计算机毕设 深度学习 大数据 股票预测系统 - python lstm

news2024/11/20 13:20:36

文章目录

  • 0 前言
  • 1 课题意义
    • 1.1 股票预测主流方法
  • 2 什么是LSTM
    • 2.1 循环神经网络
    • 2.1 LSTM诞生
  • 2 如何用LSTM做股票预测
    • 2.1 算法构建流程
    • 2.2 部分代码
  • 3 实现效果
    • 3.1 数据
    • 3.2 预测结果
        • 项目运行展示
        • 开发环境
        • 数据获取
  • 最后


0 前言

🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。

为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的是

🚩 深度学习 大数据 股票预测系统

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

1 课题意义

利用神经网络模型如果能够提高对股票价格的预测精度,更好地掌握股票价格发展趋势,这对于投资者来说可以及时制定相应的发展策略,更好地应对未来发生的不确定性事件,对于个人来说可以降低投资风险,减少财产损失,实现高效投资,具有一定的实践价值。

1.1 股票预测主流方法

股票市场复杂、非线性的特点使我们难以捉摸其变化规律,目前有很多预测股票走势的论文和算法。

定量分析从精确的数据资料中获得股票发展的价值规律,通过建立模型利用数学语言对股市的发展情况做出解释与预测。

目前常用的定量分析方法有:

  • 传统时间序列预测模型
  • 马尔可夫链预测
  • 灰色系统理论预测
  • 遗传算法
  • 机器学习预测等方法

2 什么是LSTM

LSTM是长短期记忆网络(LSTM,Long Short-Term Memory),想要理解什么是LSTM,首先要了解什么是循环神经网络。

2.1 循环神经网络

对于传统的BP神经网络如深度前馈网络、卷积神经网络来说,同层及跨层之间的神经元是独立的,但实际应用中对于一些有上下联系的序列来说,如果能够学习到它们之间的相互关系,使网络能够对不同时刻的输入序列产生一定的联系,像生物的大脑一样有“记忆功能”,这样的话我们的模型也就会有更低的训练出错频率及更好的泛化能力。

JordanMI提出序列理论,描述了一种体现“并行分布式处理”的网络动态系统,适用于语音生成中的协同发音问题,并进行了相关仿真实验,ElmanJL认为连接主义模型中对时间如何表示是至关重要的,1990年他提出使用循环连接为网络提供动态内存,从相对简单的异或问题到探寻单词的语义特征,网络均学习到了有趣的内部表示,网络还将任务需求和内存需求结合在一起,由此形成了简单循环网络的基础框架。

循环神经网络(RNN)之间的神经元是相互连接的,不仅在层与层之间的神经元建立连接,而且每一层之间的神经元也建立了连接,隐藏层神经元的输入由当前输入和上一时刻隐藏层神经元的输出共同决定,每一时刻的隐藏层神经元记住了上一时刻隐藏层神经元的输出,相当于对网络增添了“记忆”功能。我们都知道在输入序列中不可避免会出现重复或相似的某些序列信息,我们希望RNN能够保留这些记忆信息便于再次调用,且RNN结构中不同时刻参数是共享的,这一优点便于网络在不同位置依旧能将该重复信息识别出来,这样一来模型的泛化能力自然有所上升。

RNN结构如下:

在这里插入图片描述

2.1 LSTM诞生

RNN在解决长序列问题时未能有良好的建模效果,存在长期依赖的弊端,对此HochreiterS等人对神经单元做出了改进,引入自循环使梯度信息得以长时间持续流动,即模型可以拥有长期记忆信息,且自循环权重可以根据前后信息进行调整并不是固定的。作为RNN的一种特殊结构,它可以根据前后输入情况决定历史信息的去留,增进的门控机制可以动态改变累积的时间尺度进而控制神经单元的信息流,这样神经网络便能够自己根据情况决定清除或保留旧的信息,不至于状态信息过长造成网络崩溃,这便是长短期记忆(LSTM)网络。随着信息不断流入,该模型每个神经元内部的遗忘门、输入门、输出门三个门控机制会对每一时刻的信息做出判断并及时进行调整更新,LSTM模型现已广泛应用于无约束手写识别、语音识别、机器翻译等领域。

