    A CNN model which adds spp layer so that we can input multi-size tensor
    '''
    def __init__(self, opt, input_nc, ndf=64,  gpu_ids=[]):
        super(SPP_NET, self).__init__()
        self.gpu_ids = gpu_ids
        self.output_num = [4,2,1]
        
        self.conv1 = nn.Conv2d(input_nc, ndf, 4, 2, 1, bias=False)
        
        self.conv2 = nn.Conv2d(ndf, ndf * 2, 4, 1, 1, bias=False)
        self.BN1 = nn.BatchNorm2d(ndf * 2)

        self.conv3 = nn.Conv2d(ndf * 2, ndf * 4, 4, 1, 1, bias=False)
        self.BN2 = nn.BatchNorm2d(ndf * 4)

        self.conv4 = nn.Conv2d(ndf * 4, ndf * 8, 4, 1, 1, bias=False)
        self.BN3 = nn.BatchNorm2d(ndf * 8)

        self.conv5 = nn.Conv2d(ndf * 8, 64, 4, 1, 0, bias=False)
        self.fc1 = nn.Linear(10752,4096)
        self.fc2 = nn.Linear(4096,1000)

    def forward(self,x):
        x = self.conv1(x)
        x = self.LReLU1(x)

        x = self.conv2(x)
        x = F.leaky_relu(self.BN1(x))

        x = self.conv3(x)
        x = F.leaky_relu(self.BN2(x))
        
        x = self.conv4(x)
        # x = F.leaky_relu(self.BN3(x))
        # x = self.conv5(x)
        spp = spatial_pyramid_pool(x,1,[int(x.size(2)),int(x.size(3))],self.output_num)
        # print(spp.size())
        fc1 = self.fc1(spp)
        fc2 = self.fc2(fc1)
        s = nn.Sigmoid()
        output = s(fc2)
        return output
def spatial_pyramid_pool(self,previous_conv, num_sample, previous_conv_size, out_pool_size):
    '''
    previous_conv: a tensor vector of previous convolution layer
    num_sample: an int number of image in the batch
    previous_conv_size: an int vector [height, width] of the matrix features size of previous convolution layer
    out_pool_size: a int vector of expected output size of max pooling layer
    
    returns: a tensor vector with shape [1 x n] is the concentration of multi-level pooling
    '''    
    # print(previous_conv.size())
    for i in range(len(out_pool_size)):
        # print(previous_conv_size)
        h_wid = int(math.ceil(previous_conv_size[0] / out_pool_size[i]))
        w_wid = int(math.ceil(previous_conv_size[1] / out_pool_size[i]))
        h_pad = (h_wid*out_pool_size[i] - previous_conv_size[0] + 1)/2
        w_pad = (w_wid*out_pool_size[i] - previous_conv_size[1] + 1)/2
        maxpool = nn.MaxPool2d((h_wid, w_wid), stride=(h_wid, w_wid), padding=(h_pad, w_pad))
        x = maxpool(previous_conv)
        if(i == 0):
            spp = x.view(num_sample,-1)
            # print("spp size:",spp.size())
        else:
            # print("size:",spp.size())
            spp = torch.cat((spp,x.view(num_sample,-1)), 1)
    return spp

(2)SPPF(Spatial Pyramid Pooling -Fast)

paper: 由于SPPF是yolov5作者基于SPP提出的,所以没有论文出处

yolov5 link: https://github.com/ultralytics/yolov5

code_pytorch

class SPPF(nn.Module):
    # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
    def __init__(self, c1, c2, k=5):  # equivalent to SPP(k=(5, 9, 13))
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * 4, c2, 1, 1)
        self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)

    def forward(self, x):
        x = self.cv1(x)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warning
            y1 = self.m(x)
            y2 = self.m(y1)
            return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))

(3)ASPP(Simplified SPPF)

paper: DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs

paper link: https://arxiv.org/pdf/1606.00915.pdf

repo link: https://github.com/kazuto1011/deeplab-pytorch

核心思想

提出了不对称空间金字塔池(ASPP)来在多个尺度上稳健地分割对象。ASPP在多个采样率和有效视场下使用滤波器探测传入的卷积特征层,从而在多个尺度上捕获对象和图像上下文。

code_pytorch

class _ASPP(nn.Module):
    """
    Atrous spatial pyramid pooling (ASPP)
    """

    def __init__(self, in_ch, out_ch, rates):
        super(_ASPP, self).__init__()
        for i, rate in enumerate(rates):
            self.add_module(
                "c{}".format(i),
                nn.Conv2d(in_ch, out_ch, 3, 1, padding=rate, dilation=rate, bias=True),
            )

        for m in self.children():
            nn.init.normal_(m.weight, mean=0, std=0.01)
            nn.init.constant_(m.bias, 0)

    def forward(self, x):
        return sum([stage(x) for stage in self.children()])

