【隐私计算】VOLE (Vector Oblivious Linear Evaluation)学习笔记

news2025/1/12 4:47:46

近年来,VOLE(向量不经意线性评估)被用于构造各种高效安全多方计算协议,具有较低的通信复杂度。最近的CipherGPT则是基于VOLE对线性层进行计算。

1 VOLE总体设计

VOLE的功能如下,VOLE发送 Δ \Delta Δ b b b给sender,发送 a a a c c c给receiver,并且 c , a , b c, a, b c,a,b满足线性关系: c = Δ ⋅ a + b c=\Delta\cdot a + b c=Δa+b
在这里插入图片描述

现在主流的VOLE是基于LPN (Learning with Parity Noise)假设/问题来构造的。

2 基于LPN假设的VOLE构造

2.1 前置知识

1 LPN假设
LPN是一个重要的抗量子计算的困难问题。事实上,解决LPN问题等价于解决编码理论中的随机线性码纠错问题(Decoding a random linear code problem)。LPN的表述为:

  1. 随机生成矩阵 A A A
  2. 随机生成秘密(行)向量 s s s
  3. 随机生成错误(行)向量 e e e,满足 H W ( e ) = r ⋅ n HW(e)=r\cdot n HW(e)=rn,其中,参数 r r r是噪声比率
  4. 计算向量 b = s ⋅ A + e b=s\cdot A+e b=sA+e

则有 ( A , b ) ≈ c ( A ′ , b ′ ) (A, b)\approx _c(A^\prime, b^\prime) (A,b)c(A,b),其中, ( A ′ , b ′ ) (A^\prime, b^\prime) (A,b)是随机生成的。解决LPN问题即使是解决如下问题:给定 A , b A, b A,b,求解 s , e s, e s,e的值。
在密码实践中,为了保证具体的LPN参数设定是困难的,通常选取较大的 k k k,较大的 n n n以及较小的 r r r

2 函数秘密分享(Functional Secret Sharing, FSS)
FSS它允许计算 P 0 , P 1 P_0, P_1 P0,P1合作计算某个函数 f f f在某个点上的估值 f ( x ) f(x) f(x)。计算完成后, P 0 P_0 P0得到一份share为 f 0 ( x ) f_0(x) f0(x) P 1 P_1 P1得到另一份share为 f 1 ( x ) f_1(x) f1(x),满足 f ( x ) f = f 0 ( x ) + f 1 ( x ) f(x)f=f_0(x)+f_1(x) f(x)f=f0(x)+f1(x),其中, f 0 ( x ) , f 1 ( x ) f_0(x), f_1(x) f0(x),f1(x)是伪随机的。
FSS形式化定义如下:
给定函数 f f f,FSS定义了一对算法 ( G e n , E v a l ) (Gen, Eval) (Gen,Eval)

  • F S S . G e n ( 1 λ , f ) FSS.Gen(1^\lambda, f) FSS.Gen(1λ,f):给定安全参数 λ \lambda λ和函数 f f f,生成一对密钥 ( K 0 , K 1 ) (K_0, K_1) (K0,K1)
  • F S S . E v a l ( b , K b , x ) FSS.Eval(b, K_b, x) FSS.Eval(b,Kb,x):给定参与方索引 b ∈ { 0 , 1 } b\in \{0, 1\} b{0,1},密钥 K b K_b Kb和函数输入 x x x,输出 f b ∈ G f_b\in \mathbb G fbG G \mathbb G G表示群)

由此可见,在FSS过程中,涉及到AES对称加密。

3 VOLE生成器
VOLE定义了两个算法,即 V O L E = ( S e t u p , E x p a n d ) VOLE=(Setup, Expand) VOLE=(Setup,Expand)

  • S e t u p ( 1 λ , F , n , x ) Setup(1^\lambda, \mathbb F, n, x) Setup(1λ,F,n,x):输出一对种子 ( s e e d 0 , s e e d 1 ) (seed_0, seed_1) (seed0,seed1),其中, s e e d 1 seed_1 seed1包含输入 x x x
  • E x p a n d ( σ , s e e d σ ) Expand(\sigma, seed_\sigma) Expand(σ,seedσ):如 σ = 0 \sigma=0 σ=0,输出 ( u , v ) (u, v) (u,v);如 σ = 1 \sigma=1 σ=1,输出 w w w

