单张图像3D重建:原理与PyTorch实现

news2024/11/14 3:42:46

近年来,深度学习(DL)在解决图像分类、目标检测、语义分割等 2D 图像任务方面表现出了出色的能力。DL 也不例外,在将其应用于 3D 图形问题方面也取得了巨大进展。 在这篇文章中,我们将探讨最近将深度学习扩展到单图像 3D 重建任务的尝试,这是 3D 计算机图形领域最重要和最深刻的挑战之一。

 在线工具推荐: Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 可编程3D场景编辑器

1、单图像3D重建任务

单个图像只是 3D 对象到 2D 平面的投影,来自高维空间的一些数据必然在低维表示中丢失。 因此,从单视图 2D 图像来看,永远不会有足够的数据来构造其 3D 组件。

因此,从单个 2D 图像创建 3D 感知的方法需要先了解 3D 形状本身。

在 2D 深度学习中,卷积自动编码器是学习输入图像的压缩表示的非常有效的方法。 将这种架构扩展到学习紧凑的形状知识是将深度学习应用于 3D 数据的最有前途的方法。

2、3D 数据的表示

与只有一种计算机格式(像素)通用表示形式的 2D 图像不同,有多种方法可以用数字格式表示 3D 数据。 它们各有优缺点,因此数据表示的选择直接影响可以使用的方法。

2.1 光栅化形式(体素网格)

光栅法表示的3D模型可以直接应用CNN。

每个蓝色框都是一个体素,大部分体素是空的。

体素(voxel)是体积像素的缩写,是空间网格像素到体积网格体素的直接扩展。 每个体素的局部性共同定义了该体积数据的独特结构,因此 ConvNet 的局部性假设在体积格式中仍然成立。

体素表示的密度低


然而,这种表示是稀疏且浪费的。 有用体素的密度随着分辨率的增加而降低。

  • 优点:可以直接应用CNN从2D到3D表示。
  • 缺点:浪费表示,细节和资源(计算、内存)之间的高度权衡。

2.2 几何形式

几何形式表达的3D模型不能直接应用CNN。

  • 多边形网格:是顶点、边和面的集合,定义了物体的 3 维表面。 它可以以相当紧凑的表示形式捕获粒度细节。
  • 点云:3D 坐标 (x, y, z) 中的点的集合,这些点一起形成类似于 3 维物体形状的云。 点的集合越大,获得的细节就越多。 不同顺序的同一组点仍然表示相同的 3D 对象。例如:
# point_cloud1 and point_cloud2 represent the same 3D structure
# even though they are represented differently in memory
point_cloud1 = [(x1, y1, z1), (x2, y2, z2),..., (xn, yn, zn)]
point_cloud2 = [(x2, y2, z2), (x1, y1, z1),..., (xn, yn, zn)]

几何表示法的优缺点如下:

  • 优点:表现紧凑,注重3D物体的细节表面。
  • 缺点:不能直接应用CNN。

3、我们的实现方法

我们将展示一种结合了点云紧凑表示的优点但使用传统的 2D ConvNet 来学习先验形状知识的实现。

3.1 2D 结构生成器

我们将构建一个标准的 2D CNN 结构生成器,用于学习对象的先验形状知识。

体素方法并不受欢迎,因为它效率低下,而且不可能直接用 CNN 学习点云。 因此,我们将学习从单个图像到点云的多个 2D 投影的映射,视点处的 2D 投影定义为: 2D projection == 3D coordinates (x,y,z) + binary mask (m) 。

  • 输入:单个 RGB 图像
  • 输出:预定视点的 2D 投影

代码如下:

#--------- Pytorch pseudo-code for Structure Generator ---------#
class Structure_Generator(nn.Module):
    # contains two module in sequence, an encoder and a decoder
    def __init__(self):
        self.encoder = Encoder()
        self.decoder = Decoder()
    def forward(self, RGB_image):
        # Encoder takes in one RGB image and 
        # output an encoded deep shape-embedding
        shape_embedding = self.encoder(RGB_image)
        
        # Decoder takes the encoded values and output  
        # multiples 2D projection (XYZ + mask)
        XYZ, maskLogit = self.decoder(shape_embedding)
 
       return XYZ, maskLogit

3.2 点云融合

将预测的 2D 投影融合到原生 3D 点云数据中。 这是可能的,因为这些预测的观点是固定的并且是预先已知的。

  • 输入:预定视点的 2D 投影。
  • 输出:点云

3.3 伪渲染器

我们推断,如果从预测的 2D 投影融合的点云有任何好处,那么如果我们从新的视点渲染不同的 2D 投影,它也应该类似于地面实况 3D 模型的投影。

  • 输入:点云
  • 输出:新视点的深度图像

3.4 训练动态

将这 3 个模块组合在一起,我们获得了端到端模型,该模型学习仅使用 2D 卷积结构生成器从一张 2D 图像生成紧凑的点云表示。

由 2D 卷积结构生成器、点云融合和伪渲染模块组成的完整架构

这个模型的巧妙技巧是让融合+伪渲染模块纯粹可微,几何推理:

