记一次线上问题引发的对 Mysql 锁机制分析

news2025/1/23 6:11:02

背景

最近双十一开门红期间组内出现了一次因 Mysql 死锁导致的线上问题,当时从监控可以看到数据库活跃连接数飙升,导致应用层数据库连接池被打满,后续所有请求都因获取不到连接而失败

整体业务代码精简逻辑如下:

@Transaction
public void service(Integer id) {
    delete(id);
    insert(id);
}

数据库实例监控:







当时通过分析上游问题流量限流解决后,后续找时间又重新分析了下问题发生的根本原因,现将其总结如下:本篇文章会先对 Mysql 中的各种锁进行分析,包括互斥锁、间隙锁和插入意向锁,让大家对各种锁的使用场景有一个了解,然后在此基础上再对本问题进行分析,希望大家未来再碰到相似场景时,能够快速的定位问题

Mysql 锁机制

在 Mysql 中为了解决对同一行记录并发写的问题,引入了行锁机制,多个事务不能同时对一行数据进行修改操作,当需要对数据库中的一行数据进行修改时,会首先判断该行数据是否加锁,如果没加锁,那么当前事务加锁成功,可以进行后续的修改操作;但如果该行数据已经被其他事务加锁,则当前事务只有等待加锁的事务释放锁后才能加锁成功,继续执行修改操作

本篇文章中所有实验用到的建表语句:

create table `test` (
    `id` int(11) NOT NULL,
    `num` int(11) NOT NULL,
    PRIMARY KEY (`id`),
    KEY `num` (`num`)
) ENGINE = InnoDB;

insert into
    test
values
(10, 10),
(20, 20),
(30, 30),
(40, 40),
(50, 50);

Shared and Exclusive Locks

shared(S) lock 表示共享锁,当一个事务持有某行上的 S 锁后可以对该行的数据进行读操作,通过语句 select ... from test lock in share mode 可以添加共享锁,一般使用的较少,不做过多阐述

exclusive(X) lock 表示互斥锁,当一个事务对某行数据进行 update 或 delete 操作时都要先获取到该记录上的 X 锁,如果已经有其他事务获取到了该记录上的 X 锁,那么当前事务会阻塞等待直到上一事务释放了对应记录上的 X 锁

S 锁之间不互斥,多个事务可以同时获取一条记录上的 S 锁 X 锁之间互斥,多个事务不能同时获取同一条记录上的 X 锁 S 锁和 X 锁之间互斥,多个事务不能同时获取同一条记录上的 S 锁和 X 锁

当多个事务同时去 update 索引上同一条记录时,都需要先获取到该记录上的 X 锁,所谓的锁也就是会在内存中生成一个数据结构来记录当前的事务信息、锁类型和是否等待等信息。下图中就是 T1 和 T2 同时去更新 id = 30 的这行记录,并且 T1 成功获取到了锁,其在内存中生成的锁结构信息中字段 is_wating 为 false,可以继续执行事务的后续逻辑,而 T2 获取锁失败,则生成的锁结构信息字段 is_wating 为 true,阻塞等待 T1 上的锁释放





互斥锁在 Mysql 日志中的锁信息为:lock_mode X locks rec but not gap

RECORD LOCKS space id 58 page no 3 n bits 72 index `PRIMARY` of table `test`.`t`
trx id 10078 lock_mode X locks rec but not gap
Record lock, heap no 2 PHYSICAL RECORD: n_fields 3; compact format; info bits 0
 0: len 4; hex 8000000a; asc     ;;
 1: len 6; hex 00000000274f; asc     'O;;
 2: len 7; hex b60000019d0110; asc        ;;

Gap Locks

上一小节中介绍了 Exclusive Locks,该锁可以避免多个事务同时对一行记录进行更新操作,但不能解决幻读的问题,所谓的幻读就是指一个事务在前后两次查询同一个范围时,后一次查询到了前一次没有的记录

session Asession B
T1select num from test where num > 10 and num < 15 for update; (0 rows)
T2insert into test values(12, 12);
T3select num from test where num > 10 and num < 15 for update; (1 rows)

在上面这个场景中,session A 分别在 T1、T3 时刻进行了两次范围查询,session B 在 T2 时刻插入了一条该范围内的数据,如果 session A 能在 T3 时刻查询出 session B 插入的数据,就说明发生了幻读。此时只使用互斥锁是无法解决幻读的,因为 num = 12 的记录在数据库中还不存在,不能给其加上互斥锁来防止 T2 时刻 session B 的插入

