公共部门生成式人工智能的未来

news2025/1/10 11:59:35

作者:Dave Erickson

最近,我与 IDC Government Insights 研究副总裁阿德莱德·奥布莱恩 (Adelaide O’Brien) 坐下来讨论了全球公共部门生成式人工智能的当前和未来状况。 完整的对话可以按需查看,但我也想强调讨论中的一些要点。 我们的目标是讨论我们现在看到的用例、公共组织面临的障碍,并交流组织如何利用生成式人工智能为员工、选民和更大的数字化转型带来的价值的最佳实践。

公共部门的生成式人工智能:现状

IDC 研究表明,59% 的政府机构正处于其组织内生成式 AI 使用的初级阶段(相比之下,只有 16% 的政府机构正在 “大力投资”)。展望未来,IDC 分享了有关公共部门领导者如何看待他们的近期生成式人工智能目标路线图的更多见解:

  • 全球 62% 的政府表示,他们将在未来 12 个月内在客户服务和支持中使用人工智能。
  • 全球 49% 的教育机构表示,对话式应用程序(例如聊天机器人和语音机器人)最有希望在短期内使用。

更进一步,IDC 根据其研究以及与政府客户的咨询对话,概述了公共部门组织在未来几年可能采用和整合生成式人工智能的进展情况。

公共部门生成式人工智能用例的 3 个领域

IDC 根据组织成熟度级别将政府用例分为三个阶段或范围。 与一些着眼于生成式人工智能集成的收入潜力的私营部门同行不同,到目前为止,公共部门组织正在采取更加谨慎的 “爬行-走-跑” 方法。

第一阶段:根据 IDC 的说法,第一个阶段是在未来一年左右发生渐进式创新,因为组织主要在内部测试生成式人工智能的领域。 最初,用例侧重于员工生产力和满意度,例如围绕内部合同管理、采购和通过沙箱环境创建代码的试点计划。 换句话说,采取复杂、重复的以数据为中心的任务,并通过生成人工智能应用程序结合机构的专有数据来简化它们。 一旦这些试点计划启动,组织计划扩展到影响外部利益相关者的用例,例如通过将选民与个性化的相关数据连接起来来改善选民的帮助台或呼叫中心体验。

第二阶段:一旦组织对第一阶段发生的生成式人工智能文化转变感到相当满意,用例就可以扩展到更具颠覆性的创新。 IDC 预计这一前景将在未来几年内普遍存在。 这里的用例连接 “前台到后台” 并利用智能自动化。 示例包括关键基础设施保护、用于调查的跨机构数据共享以及福利欺诈保护。

第三阶段:IDC 框架的第三个也是最后一个阶段的用例继续扩大范围,包括新的业务模式和跨复杂生态系统的集成。 在这里,各组织正在围绕数字立法、国家情报优势和智能互联校园等系统性主题进行整体规划

大规模生成人工智能需要安全和信任

尽管生成式人工智能前景广阔,但领导者也面临着数据隐私、员工满意度以及道德与合规性方面的担忧。 IDC 数据显示,43% 的全球政府领导人担心生成式人工智能会危及他们对数据和知识产权的控制,41% 的人担心生成式人工智能的使用会让他们面临品牌和监管风险。

对于公共部门来说,安全和信任对于任何生成式人工智能的实施都是至关重要的 —— 对私营部门合作伙伴的信任,对政策和道德准则的信任,以及对私人数据保密的信任。 正如阿德莱德·奥布莱恩 (Adelaide O’Brien) 指出的那样,“政府只有以信任为中心,才能大规模提供新一代人工智能价值。” 对于公共部门组织来说,这意味着对负责任的人工智能的政策和指南进行战略思考,包括:

  • 为整个组织制定人工智能路线图
  • 设计智能架构
  • 绘制实施和成功所需的技能
  • 确保你的敏感数据不会用于训练大型语言模型 (LLM)
  • 将数据保存在主权领土上
  • 确保你拥有自己的加密密钥

上述所有考虑因素的关键是 “人机交互” 方法,该方法可确保生成式人工智能输出经过人类交叉检查是否存在错误信息,特别是考虑到生成式人工智能产生幻觉的可能性。

使用检索增强生成(RAG)来使得模型着地

IDC 指出,全球 36% 的政府领导人担心生成式人工智能使用的准确性或潜在毒性(偏差、输出中的幻觉)。 为了确保生成式 AI 输出尽可能准确和及时,IDC 和 Elastic® 都建议使用检索增强生成 (retrieval augmented generation - RAG)。 RAG 是一种自然语言处理技术,使组织能够将自己的专有数据与生成式人工智能结合使用,以提高内容输出的质量。 通过利用你自己的特定领域数据,RAG 为生成式 AI 搜索查询提供相关的内部上下文,从而提高了准确性并减少了幻觉,为 LLM 奠定了基础。