  • 几何代数意味着没有可学习的参数,使模型尺寸更小并且更容易训练。
  • 可微分意味着我们可以通过它反向传播梯度,从而可以使用 2D 投影的损失来学习生成 3D 点云。

代码如下:

# --------- Pytorch pseudo-code for training loop ----------#
# Create 2D Conv Structure generator
model = Structure_Generator()
# only need to learn the 2D structure optimizer
optimizer = optim.SGD(model.parameters())
# 2D projections from predetermined viewpoints
XYZ, maskLogit = model(RGB_images)
# fused point cloud
#fuseTrans is predetermined viewpoints info
XYZid, ML = fuse3D(XYZ, maskLogit, fuseTrans)
# Render new depth images at novel viewpoints
# renderTrans is novel viewpoints info
newDepth, newMaskLogit, collision = render2D(XYZid, ML, renderTrans)
# Compute loss between novel view and ground truth
loss_depth = L1Loss()(newDepth, GTDepth)
loss_mask = BCEWithLogitLoss()(newMaskLogit, GTMask)
loss_total = loss_depth + loss_mask
# Back-propagation to update Structure Generator
loss_total.backward()
optimizer.step()

3.5 实验结果

来自地面实况 3D 模型的新深度图像与来自学习点云模型的渲染深度图像的比较:

从一张 RBG 图像 → 3D 点云:

有了详细的点云表示,就可以使用 MeshLab 将其转换为其他表示,例如与 3D 打印机兼容的体素或多边形网格。


原文链接:单图像3D重建原理实现 - BimAnt

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1228493.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

CICD 持续集成与持续交付——git

git使用 [rootcicd1 ~]# yum install -y git[rootcicd1 ~]# mkdir demo[rootcicd1 ~]# cd demo/ 初始化版本库 [rootcicd1 demo]# git init 查看状态 [rootcicd1 demo]# git status[rootcicd1 demo]# git status -s #简化输出 [rootcicd1 demo]# echo test > README.md[roo…

计算机毕业设计选题推荐-内蒙古旅游微信小程序/安卓APP-项目实战

✨作者主页:IT研究室✨ 个人简介:曾从事计算机专业培训教学,擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Python…

控制您的音乐、视频等媒体内容

跨多个 Chrome 标签页播放音乐或声音 在计算机上打开 Chrome 。在标签页中播放音乐、视频或其他任何有声内容。您可以停留在该标签页上,也可以转到别处。要控制声音,请在右上角点击“媒体控件”图标 。您可暂停播放、转到下一首歌曲/下一个视频&#xf…

六大排序(插入排序、希尔排序、冒泡排序、选择排序、堆排序、快速排序)未完

文章目录 排序一、 排序的概念1.排序:2.稳定性:3.内部排序:4.外部排序: 二、插入排序1.直接插入排序2.希尔排序 三、选择排序1.直接选择排序方法一方法二直接插入排序和直接排序的区别 2.堆排序 四、交换排序1.冒泡排序2.快速排序…

机器视觉系统中的工业镜头的参数

光学倍率 β 焦距 f F值(光圈)Fno. 数值孔径 NA 工作距离 WD 视场(视场角,视野) 景深DOF 分辨率、分辨力 MTF 畸变

深入理解注意力机制(上)-起源

一、介绍 近几年自然语言处理有很大的进展,从 2018 年 Google 推出的 BERT,到后来的 GPT、ChatGPT 等,这些模型当时能取得这样的成果,除了庞大的数据量及损害资源外,最重要的是的就是背后的Transformer模型&#xff0c…

电子学会C/C++编程等级考试2022年03月(一级)真题解析

C/C++等级考试(1~8级)全部真题・点这里 第1题:双精度浮点数的输入输出 输入一个双精度浮点数,保留8位小数,输出这个浮点数。 时间限制:1000 内存限制:65536输入 只有一行,一个双精度浮点数。输出 一行,保留8位小数的浮点数。样例输入 3.1415926535798932样例输出 3.1…