于是VOLE满足以下正确性:
( u , v ) ← E x p a n d ( 0 , s e e d 0 ) , w ← E x p a n d ( 1 , s e e d 1 ) (u, v)\leftarrow Expand(0, seed_0), w\leftarrow Expand(1, seed_1) (u,v)Expand(0,seed0),wExpand(1,seed1),满足 w = u ⋅ x + v w=u\cdot x+v w=ux+v

2.2 VOLE的构造方法

现在介绍如何定义Setup和Expand算法,直觉就是在Setup中分配给 P 0 , P 1 P_0, P_1 P0,P1的种子 s e e d 0 , s e e d 1 seed_0, seed_1 seed0,seed1就具有某种线性关系,同时在Expand时仍保持这种线性关系。

尝试1
Setup构造如下:
s e e d 0 ← ( a , b ) ∈ R F k × F k , s e e d 1 ← ( c = a ⋅ x + b , x ) ∈ F k × F seed_0\leftarrow(a, b)\in _R\mathbb F^k\times \mathbb F^k, seed_1\leftarrow (c=a\cdot x+b, x)\in \mathbb F^k\times \mathbb F seed0(a,b)RFk×Fk,seed1(c=ax+b,x)Fk×F
其中 ( a , b ) (a, b) (a,b)是随机生成的,因此 c c c也是随机的。
Expand构造如下:
随机生成一个矩阵 C ∈ F k × n ( k < n ) C\in \mathbb F^{k\times n}(k<n) CFk×n(k<n),并将 C C C作为公开参数发布出去,然后计算:
E x p a n d ( 0 , s e e d 0 ) = ( a ⋅ C , b ⋅ C ) , E x p a n d ( 1 , s e e d 1 ) = c ⋅ C Expand(0, seed_0)=(a\cdot C, b\cdot C), Expand(1, seed_1)=c\cdot C Expand(0,seed0)=(aC,bC),Expand(1,seed1)=cC
由此可见,Expand保持了 a , b , c a, b, c a,b,c的线性关系,并把种子的长度从 k k k扩展到了 n n n

尝试2
但是上面的构造方式并非伪随机【这里我不是很理解】,借助LPN假设来解决这个问题,Expand构造如下:
E x p a n d ( 0 , s e e d 0 ) = ( a ⋅ C + μ , b ⋅ C − ν b ) , E x p a n d ( 1 , s e e d 1 ) = c ⋅ C + ν c Expand(0, seed_0)=(a\cdot C+\mu, b\cdot C-\nu_b), Expand(1, seed_1)=c\cdot C+\nu_c Expand(0,seed0)=(aC+μ,bCνb),Expand(1,seed1)=cC+νc
根据LPN可知Expand算法的输出是伪随机的【具体原因?】,但是线性关系难以满足,因为这里 ν c ≠ μ ⋅ x − ν b \nu_c \neq \mu\cdot x-\nu_b νc=μxνb,但是如果可以限制 ν c = μ ⋅ x − ν b \nu_c = \mu\cdot x-\nu_b νc=μxνb也就是 ν b + ν c = μ ⋅ x \nu_b+\nu_c = \mu\cdot x νb+νc=μx,线性关系就维持住了。幸运的事,依靠FSS可以生成伪随机 ν b , ν c \nu_b, \nu_c νb,νc满足这个关系。

正式构造
假设LPN假设中公开参数为 F , k , n , t = r n , C ∈ F k × n \mathbb F, k, n, t=rn, C\in \mathbb F^{k\times n} F,k,n,t=rn,CFk×n,则VOLE生成器 G G G可以定义为:
S e t u p ( 1 λ , x ) Setup(1^\lambda, x) Setup(1λ,x)