因此为了解决幻读问题,只有引入新的锁机制,也就是间隙锁(Gap Locks)。间隙锁和互斥锁不同,互斥锁是行锁,只会锁定一行特定的记录,而间隙锁则是锁定两行记录之间的空隙,防止其他事务在此间隙中插入新的记录

引入了间隙锁之后,session A 在 T1 时刻会给 id = 20 记录生成一个 Gap Locks,之后 session B 在 T2 时刻想要插入记录时,需要先判断待插入位置的后一条记录上是否存在 Gap Locks,很明显此时 id = 20 的记录上已经存在了 Gap Locks,那么session B 就需要在 id = 20 的记录上生成一个插入意向锁,并进入锁等待





间隙锁在 Mysql 中的锁日志信息如下:lock_mode X locks gap before rec

RECORD LOCKS space id 133 page no 3 n bits 80 index PRIMARY of table `test`.`test` trx id 38849 lock_mode X locks gap before rec
Record lock, heap no 4 PHYSICAL RECORD: n_fields 4; compact format; info bits 0
 0: len 4; hex 8000001e; asc     30 ;;
 1: len 6; hex 00000000969c; asc       ;;
 2: len 7; hex a60000011a0128; asc       (;;
 3: len 4; hex 8000001e; asc     ;;

间隙锁虽然解决了幻读问题,但因每次都会锁住一段间隙,大大降低了数据库整体的并发度,且因间隙锁和间隙锁之间不互斥,不同事务可以同时对同一间隙加上 Gap Locks,这也往往是各种死锁产生的源头

Next-Key Locks

Next-Key Locks 是 (Shard/Exclusive Locks + Gap Locks) 的结合,当 session A 给某行记录 R 添加了互斥型的 Next-Key Locks 后, 相当于拥有了记录 R 的 X 锁和记录 R 的 Gap Locks

在上面 Gap Locks 的例子中事务 1 加的就是 Next-Key Locks,即同时给 id = 20 的记录加了 X 锁和 Gap 锁





在可重复读隔离级别下,update 和 delete 操作默认都会给记录添加 Next-Key Locks,Mysql 中 Next-Key Locks 的锁日志信息为:lock_mode X

RECORD LOCKS space id 58 page no 3 n bits 72 index `PRIMARY` of table `test`.`t`
trx id 10080 lock_mode X
Record lock, heap no 1 PHYSICAL RECORD: n_fields 1; compact format; info bits 0
 0: len 8; hex 73757072656d756d; asc supremum;;

Record lock, heap no 2 PHYSICAL RECORD: n_fields 3; compact format; info bits 0
 0: len 4; hex 8000000a; asc     ;;
 1: len 6; hex 00000000274f; asc     'O;;
 2: len 7; hex b60000019d0110; asc        ;

Insert Intention Locks

插入意向锁(Insert Intention Locks) 也是一种间隙锁,由 INSERT 操作在行数据插入之前获取

在插入一条记录前,需要先定位到该记录在 B+ 树中的存储位置,然后判断待插入位置的下一条记录上是否添加了 Gap Locks,如果下一条记录上存在 Gap Locks,那么插入操作就需要阻塞等待,直到拥有 Gap Locks 的那个事务提交,同时执行插入操作等待的事务也会在内存中生成一个锁结构,表明有事务想在某个间隙中插入新记录,但目前处于阻塞状态,生成的锁结构就是插入意向锁

实验模拟如下:

session 1session 2session 3
T1begin;
T2select * from test where id = 25 for update;
T3insert into test values(26, 26); (blocked)
T4insert into test values(26, 26); (blocked)

对于语句 select * from test where id = 25 for update 因当前表中不存在该记录,在可重复读隔离级别下,为了避免幻读,会给 (20, 30] 间隙加上 Gap Locks

从锁日志可以看出 session 1 给记录 30 添加了间隙锁(lock_mode X locks gap before rec)

RECORD LOCKS space id 133 page no 3 n bits 80 index PRIMARY of table `test`.`test` trx id 38849 lock_mode X locks gap before rec
Record lock, heap no 4 PHYSICAL RECORD: n_fields 4; compact format; info bits 0
 0: len 4; hex 8000001e; asc     30 ;;
 1: len 6; hex 00000000969c; asc       ;;
 2: len 7; hex a60000011a0128; asc       (;;
 3: len 4; hex 8000001e; asc     ;;

当 session 2 插入记录 26 时,会在 B+ 树中先定位到待插入位置,再判断插入位置的间隙是否存在 Gap Locks,也就是判断待插入位置的后一记录 id = 30 是否存在 Gap Locks,如果存在需要在该记录上生成插入意向锁等待