(4)RFB

paper: Receptive Field Block Net for Accurate and Fast Object Detection

paper link: https://openaccess.thecvf.com/content_ECCV_2018/papers/Songtao_Liu_Receptive_Field_Block_ECCV_2018_paper.pdf

repo link: GitHub - GOATmessi7/RFBNet: Receptive Field Block Net for Accurate and Fast Object Detection, ECCV 2018

核心思想

受感受野(RF)结构的启发,我们提出了一种新的RF Block(RFB)模块,该模块考虑了RF的大小和偏心率之间的关系,以增强特征的可分辨性和鲁棒性。

Code_Pytorch

class BasicRFB(nn.Module):

    def __init__(self, in_planes, out_planes, stride=1, scale = 0.1, visual = 1):
        super(BasicRFB, self).__init__()
        self.scale = scale
        self.out_channels = out_planes
        inter_planes = in_planes // 8
        self.branch0 = nn.Sequential(
                BasicConv(in_planes, 2*inter_planes, kernel_size=1, stride=stride),
                BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=visual, dilation=visual, relu=False)
                )
        self.branch1 = nn.Sequential(
                BasicConv(in_planes, inter_planes, kernel_size=1, stride=1),
                BasicConv(inter_planes, 2*inter_planes, kernel_size=(3,3), stride=stride, padding=(1,1)),
                BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=visual+1, dilation=visual+1, relu=False)
                )
        self.branch2 = nn.Sequential(
                BasicConv(in_planes, inter_planes, kernel_size=1, stride=1),
                BasicConv(inter_planes, (inter_planes//2)*3, kernel_size=3, stride=1, padding=1),
                BasicConv((inter_planes//2)*3, 2*inter_planes, kernel_size=3, stride=stride, padding=1),
                BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=2*visual+1, dilation=2*visual+1, relu=False)
                )

        self.ConvLinear = BasicConv(6*inter_planes, out_planes, kernel_size=1, stride=1, relu=False)
        self.shortcut = BasicConv(in_planes, out_planes, kernel_size=1, stride=stride, relu=False)
        self.relu = nn.ReLU(inplace=False)

    def forward(self,x):
        x0 = self.branch0(x)
        x1 = self.branch1(x)
        x2 = self.branch2(x)

        out = torch.cat((x0,x1,x2),1)
        out = self.ConvLinear(out)
        short = self.shortcut(x)
        out = out*self.scale + short
        out = self.relu(out)

        return out



class BasicRFB_a(nn.Module):

    def __init__(self, in_planes, out_planes, stride=1, scale = 0.1):
        super(BasicRFB_a, self).__init__()
        self.scale = scale
        self.out_channels = out_planes
        inter_planes = in_planes //4


        self.branch0 = nn.Sequential(
                BasicConv(in_planes, inter_planes, kernel_size=1, stride=1),
                BasicConv(inter_planes, inter_planes, kernel_size=3, stride=1, padding=1,relu=False)
                )
        self.branch1 = nn.Sequential(
                BasicConv(in_planes, inter_planes, kernel_size=1, stride=1),
                BasicConv(inter_planes, inter_planes, kernel_size=(3,1), stride=1, padding=(1,0)),
                BasicConv(inter_planes, inter_planes, kernel_size=3, stride=1, padding=3, dilation=3, relu=False)
                )
        self.branch2 = nn.Sequential(
                BasicConv(in_planes, inter_planes, kernel_size=1, stride=1),
                BasicConv(inter_planes, inter_planes, kernel_size=(1,3), stride=stride, padding=(0,1)),
                BasicConv(inter_planes, inter_planes, kernel_size=3, stride=1, padding=3, dilation=3, relu=False)
                )
        self.branch3 = nn.Sequential(
                BasicConv(in_planes, inter_planes//2, kernel_size=1, stride=1),
                BasicConv(inter_planes//2, (inter_planes//4)*3, kernel_size=(1,3), stride=1, padding=(0,1)),
                BasicConv((inter_planes//4)*3, inter_planes, kernel_size=(3,1), stride=stride, padding=(1,0)),
                BasicConv(inter_planes, inter_planes, kernel_size=3, stride=1, padding=5, dilation=5, relu=False)
                )

