【语义分割】数据增强方法(原图与标签同时扩增)

news2024/11/14 16:54:54

1、数据增强作用

   避免过拟合

   提升模型的鲁棒性

  提高模型的泛化能力

  避免样本不均衡的问题

2.、数据增强分类

可分为两类:在线增强和离线增强。这两者的区别在于离线增强是在训练前对数据集进行处理,往往能得到多倍的数据集,在线增强是在训练时对加载数据进行预处理,不改变训练数据的数量。

离线增强一般用于小型数据集,在训练数据不足时使用,在线增强一般用于大型数据集。

3、方法

比较常用的几何变换方法主要有:翻转,旋转,裁剪,缩放,平移转换,色彩抖动,尺度变换,对比度变换,噪声扰动,旋转变换;

比较常用的像素变换方法有:加椒盐噪声,高斯噪声,进行高斯模糊,调整HSV对比度,调节亮度,饱和度,直方图均衡化,调整白平衡等。

使用Augmentor模块增强

注意:
原图与标签图的后缀名必须保持一致,否则只标签图不会增强的

因为我的图像是由labelme标注的,且将其转化为voc的格式,转化后原图为jpg,原图为png,因为需要统一。统一方式如下:批量修改图像后缀名。

1、安装:
创建一个环境,然后输入安装命令,命令如下

pip install Augmentor

conda install Augmentor

显示安装成功,既可以继续了。

 2、使用:

语义分割任务需要同时对原始图和掩码图(mask)进行增强,因此,很多现有的深度学习框架中自带的图像增强工具都不能直接使用。但是通过Augmentor可以很方便的实现该功能。下面举例说明。将图像原图以及它们对应的掩码图,分别放在test1文件夹以及test2文件夹中。使用以下代码进行增强

原始图

标签图

#导入数据增强工具
import Augmentor

#确定原始图像存储路径以及标签图的文件存储路径,创建Pipeline实例p
p = Augmentor.Pipeline("originalImages")
p.ground_truth("Segmentationimages")

(1)旋转(rotate)

probability指定进行操作的概率大小,max_left_rotation, max_right_rotation指定向左向右最大旋转角度,最大值为25。sample表示从给定图像中生成指定数量的增强图像,可指定多个。

rotate操作默认在对原图像进行旋转之后进行裁剪,输出与原图像同样大小的增强图像。

p.rotate(probability=1, max_left_rotation=25, max_right_rotation=25)
p.sample(1)

(2)缩放(scale),但貌似只能等比放大

scale_factor表示缩放比例,只能大于1,且为等比放大。

p.scale(probability=1, scale_factor=1.3)

(3)翻转(flip)

左右翻转、上下翻转、随机翻转

p.flip_random(probability=1)   %随机翻转
p.flip_left_right(probability=0.5)   %左右翻转
p.flip_top_bottom(probability=0.5)    %上下翻转

(4)随机亮度增强/减弱(random_brightness)

min_factor, max_factor为变化因子,决定亮度变化的程度,可根据效果指定。

p.random_brightness(probability=1, min_factor=0.7, max_factor=1.2)   %随机亮度
p.random_color(probability=1, min_factor=0.0, max_factor=1)   %随机颜色
p.random_contrast(probability=1, min_factor=0.7, max_factor=1.2)   %随机对比度

(5)随机透视变形(skew)

magnitude表示变形程度。隐藏参数skew_type,值为``TILT``, ``TILT_TOP_BOTTOM``, ``TILT_LEFT_RIGHT``,  ``CORNER``,展开源码才可以看到。源码中采用randomly的方式从四种参数中选择,不需指定。

其中,``TILT_TOP_BOTTOM``表示只在顶部底部方向进行透视变形。

``TILT_LEFT_RIGHT``表示只在左右方向进行透视变形。

``CORNER``表示只在四角方向进行透视变形。

``TILT``包含上述方向的集合,即上下左右和四角的八个方向。
 

p.skew(probability=1, magnitude=0.8)

(6)随机剪切(shear)

剪切变换,max_shear_left,max_shear_right为剪切变换角度

p.shear(probability=1, max_shear_left=15, max_shear_right=15)

(7)随机裁剪(random_crop)

percentage_area表示裁剪面积占原图像面积的比例,centre指定是否从图片中间裁剪,randomise_percentage_area指定是否随机生成裁剪面积比。

p.crop_random(probability=1, percentage_area=0.8, centre=False, randomise_percentage_area=True)

(8)随机擦除/遮挡(random_erasing)

rectangle_area指定随机擦除面积的百分比。当然这个指定的是擦除面积的上限。

p.random_erasing(probability=1, rectangle_area=0.5)