RECORD LOCKS space id 133 page no 3 n bits 80 index PRIMARY of table `test`.`test` trx id 38850 lock_mode X locks gap before rec insert intention waiting
Record lock, heap no 4 PHYSICAL RECORD: n_fields 4; compact format; info bits 0
 0: len 4; hex 8000001e; asc    30 ;;
 1: len 6; hex 00000000969c; asc       ;;
 2: len 7; hex a60000011a0128; asc       (;;
 3: len 4; hex 8000001e; asc     ;;

此时 session 2 和 session 3 都在 id = 30 的记录上添加了插入意向锁等待 session 1 上的 Gap Locks 释放,生成的锁记录如下:







线上问题分析

在对 Mysql 中的各种锁结构有了一个清晰的了解之后,回过头来再看看前面的线上问题

@Transaction
public void service(Integer id) {
    delete(id);
    insert(id);
}

对于上面的业务代码可能存在下面两种情况:

•传入的参数 id 在原数据库中不存在

•传入的参数 id 在原数据库中存在

本次主要会针对 id 记录在原数据库中不存在进行分析

session 1session 2session 3
T1delete from test where id = 15;
T2delete from test where id = 15;delete from test where id = 15;
T3insert into test values(15, 15);
T4insert into test values(15, 15);
T5insert into test values(15, 15);

因 id = 15 在数据库中不存在,在 T1 时刻 session 1 会给其所在间隙的下一条记录添加上 Gap Locks,又因 Gap Locks 不互斥, 在 T2 时刻 session 2 和session 3 都会同时获取到 id = 20 的 Gap 锁

下图中 tx: T1、T2、T3 分别代表 session 1、session 2 和 session 3





当在 T3 时刻 session 1 插入 id = 15 的记录时,会判断其插入位置的后一条记录是否存在 Gap Locks,如果存在,则需要在该记录上生成 Insert Intention Locks 并等待持有 Gap Locks 的事务释放锁





在 T4 时刻 session 2 执行插入语句,同样会因插入位置的后一条记录中存在 Gap Locks 而需要生成 Insert Intention Locks 等待。此时很明显就形成了死锁,session 1 生成插入意向锁等待 session 2 和 session 3 上的 Gap 锁释放,而 session 2 同样生成插入意向锁等待 session 1 和 session 3 上的 Gap 锁释放





在 T4 时刻检测到死锁后,Mysql 会选择其中一个事务进行回滚,假设此时 session 2 被回滚,释放了其持有的所有锁资源,session 1 可以继续执行吗? 很明显不可以,session 1 还同时在等待 session 3 上的 Gap 锁释放,继续阻塞等待

在 T5 时刻 session 3 开始执行插入语句,此时同 T4 时刻,死锁形成,session 1 生成的插入意向锁正在等待 session 3 上的 Gap Locks 释放,session 3 上生成的插入意向锁正在等待 session 1 上的 Gap Locks 释放,此时 session 3 回滚释放所有锁资源后,session 1 才可以最终执行成功





在完成了三个并发线程的死锁分析后,可能有人会想虽然有死锁,但通过死锁检测可以很快的检测出,程序也可以正常的执行,这有什么问题呢? 其实上面没有问题主要是因为并发量较小,死锁检测可以很快检测出,如果此时将并发量扩大 100 倍甚至 1000 倍后,还会没有问题吗?

看看当时出现线上问题时,接口的调用量情况,





进一步在本地模拟 300 个线程并发执行,因人脑并发分析所有事务的执行情况的话会非常复杂,本次只以事务 1 为一个点来进行分析

从图中可以看到当 T1 在执行插入语句时,需要等待 T2- T101 上持有的 Gap Locks 释放,之后 T2 - T6 可能同时执行插入语句,然后进行死锁检测,事务回滚,看着似乎只要后续有事务执行了插入语句就会执行死锁回滚,正常运行,但在死锁检测的过程中还会有新事务(T101 - T 200 )获取到 Gap Locks,造成锁等待队列中的事务越来越多,而 Mysql 的整体死锁检测时间复杂度为 O(n^2),锁等待队列中的事务较多时,每一次有新事务进行锁等待,死锁检测都需要遍历锁等待队列中在其之前等待的事务,判断是否会因自己的加入形成环,此时检测会非常消耗 CPU 资源,造成数据库整体性能下降,死锁检测耗时增加,Mysql 活跃连接数大幅增加,并且因锁等待而连接无法释放,最终造成应用层连接池被打满