  1. 随机生成 ( a , b ) ∈ F k × F k (a, b)\in \mathbb F^k \times \mathbb F^k (a,b)Fk×Fk,随机生成 μ ∈ F n \mu\in \mathbb F^n μFn,满足 H W ( μ ) = t HW(\mu)=t HW(μ)=t
  2. 计算 c = a ⋅ x + b c=a\cdot x + b c=ax+b
  3. ( K 0 , K 1 ) ← F S S . G e n ( 1 λ , f ) (K_0, K_1)\leftarrow FSS.Gen(1^\lambda, f) (K0,K1)FSS.Gen(1λ,f),满足 F S S . E v a l ( 0 , K 0 ) + F S S . E v a l ( 1 , K 1 ) = x ⋅ μ FSS.Eval(0, K_0)+FSS.Eval(1, K_1)=x\cdot \mu FSS.Eval(0,K0)+FSS.Eval(1,K1)=xμ
  4. s e e d 0 ← ( K 0 , μ , a , b ) , s e e d 1 ← ( K 1 , x , c ) seed_0\leftarrow (K_0, \mu, a, b), seed_1\leftarrow (K_1, x, c) seed0(K0,μ,a,b),seed1(K1,x,c)
  5. 输出 s e e d 0 , s e e d 1 seed_0, seed_1 seed0,seed1

E x p a n d ( σ , s e e d σ ) Expand(\sigma, seed_\sigma) Expand(σ,seedσ)

  1. σ = 0 \sigma=0 σ=0 s e e d 0 = ( K 0 , μ , a , b ) seed_0=(K_0, \mu, a, b) seed0=(K0,μ,a,b),计算 ν 0 ← F S S . E v a l ( 0 , K 0 ) \nu_0\leftarrow FSS.Eval(0, K_0) ν0FSS.Eval(0,K0),输出 ( u , v ) ← ( a ⋅ C + μ , b ⋅ C − ν 0 ) (u, v)\leftarrow (a\cdot C+\mu, b\cdot C-\nu_0) (u,v)(aC+μ,bCν0)。即,尝试2中的 E x p a n d ( 0 , s e e d 0 ) = ( a ⋅ C + μ , b ⋅ C − ν 0 ) Expand(0, seed_0)=(a\cdot C+\mu, b\cdot C-\nu_0) Expand(0,seed0)=(aC+μ,bCν0)
  2. σ = 1 \sigma=1 σ=1 s e e d 1 = ( K 1 , x , c ) seed_1=(K_1, x, c) seed1=(K1,x,c),计算 ν 1 ← F S S . E v a l ( 1 , K 1 ) \nu_1\leftarrow FSS.Eval(1, K_1) ν1FSS.Eval(1,K1),输出 w ← c ⋅ C + ν 1 w\leftarrow c\cdot C+\nu_1 wcC+ν1。即,尝试2中的 E x p a n d ( 1 , s e e d 1 ) = c ⋅ C + ν 1 Expand(1, seed_1)=c\cdot C+\nu_1 Expand(1,seed1)=cC+ν1

值得注意的是, ν 0 , ν 1 \nu_0, \nu_1 ν0,ν1的生成基于FSS,在Setup中满足 F S S . E v a l ( 0 , K 0 ) + F S S . E v a l ( 1 , K 1 ) = x ⋅ μ FSS.Eval(0, K_0)+FSS.Eval(1, K_1)=x\cdot \mu FSS.Eval(0,K0)+FSS.Eval(1,K1)=xμ,因此很容易得到: ν 0 + ν 1 = x ⋅ μ \nu_0+\nu_1=x\cdot \mu ν0+ν1=xμ,故现在的构造方法符合LPN伪随机性,并且满足线性关系。