        self.ConvLinear = BasicConv(4*inter_planes, out_planes, kernel_size=1, stride=1, relu=False)
        self.shortcut = BasicConv(in_planes, out_planes, kernel_size=1, stride=stride, relu=False)
        self.relu = nn.ReLU(inplace=False)

    def forward(self,x):
        x0 = self.branch0(x)
        x1 = self.branch1(x)
        x2 = self.branch2(x)
        x3 = self.branch3(x)

        out = torch.cat((x0,x1,x2,x3),1)
        out = self.ConvLinear(out)
        short = self.shortcut(x)
        out = out*self.scale + short
        out = self.relu(out)

        return out

class RFBNet(nn.Module):
    """RFB Net for object detection
    The network is based on the SSD architecture.
    Each multibox layer branches into
        1) conv2d for class conf scores
        2) conv2d for localization predictions
        3) associated priorbox layer to produce default bounding
           boxes specific to the layer's feature map size.
    See: https://arxiv.org/pdf/1711.07767.pdf for more details on RFB Net.

    Args:
        phase: (string) Can be "test" or "train"
        base: VGG16 layers for input, size of either 300 or 512
        extras: extra layers that feed to multibox loc and conf layers
        head: "multibox head" consists of loc and conf conv layers
    """

    def __init__(self, phase, size, base, extras, head, num_classes):
        super(RFBNet, self).__init__()
        self.phase = phase
        self.num_classes = num_classes
        self.size = size

        if size == 300:
            self.indicator = 3
        elif size == 512:
            self.indicator = 5
        else:
            print("Error: Sorry only SSD300 and SSD512 are supported!")
            return
        # vgg network
        self.base = nn.ModuleList(base)
        # conv_4
        self.Norm = BasicRFB_a(512,512,stride = 1,scale=1.0)
        self.extras = nn.ModuleList(extras)

        self.loc = nn.ModuleList(head[0])
        self.conf = nn.ModuleList(head[1])
        if self.phase == 'test':
            self.softmax = nn.Softmax(dim=-1)

    def forward(self, x):
        """Applies network layers and ops on input image(s) x.

        Args:
            x: input image or batch of images. Shape: [batch,3*batch,300,300].

        Return:
            Depending on phase:
            test:
                list of concat outputs from:
                    1: softmax layers, Shape: [batch*num_priors,num_classes]
                    2: localization layers, Shape: [batch,num_priors*4]
                    3: priorbox layers, Shape: [2,num_priors*4]

            train:
                list of concat outputs from:
                    1: confidence layers, Shape: [batch*num_priors,num_classes]
                    2: localization layers, Shape: [batch,num_priors*4]
                    3: priorbox layers, Shape: [2,num_priors*4]
        """
        sources = list()
        loc = list()
        conf = list()

        # apply vgg up to conv4_3 relu
        for k in range(23):
            x = self.base[k](x)

        s = self.Norm(x)
        sources.append(s)

        # apply vgg up to fc7
        for k in range(23, len(self.base)):
            x = self.base[k](x)

        # apply extra layers and cache source layer outputs
        for k, v in enumerate(self.extras):
            x = v(x)
            if k < self.indicator or k%2 ==0:
                sources.append(x)

        # apply multibox head to source layers
        for (x, l, c) in zip(sources, self.loc, self.conf):
            loc.append(l(x).permute(0, 2, 3, 1).contiguous())
            conf.append(c(x).permute(0, 2, 3, 1).contiguous())

        #print([o.size() for o in loc])


        loc = torch.cat([o.view(o.size(0), -1) for o in loc], 1)
        conf = torch.cat([o.view(o.size(0), -1) for o in conf], 1)

        if self.phase == "test":
            output = (
                loc.view(loc.size(0), -1, 4),                   # loc preds
                self.softmax(conf.view(-1, self.num_classes)),  # conf preds
            )
        else:
            output = (
                loc.view(loc.size(0), -1, 4),
                conf.view(conf.size(0), -1, self.num_classes),
            )
        return output

    def load_weights(self, base_file):
        other, ext = os.path.splitext(base_file)
        if ext == '.pkl' or '.pth':
            print('Loading weights into state dict...')
            self.load_state_dict(torch.load(base_file))
            print('Finished!')
        else:
            print('Sorry only .pth and .pkl files supported.')