综上分析,本次出现问题的最主要原因是在短时间内存在大并发的请求对同一行数据进行先删除再插入操作(先更新再插入同理),造成了死锁等待,应用层连接池被打满,大量上游请求超时重试,进一步导致锁等待,最终影响了所有依赖该数据库的业务

因此对于未来在业务代码中存在相似逻辑的地方,一定要做好防重校验,避免短时间内存在对同一行数据的先更新再插入的并发操作。同时在可重复读隔离别下,更新和删除操作默认都会添加 Next-Key Locks,间隙锁的引入使得死锁问题在并发情况下很容易出现,这也是在业务逻辑实现上需要考虑的问题。

总结

本文以一个线上问题为背景,对 Mysql 中的各种锁机制进行了详细的总结,分析了各个锁的加锁时机和具体使用场景,其中特别要注意间隙锁的使用,因间隙锁和间隙锁之间不互斥,当多个事务之间并发执行时很容易形成死锁

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1203217.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

探索向量数据库 | 重新定义数据存储与分析

随着大模型带来的应用需求提升&#xff0c;最近以来多家海外知名向量数据库创业企业传出融资喜讯。 随着AI时代的到来&#xff0c;向量数据库市场空间巨大&#xff0c;目前处于从0-1阶段&#xff0c;预测到2030年&#xff0c;全球向量数据库市场规模有望达到500亿美元&#xff…

软文推广中媒体矩阵的优势在哪儿

咱们日常生活中是不是经常听到一句俗语&#xff0c;不要把鸡蛋放在同一个篮子里&#xff0c;其实在广告界这句话也同样适用&#xff0c;媒介矩阵是指企业在策划广告活动时&#xff0c;有目的、有计划的利用多种媒体进行广告传播&#xff0c;触达目标用户。今天媒介盒子就来和大…

管理压力:打工人不难为打工人

写在前面 让时间回到2018年7月末&#xff1a; 事件地点&#xff1a;中国平安办公室 事件经过&#xff1a; 平安产品经理提出一个需求&#xff0c;要求APP开发人员根据用户手机壳自动调整颜色的主题。这个需求被程序员认为是不合理的。双方开始争论&#xff0c;情绪激动&…

私域电商:构建商业新模式的必要性

随着互联网的快速发展&#xff0c;传统的电子商务模式已经无法满足企业对于个性化、精准化服务的需求。在这样的背景下&#xff0c;私域电商应运而生&#xff0c;为企业提供了新的商业机会和增长点。本文将探讨私域电商的必要性及其构建商业新模式的影响。 一、私域电商的概念 …

【Python基础】网络编程之Epoll使用一(符实操:基于epoll实现的实时聊天室)

&#x1f308;欢迎来到Python专栏 &#x1f64b;&#x1f3fe;‍♀️作者介绍&#xff1a;前PLA队员 目前是一名普通本科大三的软件工程专业学生 &#x1f30f;IP坐标&#xff1a;湖北武汉 &#x1f349; 目前技术栈&#xff1a;C/C、Linux系统编程、计算机网络、数据结构、Mys…

轻盈创新,气膜体育馆

气膜体育馆采用高强度、高柔性的薄膜材料为主要构建元素。其制作过程包括将膜材的外沿固定在地面基础或屋顶结构周边&#xff0c;并搭配智能化的机电设备&#xff0c;通过吹气实现室内空间的密闭。利用密闭空间内的气压支撑原理&#xff0c;当室内气压大于外部气压时&#xff0…

介绍公司的软文怎么写

软文推广成为企业提高知名度和市场竞争力的主要方式之一&#xff0c;通过软文推广&#xff0c;公司能够被更多消费者熟知并在他们心中留下深刻印象&#xff0c;一篇好的软文&#xff0c;不仅能传递公司的产品和服务信息&#xff0c;还可以传递出公司的理念、文化等&#xff0c;…

postgresql数据库优化

目录 概要 优化方法 硬件知识 CPU及服务器体系结构 内存 硬盘 文件系统及I/O调优 文件系统的崩溃恢复 Ext2文件系统 Ext3文件系统 Ext4文件系统 XFS文件系统 Barriers I/O I/O调优的方法 SSD的Trim优化 数据库性能视图 Linux监控工具 数据库内存优化 大页内存配置 vacuum…

C++:对象成员方法的使用

首先复习一下const : //const: //Complex* const pthis1 &ca; //约束指针自身 不能指向其他对象 // pthis1 &cb; err //pthis1->real; //const Complex* const pthis1 &ca;//指针指向 指针自身 都不能改 //pthis1->real; 只可读 …