(9)小块变形distortion

p.random_distortion(probability=0.8,grid_width=10,grid_height=10, magnitude=20)

完整代码:

import Augmentor


# 确定原始图像存储路径以及掩码文件存储路径,需要把“\”改成“/”
p = Augmentor.Pipeline("originalImages")
p.ground_truth("Segmentationimages")

# 图像旋转: 按照概率0.8执行,范围在0-25之间
p.rotate(probability=0.8, max_left_rotation=25, max_right_rotation=25)

# 图像左右互换: 按照概率0.5执行
p.flip_left_right(probability=0.5)
p.flip_top_bottom(probability=0.5)

# 图像放大缩小: 按照概率0.8执行,面积为原始图0.85倍
p.zoom_random(probability=0.3, percentage_area=0.85)

#scale_factor表示缩放比例,只能大于1,且为等比放大。
p.scale(probability=1, scale_factor=1.3)

#小块变形
p.random_distortion(probability=0.8,grid_width=10,grid_height=10, magnitude=20)

#随机亮度增强/减弱,min_factor, max_factor为变化因子,决定亮度变化的程度,可根据效果指定
p.random_brightness(probability=1, min_factor=0.7, max_factor=1.2)

#随机颜色/对比度增强/减弱
#p.random_color(probability=1, min_factor=0.0, max_factor=1)
p.random_contrast(probability=1, min_factor=0.7, max_factor=1.2)

#随机剪切(shear)  max_shear_left,max_shear_right为剪切变换角度  范围0-25
p.shear(probability=1, max_shear_left=10, max_shear_right=10)

#随机裁剪(random_crop)
p.crop_random(probability=1, percentage_area=0.8, randomise_percentage_area=True)

#随机翻转(flip_random)
p.flip_random(probability=1)

# 最终扩充的数据样本数可以更换为100。1000等
p.sample(10)  

会自动生成一个out结果,效果如下:

 然后自己手动分开即可。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/12846.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

javaEE高阶---Spring 更简单的读取和存储对象

一 : 引言 经过前面的学习,我们已经可以实现基本的 Spring 读取和存储对象的操作了,但在操作的过程中我们发现读取和存储对象并没有想象中的那么“简单”,所以接下来我们要学习更加简单的操作 Bean 对象的方法 . 二 : 存储Bean对象 2.1 使…

【Hack The Box】windows练习-- Reel

HTB 学习笔记 【Hack The Box】windows练习-- Reel 🔥系列专栏:Hack The Box 🎉欢迎关注🔎点赞👍收藏⭐️留言📝 📆首发时间:🌴2022年11月17日🌴 &#x1f3…

视频清晰度优化指南

一、背景介绍 随着移动互联网的深入发展,视频消费场景逐渐变成主流,早期由于手机硬件的限制问题,导致生产出来的视频画质、清晰度存在较大的问题,用户体验不太好,当时的网络也处于4G的发展阶段,网络的限制…

【Hack The Box】windows练习-- support

HTB 学习笔记 【Hack The Box】windows练习-- support 🔥系列专栏:Hack The Box 🎉欢迎关注🔎点赞👍收藏⭐️留言📝 📆首发时间:🌴2022年11月17日🌴 &#x…

策略验证_买入口诀_双管齐下买进不怕

写在前面: 1. 本文中提到的“股票策略校验工具”的具体使用操作请查看该博文; 2. 文中知识内容来自书籍《同花顺炒股软件从入门到精通》 3. 本系列文章是用来学习技法,文中所得内容都仅仅只是作为演示功能使用 目录 解说 策略代码 结果 解…

【正点原子FPGA连载】 第一章 MPSoC简介 摘自【正点原子】DFZU2EG/4EV MPSoC 之FPGA开发指南V1.0

1)实验平台:正点原子MPSoC开发板 2)平台购买地址:https://detail.tmall.com/item.htm?id692450874670 3)全套实验源码手册视频下载地址: http://www.openedv.com/thread-340252-1-1.html 第一章 MPSoC简介…

【Loadrunner】学习loadrunner——Controller与Analysis的使用(三)

文章目录1.controller的使用1.1.创建场景的方式1.2.页面的介绍1.3.场景的设置1.2.1.设置初始化1.2.2.设置启动机制1.2.3.设置性能测试脚本的执行时间1.2.4.设置虚拟用户推出机制1.3.场景的运行1.4.场景的运行方式1.4.1.按照场景的方式运行1.4.2.按照group运行2.analysis的使用2…