在这里插入图片描述

2 如何用LSTM做股票预测

2.1 算法构建流程

在这里插入图片描述

2.2 部分代码

import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
import pandas as pd
import math

def LSTMtest(data):

    n1 = len(data[0]) - 1 #因为最后一位为label
    n2 = len(data)
    print(n1, n2)

    # 设置常量
    input_size = n1  # 输入神经元个数
    rnn_unit = 10    # LSTM单元(一层神经网络)中的中神经元的个数
    lstm_layers = 7  # LSTM单元个数
    output_size = 1  # 输出神经元个数(预测值)
    lr = 0.0006      # 学习率

    train_end_index = math.floor(n2*0.9)  # 向下取整
    print('train_end_index', train_end_index)
    # 前90%数据作为训练集,后10%作为测试集
    # 获取训练集
    # time_step 时间步,batch_size 每一批次训练多少个样例
    def get_train_data(batch_size=60, time_step=20, train_begin=0, train_end=train_end_index):
        batch_index = []
        data_train = data[train_begin:train_end]
        normalized_train_data = (data_train - np.mean(data_train, axis=0)) / np.std(data_train, axis=0)  # 标准化
        train_x, train_y = [], []  # 训练集
        for i in range(len(normalized_train_data) - time_step):
            if i % batch_size == 0:
                # 开始位置
                batch_index.append(i)
                # 一次取time_step行数据
            # x存储输入维度(不包括label) :X(最后一个不取)
            # 标准化(归一化)
            x = normalized_train_data[i:i + time_step, :n1]
            # y存储label
            y = normalized_train_data[i:i + time_step, n1, np.newaxis]
            # np.newaxis分别是在行或列上增加维度
            train_x.append(x.tolist())
            train_y.append(y.tolist())
        # 结束位置
        batch_index.append((len(normalized_train_data) - time_step))
        print('batch_index', batch_index)
        # print('train_x', train_x)
        # print('train_y', train_y)
        return batch_index, train_x, train_y

    # 获取测试集
    def get_test_data(time_step=20, test_begin=train_end_index+1):
        data_test = data[test_begin:]
        mean = np.mean(data_test, axis=0)
        std = np.std(data_test, axis=0)  # 矩阵标准差
        # 标准化(归一化)
        normalized_test_data = (data_test - np.mean(data_test, axis=0)) / np.std(data_test, axis=0)
        # " // "表示整数除法。有size个sample
        test_size = (len(normalized_test_data) + time_step - 1) // time_step
        print('test_size$$$$$$$$$$$$$$', test_size)
        test_x, test_y = [], []
        for i in range(test_size - 1):
            x = normalized_test_data[i * time_step:(i + 1) * time_step, :n1]
            y = normalized_test_data[i * time_step:(i + 1) * time_step, n1]
            test_x.append(x.tolist())
            test_y.extend(y)
        test_x.append((normalized_test_data[(i + 1) * time_step:, :n1]).tolist())
        test_y.extend((normalized_test_data[(i + 1) * time_step:, n1]).tolist())
        return mean, std, test_x, test_y

    # ——————————————————定义神经网络变量——————————————————
    # 输入层、输出层权重、偏置、dropout参数
    # 随机产生 w,b
    weights = {
        'in': tf.Variable(tf.random_normal([input_size, rnn_unit])),
        'out': tf.Variable(tf.random_normal([rnn_unit, 1]))
    }
    biases = {
        'in': tf.Variable(tf.constant(0.1, shape=[rnn_unit, ])),
        'out': tf.Variable(tf.constant(0.1, shape=[1, ]))
    }
    keep_prob = tf.placeholder(tf.float32, name='keep_prob')  # dropout 防止过拟合