Jenkins 搭建

GitLab GitLab安装 https://gitlab.cn/install/?versionce CentOS 下安装 1. 安装和配置必须的依赖项 在 CentOS 7上&#xff0c;下面的命令也会在系统防火墙中打开 HTTP、HTTPS 和 SSH 访问。这是一个可选步骤&#xff0c;如果您打算仅从本地网络访问极狐GitLab&#xf…

网易有道上线“易魔声” 开源语音合成引擎 用户可免费下载使用

网易有道上线“易魔声” 开源语音合成引擎 用户可免费下载使用 刚刚&#xff0c;我们上线了「易魔声」开源语音合成&#xff08;TTS&#xff09;引擎&#xff01;&#x1f389;&#x1f389;&#x1f389; 「易魔声」&#xff0c;是一款有道自研TTS引擎&#xff0c;目前支持中…

PNAS | 蛋白质结构预测屈服于机器学习

今天为大家介绍的是来自James E. Rothman的一篇短文。今年的阿尔伯特拉斯克基础医学研究奖表彰了AlphaFold的发明&#xff0c;这是蛋白质研究历史上的一项革命性进展&#xff0c;首次提供了凭借序列信息就能够准确预测绝大多数蛋白质的三维氨基酸排列的实际能力。这一非凡的成就…

react函数式组件props形式子向父传参

父组件中定义 子组件中触发回调传值 import { useState } from "react"; function Son(params) {const [count, setCount] useState(0);function handleClick() {console.log(params, paramsparamsparamsparamsparamsparams);params.onClick(111)setCount(count 1…

leetcode每日一题复盘(11.13~11.19)

leetcode 435 无重叠区间 本题和射气球最小箭数大同小异&#xff0c;但是这一题没做出来&#xff0c;难就难在题目如何理解:移除区间最小数量&#xff0c;使剩下的区间不重叠 那么本质上就是求最少有多少个重叠区间&#xff0c;把重叠区间去掉剩下的区间即不重叠 这里有两种做…

智慧工地管理云平台源码,Spring Cloud +Vue+UniApp

智慧工地源码 智慧工地云平台源码 智慧建筑源码支持私有化部署&#xff0c;提供SaaS硬件设备运维全套服务。 互联网建筑工地&#xff0c;是将互联网的理念和技术引入建筑工地&#xff0c;从施工现场源头抓起&#xff0c;最大程度的收集人员、安全、环境、材料等关键业务数据&am…

安防监控系统EasyCVR v3.4.0版本首页界面更新调整功能大汇总

安防视频监控/视频集中存储/云存储/磁盘阵列EasyCVR平台可拓展性强、视频能力灵活、部署轻快&#xff0c;可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等&#xff0c;以及支持厂家私有协议与SDK接入&#xff0c;包括海康Ehome、海大宇等设备的SDK等。平台可拓展性强、…

你知道调试一个 Web 的 Android 应用有多麻烦吗 AndroidStudio uniapp Capacitor

你知道调试一个 Web 的 Android 应用有多麻烦吗 AndroidStudio uniapp Capacitor 用的 uniapp 写的页面&#xff0c;全是坑&#xff0c;各种坑&#xff0c;生命周期不触发等。但由于已经做完大部分内容了&#xff0c;也不好换了。 我用的是 capacitor h5 > Android 的方式…

猫罐头怎么选择?精选的5款口碑好的猫罐头推荐!

猫罐头因其成分约80%为水分&#xff0c;对于不喜欢喝水的猫咪来说&#xff0c;正是可以用来补充水分的替代方案。 而近年来市面上也有越来越多讲究食用安全性的猫罐头&#xff0c;像是强调无添加多余加工品、或是不含谷物成分等的商品。但也因为种类过多&#xff0c;让铲屎官容…

【现场问题】datax中write部分为Oracle的时候插入clolb类型字段,插入的数据为string且长度过场问题

datax的Oraclewriter 报错显示查询报错展示查找datax中的数据插入模块 报错显示 occurred during batching: ORA-01704: string literal too long 查询报错展示 基本上查到的都是这样的&#xff0c;所以锁定是clob的字段类型的问题&#xff0c;而且是只有Oracle出问题&#…

vue2【计算属性】

目录 1&#xff1a;计算属性的作用 2&#xff1a;代码示例 3&#xff1a;特点 4&#xff1a;好处 1&#xff1a;计算属性的作用 计算属性指的是通过将属性经过运算&#xff0c;最终得到一个属性值&#xff0c;这个属性值可以在method节点下和模板结构中被使用。 2&#x…