3 VOLE在MPC乘法中的应用

在MPC中,安全加法很容易进行,只需在本地做加法即可。而乘法则是困难的,需要双方进行通信实现。
现在考虑乘法 z = x y z=xy z=xy,其中, x x x P 0 P_0 P0方, y y y P 1 P_1 P1方,双方需要联合计算乘法结果。在算术秘密分享机制下,双方将自己的输入进行拆分,因此计算如下:
x y = ( ⟨ x ⟩ 0 + ⟨ x ⟩ 1 ) ( ⟨ y ⟩ 0 + ⟨ y ⟩ 1 ) = ⟨ x ⟩ 0 ⟨ y ⟩ 0 + ⟨ x ⟩ 1 ⟨ y ⟩ 1 + ⟨ x ⟩ 0 ⟨ y ⟩ 1 + ⟨ x ⟩ 1 ⟨ y ⟩ 0 xy = (\langle x\rangle_0+\langle x\rangle_1)(\langle y\rangle_0+\langle y\rangle_1)=\langle x\rangle_0\langle y\rangle_0+\langle x\rangle_1\langle y\rangle_1+\langle x\rangle_0\langle y\rangle_1+\langle x\rangle_1\langle y\rangle_0 xy=(⟨x0+x1)(⟨y0+y1)=x0y0+x1y1+x0y1+x1y0
其中,前两项均可以在本地计算,而后两项(交叉项,CrossTerm)是MPC计算的重难点。
⟨ x ⟩ 0 ⟨ y ⟩ 1 \langle x\rangle_0\langle y\rangle_1 x0y1为例,借助VOLE,让 P 0 P_0 P0计算出 v v v【即上面Expand中的 v = b ⋅ C − ν 0 v=b\cdot C-\nu_0 v=bCν0】, 让 P 1 P_1 P1计算出 w w w【即上面Expand中的 w = c ⋅ C + ν 1 w=c\cdot C+\nu_1 w=cC+ν1】,满足 ⟨ x ⟩ 0 ⟨ y ⟩ 1 = w − v \langle x\rangle_0\langle y\rangle_1=w-v x0y1=wv w − v = ν 0 + ν 1 + c ⋅ C − b ⋅ C = u ⋅ x + c ⋅ C − b ⋅ C w-v=\nu_0+\nu_1+c\cdot C-b\cdot C=u\cdot x+c\cdot C-b\cdot C wv=ν0+ν1+cCbC=ux+cCbC,其中 C C C公开, b ⋅ C , c ⋅ C b\cdot C, c\cdot C bC,cC分别在两方计算出来,是明文了,因此 w − v w-v wv的结果也可算】,即可解决交叉项的计算问题。

4 基于VOLE生成器构造VOLE

VOLE生成器本质是一种伪随机数生成器,生成的两串伪随机数恰好是线性相关的。
预计算生成随机种子

  1. 可信第三方(TTP)随机生成 r x ∈ F r_x\in \mathbb F rxF
  2. 调用VOLE生成器 G G G,计算 ( s e e d 0 , s e e d 1 ) ← S e t u p ( 1 λ , r ) (seed_0, seed_1)\leftarrow Setup(1^\lambda, r) (seed0,seed1)Setup(1λ,r)
  3. s e e d 0 seed_0 seed0发给 P 0 P_0 P0,将 ( r x , s e e d 1 ) (r_x, seed_1) (rx,seed1)发给 P 1 P_1 P1

预计算生成 ( r u , r v , r w ) (r_u, r_v, r_w) (ru,rv,rw)

  1. P 0 P_0 P0计算 ( r u , r v ) ← E x p a n d ( 0 , s e e d 0 ) (r_u, r_v)\leftarrow Expand(0, seed_0) (ru,rv)Expand(0,seed0)
  2. P 1 P_1 P1计算 r w ← E x p a n d ( 1 , s e e d 1 ) r_w\leftarrow Expand(1, seed_1) rwExpand(1,seed1)

在线计算
现在 P 0 P_0 P0拥有 ( u , v ) (u, v) (u,v) P 1 P_1 P1拥有 x x x【于是,我们又回到了最开头那幅图】
在这里插入图片描述

  1. P 1 P_1 P1计算 m x ← x − r x m_x\leftarrow x-r_x mxxrx,并将 m x m_x mx发给 P 0 P_0 P0
  2. P 0 P_0 P0计算 m u ← u − r u , m v ← m x r u + v − r v m_u\leftarrow u-r_u, m_v\leftarrow m_xr_u+v-r_v muuru,mvmxru+vrv,并发给 P 1 P_1 P1
  3. P 1 P_1 P1计算 w ← m u x + m v + r w w\leftarrow m_ux+m_v+r_w wmux+mv+rw

正确性
预计算阶段得到的随机向量满足 r w = r u ⋅ r x + r v r_w=r_u\cdot r_x+r_v rw=rurx+rv,于是 P 1 P_1 P1方:
w = m u x + m v + r w      = ( u − r u ) x + ( m x r u + v − r v ) + ( r u ⋅ r x + r v )      = ( u − r u ) x + ( ( x − r x ) r u + v − r v ) + ( r u ⋅ r x + r v )      = u x − r u x + r u x − r u r x + v − r v + r u r x + r v      = u x + v w=m_ux+m_v+r_w\\~~~~=(u-r_u)x+(m_xr_u+v-r_v)+(r_u\cdot r_x+r_v)\\~~~~=(u-r_u)x+((x-r_x)r_u+v-r_v)+(r_u\cdot r_x+r_v)\\~~~~=ux-r_ux+r_ux-r_ur_x+v-r_v+r_ur_x+r_v\\~~~~=ux+v w=mux+mv+rw    =(uru)x+(mxru+vrv)+(rurx+rv)    =(uru)x+((xrx)ru+vrv)+(rurx+rv)    =uxrux+ruxrurx+vrv+rurx+rv    =ux+v