莹莹API管理系统源码附带两套模板

这是一个API后台管理系统的源码,可以自定义添加接口,并自带两个模板。 环境要求 PHP版本要求高于5.6且低于8.0,已测试通过的版本为7.4。 需要安装PHPSG11加密扩展。 已测试:宝塔/主机亲测成功搭建! 安装说明 &am…

算法——动态规划(新)

什么是动态规划? 动态规划算法的基本思想-求解步骤-基本要素和一些经典的动态规划问题【干货】-CSDN博客 一、三步问题 面试题 08.01. 三步问题 - 力扣(LeetCode) 思路 我们要知道,走楼梯,前三个阶梯步数已经知道&…

基于深度学习的恶意软件检测

恶意软件是指恶意软件犯罪者用来感染个人计算机或整个组织的网络的软件。 它利用目标系统漏洞,例如可以被劫持的合法软件(例如浏览器或 Web 应用程序插件)中的错误。 恶意软件渗透可能会造成灾难性的后果,包括数据被盗、勒索或网…

原理Redis-动态字符串SDS

动态字符串SDS Redis中保存的Key是字符串,value往往是字符串或者字符串的集合。可见字符串是Redis中最常用的一种数据结构。 不过Redis没有直接使用C语言中的字符串,因为C语言字符串存在很多问题: 获取字符串长度的需要通过运算非二进制安全…

【计算思维】蓝桥杯STEMA 科技素养考试真题及解析 4

1、下列哪个选项填到填到下图空缺处最合适 A、 B、 C、 D、 答案:D 2、按照如下图的规律摆放正方形,第 5 堆正方形的个数是 A、13 B、14 C、15 D、16 答案:D 3、从右面观察下面的立体图形,看到的是 A、 B、 C、 D、 答…

Jmeter做接口测试

1.Jmeter的安装以及环境变量的配置 Jmeter是基于java语法开发的接口测试以及性能测试的工具。 jdk:17 (最新的Jeknins,只能支持到17) jmeter:5.6 官网:http://jmeter.apache.org/download_jmeter.cgi 认识JMeter的目录&#xff1…

原理Redis-IntSet

IntSet IntSet是Redis中set集合的一种实现方式,基于整数数组来实现,并且具备长度可变、有序等特征。 结构如下: typedef struct intset {uint32_t encoding; /* 编码方式,支持存放16位、32位、64位整数*/uint32_t length; /* 元素…

基于Python+OpenCV+Tensorflow图像迁移的艺术图片生成系统

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。 文章目录 一项目简介 二、功能三、系统![请添加图片描述](https://img-blog.csdnimg.cn/dbda87069fc14c24b71c1eb4224dff05.png)四. 总结 一项目简介 基于PythonOpenCVTensorfl…

边缘计算是如何为元宇宙提供动力的?

构建元宇宙虚拟世界并不简单,也并不便宜,但是还是有许多大型公司正在转移大量资源来开发他们的元宇宙业务,当然大部分企业注意力都围绕着 VR 耳机、AR 眼镜、触觉手套和其他沉浸式虚拟现实体验所需的可穿戴硬件。虽然这种沉浸式的体验是最终结…

2023.11.17 关于 Spring Boot 日志文件

目录 日志文件作用 常见的日志框架说明 门面模式 日志的使用 日志的级别 六种级别 日志级别的设置 日志的持久化 使用 Lombok 输出日志 实现原理 普通打印和日志的区别 日志文件作用 记录 错误日志 和 警告日志(发现和定位问题)记录 用户登录…

web自动化测试的智能革命:AI如何推动软件质量保证的未来

首先这个标题不是我取的,是我喂了关键字让AI给取的,果然非常的标题党,让人印象深刻,另外题图也是AI自动生成的。 先简单回顾一下web自动化测试的一些发展阶段 QTP时代 很多年前QTP横空出世的时候,没有人会怀疑这种工…

【项目管理】中途接手的项目应对实用指南

导读:作为项目经理中途接手项目往往不可避免,为了保证项目成功需要项目经理额外考虑更多的因素和处理相关问题,也往往带来很大的挑战性。本文提供可应对借鉴的思路,在一定程度上可以作为最佳实践。 目录 1、首先、了解项目项目背…

python趣味编程-5分钟实现一个俄罗斯方块游戏(含源码、步骤讲解)

Python俄罗斯方块游戏是一款基于GUI的标题匹配益智游戏,非常容易理解和使用。说到游戏玩法,一切都和真实的一样。 用户必须管理俄罗斯方块的随机序列。在这个Python 俄罗斯方块游戏项目中,我将教您如何使用 Python 制作俄罗斯方块游戏。 Python 代码中的俄罗斯方块游戏:项目…