    # ——————————————————定义神经网络——————————————————
    def lstmCell():
        # basicLstm单元
        # tf.nn.rnn_cell.BasicLSTMCell(self, num_units, forget_bias=1.0,
        # tate_is_tuple=True, activation=None, reuse=None, name=None) 
        # num_units:int类型,LSTM单元(一层神经网络)中的中神经元的个数,和前馈神经网络中隐含层神经元个数意思相同
        # forget_bias:float类型,偏置增加了忘记门。从CudnnLSTM训练的检查点(checkpoin)恢复时,必须手动设置为0.0。
        # state_is_tuple:如果为True,则接受和返回的状态是c_state和m_state的2-tuple;如果为False,则他们沿着列轴连接。后一种即将被弃用。
        # (LSTM会保留两个state,也就是主线的state(c_state),和分线的state(m_state),会包含在元组(tuple)里边
        # state_is_tuple=True就是判定生成的是否为一个元组)
        #   初始化的 c 和 a 都是zero_state 也就是都为list[]的zero,这是参数state_is_tuple的情况下
        #   初始state,全部为0,慢慢的累加记忆
        # activation:内部状态的激活函数。默认为tanh
        # reuse:布尔类型,描述是否在现有范围中重用变量。如果不为True,并且现有范围已经具有给定变量,则会引发错误。
        # name:String类型,层的名称。具有相同名称的层将共享权重,但为了避免错误,在这种情况下需要reuse=True.
        #

        basicLstm = tf.nn.rnn_cell.BasicLSTMCell(rnn_unit, forget_bias=1.0, state_is_tuple=True)
        # dropout 未使用
        drop = tf.nn.rnn_cell.DropoutWrapper(basicLstm, output_keep_prob=keep_prob)
        return basicLstm

   

    def lstm(X):  # 参数:输入网络批次数目
        batch_size = tf.shape(X)[0]
        time_step = tf.shape(X)[1]
        w_in = weights['in']
        b_in = biases['in']

        # 忘记门(输入门)
        # 因为要进行矩阵乘法,所以reshape
        # 需要将tensor转成2维进行计算
        input = tf.reshape(X, [-1, input_size])
        input_rnn = tf.matmul(input, w_in) + b_in
        # 将tensor转成3维,计算后的结果作为忘记门的输入
        input_rnn = tf.reshape(input_rnn, [-1, time_step, rnn_unit])
        print('input_rnn', input_rnn)
        # 更新门
        # 构建多层的lstm
        cell = tf.nn.rnn_cell.MultiRNNCell([lstmCell() for i in range(lstm_layers)])
        init_state = cell.zero_state(batch_size, dtype=tf.float32)

        # 输出门
        w_out = weights['out']
        b_out = biases['out']
        # output_rnn是最后一层每个step的输出,final_states是每一层的最后那个step的输出
        output_rnn, final_states = tf.nn.dynamic_rnn(cell, input_rnn, initial_state=init_state, dtype=tf.float32)
        output = tf.reshape(output_rnn, [-1, rnn_unit])
        # 输出值,同时作为下一层输入门的输入
        pred = tf.matmul(output, w_out) + b_out
        return pred, final_states

    # ————————————————训练模型————————————————————

    def train_lstm(batch_size=60, time_step=20, train_begin=0, train_end=train_end_index):
        # 于是就有了tf.placeholder,
        # 我们每次可以将 一个minibatch传入到x = tf.placeholder(tf.float32,[None,32])上,
        # 下一次传入的x都替换掉上一次传入的x,
        # 这样就对于所有传入的minibatch x就只会产生一个op,
        # 不会产生其他多余的op,进而减少了graph的开销。

        X = tf.placeholder(tf.float32, shape=[None, time_step, input_size])
        Y = tf.placeholder(tf.float32, shape=[None, time_step, output_size])
        batch_index, train_x, train_y = get_train_data(batch_size, time_step, train_begin, train_end)
        # 用tf.variable_scope来定义重复利用,LSTM会经常用到
        with tf.variable_scope("sec_lstm"):
            pred, state_ = lstm(X) # pred输出值,state_是每一层的最后那个step的输出
        print('pred,state_', pred, state_)