[数据结构] 图---图的邻接矩阵存储方式模拟实现,包括BFS广度优先遍历和DFS深度优先遍历(上)

图的邻接矩阵存储1)邻接矩阵表示法相关概念实现基础框架Graph_matrix构造函数实现基础操作获取某一顶点的下标添加边打印邻接矩阵2)BFS广度优先遍历3)DFS深度优先遍历4)最小生成树之克鲁斯卡尔算法5)最小生成树之普里姆…

毕业设计opencv 图像识别 指纹识别 - python

文章目录0 前言1 课题背景2 效果展示3 具体实现3.1 图像对比过滤3.2 图像二值化3.3 图像侵蚀细化3.4 图像增强3.5 特征点检测4 OpenCV5 最后0 前言 🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往…

365天深度学习训练营-第6周:好莱坞明星识别

目录 一、前言 二、我的环境 三、代码实现 四、损失函数 1. binary_crossentropy(对数损失函数) 2. categorical_crossentropy(多分类的对数损失函数) 3. sparse_categorical_crossentropy(稀疏性多分类的对数损…

关于编辑器QScintilla(Scintilla)词法分析器工作原理的分析(实现注释区分)

入门,首先看我这两篇博客:关于QScintilla库的入门大全https://biao2488890051.blog.csdn.net/article/details/126798996?spm1001.2014.3001.5502 正式开始,先来看看词法分析器和编辑器的关系: (注意:如果…

李宏毅机器学习作业6-使用GAN生成动漫人物脸

理论部分参考:​李宏毅机器学习——对抗生成网络(GAN)_iwill323的博客-CSDN博客 目录 任务和数据集 评价方法 FID AFD (Anime face detection) rate DCGAN和WGAN 代码 导包 建立数据集 显示一些图片 模型设置 生成器 判别器 权…

火山引擎:数字化时代,如何给金融业注入“内容活水”?

数字化,已经成为中国经济的一架强劲发动机。 工业和信息化部统计显示,中国数字经济规模从2012年的11万亿元增长到2021年的超45万亿元,排名世界第二,数字经济占国内生产总值比重由21.6%提升至39.8%。 数据,是数字化的…

git可视化工具-idea插件使用

上一篇文章说了git的命令行操作,是不是还沉浸在命令行在指间跳跃的兴奋中,这一篇再说一说在idea中如何使用git,会让人更兴奋了,也许你会认为这会是最好用的方式的。我想说这只是最好用的方式之一。 1.功能入口 当我们在idea里想使…

键盘输入语句和位运算

键盘输入语句键盘输入语句案例:可以从控制台接收用户信息,【姓名,年龄,薪水】进制介绍案例:输出 二,十,八,十六进制的数据位运算原码、反码、补码位运算符java 中有 7 个位运算(&…

数字工业 弹性安全丨2022 Fortinet工业互联网安全发展峰会成功举办

随着数字化转型的持续推进,工业互联网的作用和地位日益加强。而 OT 安全作为工业互联网体系不可或缺的部分,虽然受到越来越多企业的关注,但仍然面临着多方面的挑战。11月16日,一年一度的 OT 安全盛会——2022 Fortinet工业互联网安…

算法设计与分析 SCAU11091 最优自然数分解问题(优先做)

11091 最优自然数分解问题(优先做) 时间限制:1000MS 代码长度限制:10KB 提交次数:0 通过次数:0 题型: 编程题 语言: G;GCC;VC;JAVA Description 问题描述:设n是一个正整数。 (1)现在将n分解为若干个互不相同的自然…

【毕业设计】电影评论情感分析 - GRU 深度学习

文章目录0 前言1 项目介绍2 情感分类介绍3 数据集4 实现4.1 数据预处理4.2 构建网络4.3 训练模型4.4 模型评估4.5 模型预测5 最后0 前言 🔥 Hi,大家好,这里是丹成学长的毕设系列文章! 🔥 对毕设有任何疑问都可以问学…

手机拍照模糊怎么办?拍摄低像素照片如何修复清晰?

相信有很多人在用手机拍摄照片时自认为应该非常精美,拍完后却发现它模糊不清!最终遗憾地错过了精彩的瞬间,令人非常遗憾!虽然手机不是专业的摄像机,拍摄时模糊在所难免。但是我们可以在前期尽量避免拍摄的照片模糊&…

感冒了吃抗生素有用吗?

点击蓝字 |关注我们 2023年《科学世界》杂志全年订阅现已开启。 现在订阅,立享7.5折,并赠送经典科普图书《从一到无穷大》。通过文末链接,即可登录“科学世界”微店订购。抗生素,简单地说就是杀死细菌的药物。更准确地…