这个形式和图中的 c = Δ ⋅ a + b c=\Delta\cdot a+b c=Δa+b完全一致。由此可见,至此我们已经成功构造出VOLE的线性表达式。

参考资料

基于LPN假设构造VOLE

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1272786.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

王者小游戏

游戏里的经验动物 Bear package beast; import sxt.GameFrame; public class Bear extends Beast {public Bear(int x, int y, GameFrame gameFrame) {super(x, y, gameFrame);setImg("C:\\Users\\辛欣\\OneDrive\\桌面\\王者荣耀图片(1)\\王者荣耀图片\\beast\\bear.jp…

从物理机到K8S:应用系统部署方式的演进及其影响

公众号「架构成长指南」&#xff0c;专注于生产实践、云原生、分布式系统、大数据技术分享。 概述 随着科技的进步&#xff0c;软件系统的部署架构也在不断演进&#xff0c;从以前传统的物理机到虚拟机、Docker和Kubernetes&#xff0c;我们经历了一系列变化。 这些技术的引入…

liunx java 生成图片 中文显示不出来

使用java 生成图片,在图片上打的文字水印显示为一个方框,这种情况的原因,一般是liunx系统或者docker容器内,没有你在打文字水印时选择的字体 解决办法,先找一个免费的字体,比如 Alibaba-PuHuiTi-Regular.otf 然后使用字体 File newFileT new File("Alibaba-PuHuiTi-Re…

OSPF的8种状态机总结,小白必看!

OSPF概述 在OSPF网络中&#xff0c;为了交换路由信息&#xff0c;邻居设备之间首先要建立邻接关系&#xff0c;邻居&#xff08;Neighbors&#xff09;关系和邻接&#xff08;Adjacencies&#xff09;关系是两个不同的概念。 邻居关系 OSPF设备启动后&#xff0c;会通过OSPF…

Python streamlit指南,构建令人惊叹的可视化Web界面!

更多资料获取 &#x1f4da; 个人网站&#xff1a;ipengtao.com 在当今数据驱动的世界中&#xff0c;构建交互式、美观且高效的数据可视化应用变得至关重要。而Streamlit&#xff0c;作为Python生态系统中为开发者提供了轻松创建Web应用的利器。 本文将深入探讨Streamlit的方…

Android Studio Giraffe版本遇到的问题

背景 上周固态硬盘挂了&#xff0c;恢复数据之后&#xff0c;重新换了新的固态安装了Win11系统&#xff0c;之前安装的是Android Studio 4.x的版本&#xff0c;这次也是趁着新的系统安装新的Android开发工具。 版本如下&#xff1a; 但是打开以前的Android旧项目时&#xff…

Informer辅助笔记:data/dataloader.py

以WTH为例 import os import numpy as np import pandas as pdimport torch from torch.utils.data import Dataset, DataLoader # from sklearn.preprocessing import StandardScalerfrom utils.tools import StandardScaler from utils.timefeatures import time_featuresim…

动态:class和:style绑定

1. 在应用界面中, 某个(些)元素的样式是变化的 class/style绑定就是专门用来实现动态样式效果的技术 2. 动态class绑定 :class等号后的变量值 可以是字符串 :class等号后 可以是对象 :class等号后 可以是数组 3. 动态style绑定 :style"{ color: myPinkColor, fontS…

功能测试换工作不被认可?那你缺少这5点建议

&#x1f4e2;专注于分享软件测试干货内容&#xff0c;欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; 如有错误敬请指正&#xff01;&#x1f4e2;交流讨论&#xff1a;欢迎加入我们一起学习&#xff01;&#x1f4e2;资源分享&#xff1a;耗时200小时精选的「软件测试」资…

asla四大开源组件应用示例(alsa-lib、alsa-utils、alsa-tools、alsa-plugins)