# This function is derived from torchvision VGG make_layers()
# https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py

(5)SPPCSPC

paper: YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors

paper link: https://arxiv.org/pdf/2207.02696v1.pdf

repo link: YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors | Papers With Code

code_pytorch

class SPPCSPC(nn.Module):
    # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, k=(5, 9, 13)):
        super(SPPCSPC, self).__init__()
        c_ = int(2 * c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(c_, c_, 3, 1)
        self.cv4 = Conv(c_, c_, 1, 1)
        self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
        self.cv5 = Conv(4 * c_, c_, 1, 1)
        self.cv6 = Conv(c_, c_, 3, 1)
        self.cv7 = Conv(2 * c_, c2, 1, 1)

    def forward(self, x):
        x1 = self.cv4(self.cv3(self.cv1(x)))
        y1 = self.cv6(self.cv5(torch.cat([x1] + [m(x1) for m in self.m], 1)))
        y2 = self.cv2(x)
        return self.cv7(torch.cat((y1, y2), dim=1))

(6) SimCSPSPPF

paper: YOLOv6 v3.0: A Full-Scale Reloading

paper link: https://arxiv.org/abs/2301.05586

repo link: GitHub - meituan/YOLOv6: YOLOv6: a single-stage object detection framework dedicated to industrial applications.

本文将SPPF简化为SimCSPSPF块,带来了性能增益,而速度退化可以忽略不计。

此外,探讨了不同类型的SPP块的影响,包括SPPF和SPPCSPC的简化变体(分别表示为SimSPPF和SimSPPCSPC)以及SimCSPSPF块,性能对比如下。

code_pytorch

class SPPFModule(nn.Module):

    def __init__(self, in_channels, out_channels, kernel_size=5, block=ConvBNReLU):
        super().__init__()
        c_ = in_channels // 2  # hidden channels
        self.cv1 = block(in_channels, c_, 1, 1)
        self.cv2 = block(c_ * 4, out_channels, 1, 1)
        self.m = nn.MaxPool2d(kernel_size=kernel_size, stride=1, padding=kernel_size // 2)

    def forward(self, x):
        x = self.cv1(x)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')
            y1 = self.m(x)
            y2 = self.m(y1)
            return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))


class SimSPPF(nn.Module):
    '''Simplified SPPF with ReLU activation'''
    def __init__(self, in_channels, out_channels, kernel_size=5, block=ConvBNReLU):
        super().__init__()
        self.sppf = SPPFModule(in_channels, out_channels, kernel_size, block)

    def forward(self, x):
        return self.sppf(x)


class SPPF(nn.Module):
    '''SPPF with SiLU activation'''
    def __init__(self, in_channels, out_channels, kernel_size=5, block=ConvBNSiLU):
        super().__init__()
        self.sppf = SPPFModule(in_channels, out_channels, kernel_size, block)

    def forward(self, x):
        return self.sppf(x)


class CSPSPPFModule(nn.Module):
    # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
    def __init__(self, in_channels, out_channels, kernel_size=5, e=0.5, block=ConvBNReLU):
        super().__init__()
        c_ = int(out_channels * e)  # hidden channels
        self.cv1 = block(in_channels, c_, 1, 1)
        self.cv2 = block(in_channels, c_, 1, 1)
        self.cv3 = block(c_, c_, 3, 1)
        self.cv4 = block(c_, c_, 1, 1)

        self.m = nn.MaxPool2d(kernel_size=kernel_size, stride=1, padding=kernel_size // 2)
        self.cv5 = block(4 * c_, c_, 1, 1)
        self.cv6 = block(c_, c_, 3, 1)
        self.cv7 = block(2 * c_, out_channels, 1, 1)

    def forward(self, x):
        x1 = self.cv4(self.cv3(self.cv1(x)))
        y0 = self.cv2(x)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')
            y1 = self.m(x1)
            y2 = self.m(y1)
            y3 = self.cv6(self.cv5(torch.cat([x1, y1, y2, self.m(y2)], 1)))
        return self.cv7(torch.cat((y0, y3), dim=1))