RAG 与 Elastic 如何使公共部门受益

  • 基于事实:使用 Elastic 中的同步数据获得准确、最新的特定于任务的结果,这些结果通过上下文窗口传递到生成式 AI 模型。
  • 实现卓越相关性的灵活性:将你自己的 transformer 模型引入 Elastic,与第三方模型集成,或使用 Elastic 的 Learned Sparse EncodeR (ELSER)。
  • 隐私和安全:应用 Elastic 对聊天和问答应用程序基于角色的访问控制的本机支持。
  • 成本效益:使用较小的 LLMs,与微调或依赖基于 LLM 的知识相比,推理成本降低了两个数量级。

聆听完整的线上炉边聊天 (fireside chat)

立即查看与 IDC 的整个对话。

本文中描述的任何特性或功能的发布和时间安排均由 Elastic 自行决定。 当前不可用的任何特性或功能可能无法按时交付或根本无法交付。

在这篇博文中,我们可能使用或引用了第三方生成人工智能工具,这些工具由其各自所有者拥有和运营。 Elastic 对第三方工具没有任何控制权,我们对其内容、操作或使用不承担任何责任,也不对你使用此类工具可能产生的任何损失或损害负责。 使用人工智能工具处理个人、敏感或机密信息时请务必谨慎。 你提交的任何数据都可能用于人工智能培训或其他目的。 无法保证你提供的信息将得到安全或保密。 在使用之前,你应该熟悉任何生成式人工智能工具的隐私惯例和使用条款。

Elastic、Elasticsearch、ESRE、Elasticsearch Relevance Engine 和相关标记是 Elasticsearch N.V. 在美国和其他国家/地区的商标、徽标或注册商标。 所有其他公司和产品名称均为其各自所有者的商标、徽标或注册商标。

原文:The future of generative AI in public sector | Elastic Blog

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1276672.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Python表白系列】一起去看流星雨吧!(完整代码)

文章目录 流星雨环境需求完整代码详细分析系列文章流星雨 环境需求 python3.11.4PyCharm Community Edition 2023.2.5pyinstaller6.2.0(可选,这个库用于打包,使程序没有python环境也可以运行,如果想发给好朋友的话需要这个库哦~)【注】 python环境搭建请见:https://want5…

在IDEA中,如何修改Jetty的端口号,操作超简单

在IDEA中的jetty配置中的VM options中填入:-Djetty.portxxxx 如下图:

VSC++: 双进制回文

缘由双进制回文数&#xff0c;一道C程序题&#xff0c;求解&#xff01;&#xff01;&#xff01;&#xff1f;_编程语言-CSDN问答 int 合成100回文(int 数) { int 合 0, 倒 数>10 && 数 < 100 ? 数 / 10 : 数;while (倒)合 * 10, 合 倒 % 10, 倒 / 10, (合…

HT71778 实时音频信号跟踪同步升压转换器的特性

HT71778是一款高功率、全集成升压转换器&#xff0c;集成16mΩ功率开关管和18mΩ同步整流管&#xff0c;为便携式系统提供G效的小尺寸处理方案。 HT71778 实时音频信号跟踪同步升压转换器的特性&#xff1a; ・实时音频信号跟踪的电源供电 SN 短接地, VIN 2.7~4.5V, VOUT 5…

时间复杂度为 O(n^2) 的排序算法 | 京东物流技术团队

对于小规模数据&#xff0c;我们可以选用时间复杂度为 O(n2) 的排序算法。因为时间复杂度并不代表实际代码的执行时间&#xff0c;它省去了低阶、系数和常数&#xff0c;仅代表的增长趋势&#xff0c;所以在小规模数据情况下&#xff0c; O(n2) 的排序算法可能会比 O(nlogn) 的…

数字化智慧工地管理云平台源码(人工智能、物联网)

​智慧工地优势&#xff1a;"智慧工地”将施工企业现场视频管理、建筑起重机械安全监控、现场从业人员管理、物料管理、进度管理、扬尘噪声监测等现场设备有机、高效、科学、规范的结合起来真正实现工程项目业务流与现场各类监控源数据流的有效结合与深度配合&#xff0c;…

【Node.js】笔记梳理 8 - API和JWT

写在最前&#xff1a;跟着视频学习只是为了在新手期快速入门。想要学习全面、进阶的知识&#xff0c;需要格外注重实战和官方技术文档&#xff0c;文档建议作为手册使用 系列文章 【Node.js】笔记整理 1 - 基础知识【Node.js】笔记整理 2 - 常用模块【Node.js】笔记整理 3 - n…

Hdoop学习笔记(HDP)-Part.15 安装HIVE

目录 Part.01 关于HDP Part.02 核心组件原理 Part.03 资源规划 Part.04 基础环境配置 Part.05 Yum源配置 Part.06 安装OracleJDK Part.07 安装MySQL Part.08 部署Ambari集群 Part.09 安装OpenLDAP Part.10 创建集群 Part.11 安装Kerberos Part.12 安装HDFS Part.13 安装Ranger …

Linux 系统是如何收发网络包的?(计算机网络)