文章目录 alsa设备文件/dev/snd//sys/class/sound/proc/asoundalsa-lib示例1alsa-utilsalsa-toolsalsa-plugins参考alsa设备文件 /dev/snd/ alsa设备文件目录位于,/dev/snd,如下所示 root@xboard:~#ls /dev/snd -l total 0 drwxr-xr-x 2 root root 60 Nov 6 2023 …

速达软件全系产品 RCE漏洞复现

0x01 产品简介 速达软件是中小企业管理软件第一品牌和行业领导者,是128万家企业用户忠实的选择。14年来速达致力于进销存软件、ERP软件、财务软件、CRM软件等管理软件的研发和服务。 0x02 漏洞概述 速达软件全系产品存在任意文件上传漏洞&#xff0c;未经身份认证得攻击者可以…

flask web开发学习之初识flask(二)

文章目录 一、创建程序实例并注册路由1. 为视图绑定绑定多个URL2. 动态URL 二、启动开发服务器1. 自动发现程序实例2. 管理环境变量3. 使用pycharm运行服务器4. 更多的启动选项5. 设置运行环境6. 调试器7. 重载器 一、创建程序实例并注册路由 app.py # 从flask包中导入flask类…

selenium元素定位方法之xpath

什么是xpath&#xff1f; XPath是XML的路径语言&#xff0c;通俗一点讲就是通过元素的路径来查找到这个标签元素XPath使用路径表达式在XML文档中进行导航 普通语法 注意&#xff01; 1.xpath中的值用引号引起来时&#xff0c;在代码中要注意区分&#xff0c;内单外双&#xf…

Pandas教程07:DataFrame数据中apply参数自定义运算的用法

DataFrame.apply()方法主要用于调用每个Series的函数。此函数可以是一个Python的函数&#xff0c;或者是lambda函数。此函数可以接收一个函数作为输入&#xff0c;并应用于DataFrame的每一列。 以下是一些DataFrame.apply()的示例用法&#xff1a; # Author : 小红牛 # 微信公…

深度解析 Spring Security 自定义异常失效问题:源码剖析与解决方案

&#x1f680; 作者主页&#xff1a; 有来技术 &#x1f525; 开源项目&#xff1a; youlai-mall &#x1f343; vue3-element-admin &#x1f343; youlai-boot &#x1f33a; 仓库主页&#xff1a; Gitee &#x1f4ab; Github &#x1f4ab; GitCode &#x1f496; 欢迎点赞…

【docker系列】docker实战之部署SpringBoot项目

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

行行AI董事长李明顺:今天每个人都可以成为AI应用的创业者

“ AI创业的核心在于真正介入到应用层面&#xff0c;AI应该成为真正的应用支撑。 ” 整理 | 王娴 编辑 | 云舒 出品&#xff5c;极新 2023年11月28日&#xff0c;极新AIGC行业峰会在北京东升国际科学园顺利召开&#xff0c;行行AI董事长李明顺先生在会上做了题为《从大模型…

如何做好前端单元测试?字节5年测试老司机是这样说的!

近几年&#xff0c;前端发展越来越迅猛&#xff0c;各类框架层出不穷&#xff0c;前端实现的业务逻辑也越来越复杂&#xff0c;前端单元测试也越来越受重视&#xff0c;包括百度在内的一些大厂在面试中也会问到单元测试相关的题目。那么前端应该如何做好单元测试&#xff1f; 什…

写给步入三十的自己,2023年终总结!

前言 古语有云: “二十而立&#xff0c;三十而肆”&#xff0c;而我在二十岁这些年已经有一定的责任感和独立思考了&#xff0c;但是还未步入三十&#xff0c;所以为了之后有一定的胆识和能力&#xff0c;我在今年做了目前能做的准备。 今年已做事件 工作相关 1.拿到了PMP证书…

2023年大数据场景智能运维实践总结

作者&#xff1a;放纵 引言 在当今数字化世界中&#xff0c;如何充分挖掘和发挥数据价值已经成为了企业成功的关键因素&#xff0c;大数据也成为企业决策和运营的重要驱动力。在《当我们在谈论DataOps时&#xff0c;我们到底在谈论什么》一文中也提到&#xff0c;企业在面对到…