class SimCSPSPPF(nn.Module):
    '''CSPSPPF with ReLU activation'''
    def __init__(self, in_channels, out_channels, kernel_size=5, e=0.5, block=ConvBNReLU):
        super().__init__()
        self.cspsppf = CSPSPPFModule(in_channels, out_channels, kernel_size, e, block)

    def forward(self, x):
        return self.cspsppf(x)


class CSPSPPF(nn.Module):
    '''CSPSPPF with SiLU activation'''
    def __init__(self, in_channels, out_channels, kernel_size=5, e=0.5, block=ConvBNSiLU):
        super().__init__()
        self.cspsppf = CSPSPPFModule(in_channels, out_channels, kernel_size, e, block)

    def forward(self, x):
        return self.cspsppf(x)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1289760.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

第二十一章总结

一、网络通信&#xff1a; 1.网络程序设计基础&#xff1a;网络程序设计编写的是与其他计算机进行通信的程序。 1.1局域网与互联网&#xff1a;为了实现两台计算机的通信&#xff0c;必须用一个网络线路连接两台计算机 2.网络协议&#xff1a;网络协议规定了计算机之间连接的…

【精选】WebLogic-CVE-2017-3506

下载地址&#xff1a; https://github.com/Al1ex/CVE-2017-3506https://github.com/Al1ex/CVE-2017-3506 1.weblogic wls-wsat组件远程命令执行&#xff08;CVE-2017-3506&#xff09; 复现&#xff1a; ┌──(root&#x1f480;kali)-[~/routing/红日2/CVE-2017-3506-mai…

C++利剑string类(详解)

前言&#xff1a;大家都知道在C语言里面的有 char 类型&#xff0c;我接下来要讲的 string 类功能是使用 char 类型写的类&#xff0c;当然这个是C官方写的&#xff0c;接下来我们将会学会使用它&#xff0c;我们会发现原来 char 这种类型是还能这么好用&#xff0c;授人以…

结构体精讲1

这一期我们讲一讲C语言中的自定义类型中的其中一种类型--->结构体 相信大家对于结构体都听了很久了吧&#xff0c;下面就由我来带领大家一起学习学习&#xff01; 结构体类型是一种自定义的数据类型&#xff0c;用来组织不同类型的数据成员。结构体可以包含多个不同类型的…

【Proteus】绘制简单的电路图

参考书籍&#xff1a;微机原理与接口技术——基于8086和Proteus仿真&#xff08;第3版&#xff09;&#xff08;作者&#xff1a;顾晖等&#xff09;&#xff0c;p111 1.放置元件 以8086为例&#xff1a; 确保处于元件模式&#xff0c;点击对应的按钮&#xff1a; 在元件库中…

【创意坊】技术征战:揭秘CSDN博客等级与原力等级的战略大计

目录 &#x1f4cb; 前言 1. 博客等级 1.1 博客积分规则 1.2 博客等级划分 1.3 博客等级权益 2. 原力等级 2.1 原力积分规则 2.2 原力等级划分 2.3 原力等级权益 3. 文章点赞评论规则 &#x1f4dd;总结 &#x1f4cb; 前言 &#x1f308;个人主页&#xff1a;Sarapi…

PostgreSQL有意思的现象:支持不带列的表

1、前言 以前从没有试过建一张表&#xff0c;不带任何列。在PG中却支持这种语法。这是个什么鬼? 最近&#xff0c;把PG源码扒了下&#xff0c;简单浏览了下最近的一些merge。其中有一个fix&#xff1a; eeb0ebad79 ("Fix the initial sync tables with no columns.&qu…

【动手学深度学习】(六)权重衰退

文章目录 一、理论知识二、代码实现2.1从零开始实现2.2简洁实现 【相关总结】 主要解决过拟合 一、理论知识 1、使用均方范数作为硬性限制&#xff08;不常用&#xff09; 通过限制参数值的选择范围来控制模型容量 通常不限制偏移b 小的意味着更强的正则项 使用均方范数作为柔…

自定义登录页面模板(移动端)

login/index <script setup lang"ts"> </script><template><div class"login-page">//组件 由于配置了自动注册&#xff0c;所以无需引入<cp-nav-barright-text"注册"click-right"$router.push(/register)&quo…

elk:filebeat

elk:filebeat日志收集工具和logstash相同 filebeat是一个轻量级的日志收集工具&#xff0c;所使用的系统资源比logstash部署和启动时使用的资源要小的多。 filebeat可以运行在非java环境&#xff0c;他可以代替logstash在非java环境上收集日志。 filebeat无法实现数据的过滤…