        # 损失函数
        # [-1]——列表从后往前数第一列,即pred为预测值,Y为真实值(Label)
        #tf.reduce_mean 函数用于计算张量tensor沿着指定的数轴(tensor的某一维度)上的的平均值
        loss = tf.reduce_mean(tf.square(tf.reshape(pred, [-1]) - tf.reshape(Y, [-1])))
        # 误差loss反向传播——均方误差损失
        # 本质上是带有动量项的RMSprop,它利用梯度的一阶矩估计和二阶矩估计动态调整每个参数的学习率。
        # Adam的优点主要在于经过偏置校正后,每一次迭代学习率都有个确定范围,使得参数比较平稳.
        train_op = tf.train.AdamOptimizer(lr).minimize(loss)
        saver = tf.train.Saver(tf.global_variables(), max_to_keep=15)

        with tf.Session() as sess:
            # 初始化
            sess.run(tf.global_variables_initializer())
            theloss = []
            # 迭代次数
            for i in range(200):
                for step in range(len(batch_index) - 1):
                    # sess.run(b, feed_dict = replace_dict)
                    state_, loss_ = sess.run([train_op, loss],
                                        feed_dict={X: train_x[batch_index[step]:batch_index[step + 1]],
                                                   Y: train_y[batch_index[step]:batch_index[step + 1]],
                                                   keep_prob: 0.5})
                                        #  使用feed_dict完成矩阵乘法 处理多输入
                                        #  feed_dict的作用是给使用placeholder创建出来的tensor赋值


                                        #  [batch_index[step]: batch_index[step + 1]]这个区间的X与Y
                                        #  keep_prob的意思是:留下的神经元的概率,如果keep_prob为0的话, 就是让所有的神经元都失活。
                print("Number of iterations:", i, " loss:", loss_)
                theloss.append(loss_)
            print("model_save: ", saver.save(sess, 'model_save2\\modle.ckpt'))
            print("The train has finished")
        return theloss

    theloss = train_lstm()

    
            # 相对误差=(测量值-计算值)/计算值×100%
            test_y = np.array(test_y) * std[n1] + mean[n1]
            test_predict = np.array(test_predict) * std[n1] + mean[n1]
            acc = np.average(np.abs(test_predict - test_y[:len(test_predict)]) / test_y[:len(test_predict)])
            print("预测的相对误差:", acc)

            print(theloss)
            plt.figure()
            plt.plot(list(range(len(theloss))), theloss, color='b', )
            plt.xlabel('times', fontsize=14)
            plt.ylabel('loss valuet', fontsize=14)
            plt.title('loss-----blue', fontsize=10)
            plt.show()
            # 以折线图表示预测结果
            plt.figure()
            plt.plot(list(range(len(test_predict))), test_predict, color='b', )
            plt.plot(list(range(len(test_y))), test_y, color='r')
            plt.xlabel('time value/day', fontsize=14)
            plt.ylabel('close value/point', fontsize=14)
            plt.title('predict-----blue,real-----red', fontsize=10)
            plt.show()



    prediction()

需要完整代码工程的同学,请联系学长获取

3 实现效果

3.1 数据

采集股票数据
在这里插入图片描述
任选几支股票作为研究对象。

3.2 预测结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

项目运行展示

废话不多说, 先展示项目运行结果, 后面才进行技术讲解

对某公司的股票进行分析和预测 :
在这里插入图片描述

开发环境

如果只运行web项目,则只需安装如下包:

  • python 3.6.x

  • django >= 2.1.4 (或者使用conda安装最新版)

  • pandas >= 0.23.4 (或者使用conda安装最新版)

  • numpy >= 1.15.2 (或者使用conda安装最新版)
    *apscheduler = 2.1.2 (请用pip install apscheduler==2.1.2 安装,conda装的版本不兼容)
    如果需要训练模型或者使用模型来预测(注:需要保证本机拥有 NVIDIA GPU以及显卡驱动),则还需要安装:

  • tensorflow-gpu >= 1.10.0 (可以使用conda安装最新版。如用conda安装,cudatoolkit和cudnn会被自动安装)

  • cudatoolkit >= 9.0 (根据自己本机的显卡型号决定,请去NVIDIA官网查看)

  • cudnn >= 7.1.4 (版本与cudatoolkit9.0对应的,其他版本请去NVIDIA官网查看对应的cudatoolkit版本)

  • keras >= 2.2.2 (可以使用conda安装最新版)

  • matplotlib >= 2.2.2 (可以使用conda安装最新版)

数据获取

训练模型的数据,即10个公司的历史股票数据。获取国内上市公司历史股票数据, 并以csv格式保存下来。csv格式方便用pandas读取,输入到LSTM神经网络模型, 用于训练模型以及预测股票数据。

最后

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1221310.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

leetcode刷题日志-14最长公共前缀

编写一个函数来查找字符串数组中的最长公共前缀。 如果不存在公共前缀,返回空字符串 “”。 示例 1: 输入:strs [“flower”,“flow”,“flight”] 输出:“fl” 示例 2: 输入:strs [“dog”,“raceca…

PHPStorm PHP-CS-Fixer

我用的是brew安装: brew install php-cs-fixer phpstorm配置: setting搜索fixer 指定安装php-cs-fixer的目录: https://github.com/PHP-CS-Fixer/PHP-CS-Fixer/blob/master/doc/installation.rst 图文详解PHPStorm实现自动执行代码格式化-…

Salmon-超快速、准确的基因丰度计算

文章目录 Salmon简介文章引用及适用物种获取转录组并建立索引比较salmon和coverm定量差异 Salmon简介 Salmon 是一款速度极快的程序,能从 RNA-seq 数据中生成高精度的转录本水平的量化估计值。Salmon 通过一系列不同的创新实现了其准确性和速度,包括使用…

算法竞赛备赛进阶之状态机模型训练

目录 1.大盗阿福 2.股票买卖IV 3.股票买卖V 4.设计密码 算法状态机(ASM)图是一种描述时序数字系统控制过程的算法流程图,其结构形式类似于计算机中的程序流程图。 ASM图是用一些特定符号按规定的连接方式来描述数字系统的功能。应用ASM图…

分形图案是什么?fpmarkets这样进入市场

分形图案的构造相对简单。市场在某个时间段内,会呈现单向的变动,要么持续上涨,要么持续下跌。观察这种趋势,并预测市场将呈现上涨态势后,过了一段时间,当所有有意向的买家都已经完成购买行为(即在价格上涨过…

Mysql数据库 16.SQL语言 数据库事务

一、数据库事务 数据库事务介绍——要么全部成功要么全部失败 我们把完成特定的业务的多个数据库DML操作步骤称之为一个事务 事务——就是完成同一个业务的多个DML操作 例: 数据库事务四大特性 原子性(A):一个事务中的多个D…

【java学习—十五】经典例题:生产者/消费者问题(7)

文章目录 1. 题目2. 答案 1. 题目 生产者 (Productor) 将产品交给店员 (Clerk) ,而消费者 (Customer)从店员处取走产品,店员一次只能持有固定数量的产品 ( 比如 4 ),如果生产者试图生产更多的产品,店员会叫生产者停一下…

2023年腾讯云服务器限时特惠,2023年腾讯云服务器最新优惠汇总

亲爱的朋友们,如果你正在考虑购买腾讯云服务器,那么你一定需要了解近期腾讯云服务器的限时特惠活动。本文将为你提供2023年腾讯云服务器的最新优惠汇总,并详细介绍几款值得购买的优惠云服务器。 首先为大家介绍的是轻量2核2G3M服务器&#x…

【Python入门五】第三方库(包)介绍

Python第三方库/包介绍 前言安装方法 2 数据分析和处理netCDF4numpyxarray 3参考 前言 Python 的库分为2类。 标准库:不需要安装,需要导入。第三库:需要安装、需要导入。 Python的标准库中提供了许多有用的模块和功能,如字符串…