一、Linux 网络协议栈 如下是TCP/IP四层网络模型&#xff0c;实际上Linux 网络协议栈与它相似 下图是Linux 网络协议栈 二、Linux 接收网络包的流程 1.网卡是计算机里的一个硬件&#xff0c;专门负责接收和发送网络包&#xff0c;当网卡接收到一个网络包后&#xff0c;会通过…

Leetcode 剑指 Offer II 055. 二叉搜索树迭代器

题目难度: 中等 原题链接 今天继续更新 Leetcode 的剑指 Offer&#xff08;专项突击版&#xff09;系列, 大家在公众号 算法精选 里回复 剑指offer2 就能看到该系列当前连载的所有文章了, 记得关注哦~ 题目描述 实现一个二叉搜索树迭代器类 BSTIterator &#xff0c;表示一个按…

华为云obs在java中的使用

1、申请obs服务。 申请完成后&#xff0c;会获得以下几个配置信息&#xff1a; AK"****************************"; SK"******************************************************"; ENDPOINT"obs.*************************"; BUCKET_NAME&q…

麻吉POS集成:如何无代码开发实现电商平台和CRM系统的高效连接

麻吉POS集成的前沿技术&#xff1a;无代码开发 在竞争激烈的电商市场中&#xff0c;商家们急需一种高效且易于操作的技术手段来实现系统间的快速连接与集成。麻吉POS以其前沿的无代码开发技术&#xff0c;让这一需求成为可能。无代码开发是一种允许用户通过图形用户界面进行编…

STDP突触设计(一)

最近看了很多的STDP的工作原理&#xff0c;比如 SNN系列&#xff5c;学习算法篇(6)脉冲时序依赖可塑性STDP_脉冲时间依赖可塑性-CSDN博客 Spike-Timing Dependent Plasticity - Scholarpedia 这两篇的介绍的代码非常的详细&#xff0c;我就不再赘述了 我设计的STDP的是基于…

了解 ignore_above 参数对 Elasticsearch 中磁盘使用的影响

在 Elasticsearch 中&#xff0c;ignore_above 参数允许你忽略&#xff08;而不是索引&#xff09;长于指定长度的字符串。 这对于限制字段的大小以避免性能问题很有用。 在本文中&#xff0c;我们将探讨 “ignore_above” 参数如何影响 Elasticsearch 中字段的大小&#xff0c…

力扣225-用队列实现栈

文章目录 力扣225-用队列实现栈示例代码实现总结收获 力扣225-用队列实现栈 示例 代码实现 class MyStack {Queue<Integer>queue1;Queue<Integer>queue2;public MyStack() {queue1new LinkedList<Integer>();queue2new LinkedList<Integer>();}public…

【C/PTA —— 13.指针2(课内实践)】

C/PTA —— 13.指针2&#xff08;课内实践&#xff09; 一.函数题6-1使用函数实现字符串部分复制6-2 拆分实数的整数部分和小数部分6-3 存在感 二.编程题7-1 单词反转 一.函数题 6-1使用函数实现字符串部分复制 void strmcpy(char* t, int m, char* s) {int len 0;char* ret …

基于瑞芯微rk3588+寒武纪 | 38TOPS INT8算力的AI边缘计算盒子,智能安防、智慧工地、智慧城管、智慧油站

边缘计算盒子 瑞芯微rk3588寒武纪 | 38TOPS INT8算力 ● 采用 Big-Little 大小核架构&#xff0c;搭载四核 A76四核 A55&#xff0c;CPU主频高达 2.4GHz &#xff0c;提供1MB L2 Cache 和 3MB L3 &#xff0c;Cache提供更强的 CPU 运算能力。 ● 高性能四核 Mali-G610 GPU&a…

Linux常用命令——awk命令

在线Linux命令查询工具 awk 文本和数据进行处理的编程语言 补充说明 awk是一种编程语言&#xff0c;用于在linux/unix下对文本和数据进行处理。数据可以来自标准输入(stdin)、一个或多个文件&#xff0c;或其它命令的输出。它支持用户自定义函数和动态正则表达式等先进功能…

leetcode刷题详解—— 环形子数组的最大和

1. 题目链接&#xff1a;918. 环形子数组的最大和 2. 题目描述&#xff1a; 给定一个长度为 n 的环形整数数组 nums &#xff0c;返回 nums 的非空 子数组 的最大可能和 。 环形数组 意味着数组的末端将会与开头相连呈环状。形式上&#xff0c; nums[i] 的下一个元素是 nums[(…

蓝桥杯第198题 人物相关性分析 C++ 模拟 字符串 双指针

题目 思路和解题方法 程序首先定义了一个函数check&#xff0c;用于判断一个字符是否为字母。接下来&#xff0c;程序读取输入的整数k和一行字符串str。定义了两个空的向量a和b&#xff0c;用于存储满足条件的子串的起始位置。使用for循环遍历字符串str的每个字符&#xff0c;检…