外置固态硬盘配置

1、插上usb外置硬盘盒 2、邮件我的此“电脑”选择“管理” 3、例如新增的固态硬盘如下&#xff1a; 4、这里我选择mrb(旧模式)而没选guid(新模式) 因为mrb兼容模式更加适合windows、ios等系统 5、右击未分区磁盘&#xff0c;选择新增卷区&#xff0c;一路下一步即可

顶级设计师力荐的界面设计软件,设计新选择

即时设计 作为专业的在线协作UI设计软件&#xff0c;即时设计可以实现视觉效果、交互效果、体验效果一站成型&#xff0c;为你的目标用户创造流畅体验。 轻松绘制原型&#xff1a;借助社区设计资源和原型模板的即时设计&#xff0c;开始敏捷高效的工作。与产品经理分解用户需…

fastapi.templating与HTMLResponse

要声明一个模板对象&#xff0c;应将存储html模板的文件夹作为参数提供。在当前工作目录中&#xff0c;我们将创建一个 “templates “目录。 templates Jinja2Templates(directory“templates”) 我们现在要把这个页面的HTML代码渲染成HTMLResponse。让我们修改一下hello()函…

轻量封装WebGPU渲染系统示例<41>- 前向渲染的雾(Fog)效果(源码)

当前示例源码github地址: https://github.com/vilyLei/voxwebgpu/blob/feature/rendering/src/voxgpu/sample/FogTest.ts 当前示例运行效果: 此示例基于此渲染系统实现&#xff0c;当前示例TypeScript源码如下&#xff1a; export class FogTest {private mRscene new Rend…

TrustZone之数据、指令和统一缓存(unified caches)

在Arm架构中,data caches是物理标记(physically tagged)的。物理地址包括该行来自哪个地址空间,如下所示: 对于NP:0x800000的缓存查找永远不会命中使用SP:0x800000标记的缓存行。这是因为NP:0x800000和SP:0x800000是不同的地址。 这也影响缓存维护操作。考虑前面图表中的示…

kubernetes详解——从入门到入土(更新中~)

k8s简介 编排工具&#xff1a;系统层面ansible、saltstackdocker容器docker compose docker swarm docker machinedocker compose&#xff1a;实现单机容器编排docker swarm&#xff1a;实现多主机整合成为一个docker machine&#xff1a;初始化新主机mesos marathonmesos …

8、Broker进一步了解

1、Broker消息分发服务以及构建ConsumeQueue和IndexFile与消息清除 前面分析如何进行刷盘&#xff0c;本章分析Broker的消息分发以及构建ConsumerQueue和IndexFile&#xff0c;两者构建是为了能够提高效率&#xff0c;减少消息查找时间以及减少网络带宽与存储空间。 ConsumeQ…

软著项目推荐 深度学习图像风格迁移 - opencv python

文章目录 0 前言1 VGG网络2 风格迁移3 内容损失4 风格损失5 主代码实现6 迁移模型实现7 效果展示8 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 深度学习图像风格迁移 - opencv python 该项目较为新颖&#xff0c;适合作为竞赛课题…

鸿蒙4.0开发笔记之ArkTS语法基础之条件渲染和循环渲染的使用(十五)

文章目录 一、条件渲染&#xff08;if&#xff09;二、循环渲染&#xff08;ForEach&#xff09; 一、条件渲染&#xff08;if&#xff09; 1、定义 正如其他语言中的if…else…语句&#xff0c;ArkTS提供了渲染控制的能力&#xff0c;条件渲染可根据应用的不同状态&#xff0…

数独训练APP -->>穿山甲SDK接入收益·android广告接入·app变现·广告千展收益·eCPM收益(2023.11.01 -2023.11.30)

接入穿山甲SDK的app 全屏文字滚动APP 数独训练APP 广告接入示例: Android 个人开发者如何接入广告SDK&#xff0c;实现app流量变现 接入穿山甲SDK app示例&#xff1a; android 数独小游戏 经典数独休闲益智 2023 11月份收益总结 – 数独训练APP app接入上架有一段时间了&a…