千梦网创:实现自动化“挂机躺盈”的三种方法

在互联网众多行业中,有很多人一直在寻找所谓的“挂机躺盈”的项目,在理财领域这种收入被称为“被动收入”。 天上不会掉馅饼这是一句讲烂掉的话了,躺在家里吃白食等着钱进账是一件不可能的事情。 然而如果你看到身边有“被动收入”的例子&a…

【深度学习】pytorch快速得到mobilenet_v2 pth 和onnx

在linux执行这个程序: import torch import torch.onnx from torchvision import transforms, models from PIL import Image import os# Load MobileNetV2 model model models.mobilenet_v2(pretrainedTrue) model.eval()# Download an example image from the P…

牛客——OR36 链表的回文结构(C语言,配图,快慢指针)

本题是没有对C的支持的,但因为Cpp支持C,所以这里就用C写了,可以面向更多用户 链表的回文结构_牛客题霸_牛客网 (nowcoder.com) 思路一:链表翻转 简单的想想整形我们怎么比较,就是将整形A 依次取尾,放到整形…

C语言之深入指针(三)(详细教程)

C语言之深入指针 在学习这篇博客之前建议先看看这篇博客C语言之深入指针(二) 里面详细介绍了指针的 传值调用和传址调用数组名的理解使用指针访问数组⼀维数组传参的本质 文章目录 C语言之深入指针1 二级指针1.1 二级指针的介绍1.2 二级指针的使用 2 指…

Redis持久化策略之RDB与AOF

文章目录 1.RDB1)基本介绍2)自动触发3)手动触发4)RDB文件5)优点缺点 2.AOF1)基本介绍2)使用方式3)工作流程4)重写机制5)AOF文件6)优点缺点 3.RDB AOF 我们都知道,redis 是一个基于内存的数据库。基于内存的好处是访问速度快,缺点是“不持久”——当数据…

响应数据web

get请求 package com.example.demo.controller.poio;import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.bind.annotation.RestController;import java.util.*;//字符串格式返回 RestController public class ResponseBody {Req…

使用FFmpeg合并多个ts视频文件转为mp4格式

前言 爬取完视频发现都是ts文件,而且都是几百KB的视频片段,.ts 全名叫:MPEG Transport Stream,它是一个万能的多媒体容器,可以装下音频、视频、字幕。有时我们需要将.ts文件转换为其他更加广泛被支持的格式&#xff0…

基于Vue+SpringBoot的海南旅游景点推荐系统 开源项目

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 用户端2.2 管理员端 三、系统展示四、核心代码4.1 随机景点推荐4.2 景点评价4.3 协同推荐算法4.4 网站登录4.5 查询景点美食 五、免责说明 一、摘要 1.1 项目介绍 基于VueSpringBootMySQL的海南旅游推荐系统&#xff…

pytorch单精度、半精度、混合精度、单卡、多卡(DP / DDP)、FSDP、DeepSpeed模型训练

pytorch单精度、半精度、混合精度、单卡、多卡(DP / DDP)、FSDP、DeepSpeed(环境没搞起来)模型训练代码,并对比不同方法的训练速度以及GPU内存的使用 代码:pytorch_model_train FairScale(你真…

前端调取摄像头并实现拍照功能

前言 最近接到的一个需求十分有意思,设计整体实现了前端仿 微信扫一扫 的功能。整理了一下思路,做一个分享。 tips: 如果想要实现完整扫一扫的功能,你需要掌握一些前置知识,这次我们先讲如何实现拍照并且保存的功能。 一. windo…

Diffusion Models CLIP

Introduction to Diffusion Models 生成模型 主要指的是无监督学习中的生成模型,在无监督学习中的主要任务是让机器学习给定的样本,然后生成一些新的东西出来。比如:给机器看一些图片,能够生成一些新的图片出来,给机器…