02:2440---时钟体系

news2024/11/18 13:28:19

目录

一:时钟控制

1:基本概念

2:时钟结构图

3:结构图分析

4:总线

5:寄存器

A:FCLK--MPLLCON

 B:HCLK和PCLK--CLKDIVN

C:注意

二:上电复位

1:上电复位

2:时钟选择

三:代码


一:时钟控制

1:基本概念

        S3C2440A中的时钟控制逻辑可以产生所需的时钟信号,包括CPU的FCLK、AHB总线外设的HCLK和APB总线外设的PCLK。S3C2440A具有两个锁相环(pll):一个用于FCLK,HCLK和PCLK, 另一个专用于USB块(48Mhz)。时钟控制逻辑可以制作无锁相环的慢时钟,并通过软件将时钟连接断开到各个外设块,从而降低功耗。

        对于电源控制逻辑,S3C2440A具有多种电源管理方案,以保持给定任务的最佳功耗。S3C2440A的电源管理模块可以激活四种模式:NORMAL模式、SLOW模式、IDLE模式和SLEEP模式。

        NORMAL模式:该模块为CPU以及S3C2440A中的所有外设提供时钟。在此模式下,当所有外设都打开时,功耗将达到最大。它允许用户通过软件控制外设的操作。例如,如果不需要定时器,用户可以断开时钟(CLKCON寄存器)对定时器的连接,以减少功耗。

        SLOW mode:非pll模式。与正常模式不同,慢速模式在S3C2440A中直接使用外部时钟(XTipll或EXTCLK)作为FCLK,没有PLL。在这种模式下,功耗仅取决于外部时钟的频率。不包括PLL的功耗。

        IDLE模式:块只断开CPU核心的时钟(FCLK),而它向所有其他外设提供时钟。IDLE模式可以降低CPU核的功耗。任何对CPU的中断请求都可以从空闲模式唤醒。

        SLEEP模式:模块断开内部电源。因此,在这种模式下,除了唤醒逻辑外,不会发生CPU和内部逻辑的功耗。激活SLEEP模式需要两个独立的电源。其中一个电源为唤醒逻辑提供电源。另一个提供包括CPU在内的其他内部逻辑,并且应该控制电源的开/关。在SLEEP模式下,CPU和内部逻辑的第二电源将关闭。从SLEEP模式唤醒可以由EINT[15:0]或RTC告警中断发出。

2:时钟结构图

主时钟源 : 来自外部晶体(XTip12MHz) 或外部时钟(EXTCLK)。时钟发生器包括一个振荡器(振荡放大器),它连接到外部晶体,也有两个锁相环(锁相环),它产生S3C2440A所需的高频时钟。

FCLK: 直接挂载在ARM芯片上面---400MHZ

HCLK------挂载在AHB总线上(高速总线)====>挂载了nand flash ,  LCD控制,  USB, 电源管理等外设----136MHZ

PCLK-----挂载在APB总线上(低速总线)======>挂载了I2c,  ADC,  PWM等外设----68MHZ

CLKCNTL---是一个控制寄存器,用于控制系统时钟的分频和选择。它可以生成FCLK,然后通过HDIVN和PDIVN分频得到HCLK和PCLK。其中,FCLK传递给CPU,HCLK和PCLK用于其他外设

3:结构图分析

        晶振-----选择器-----PLL锁相环(MPLL和UPLL)具体内容见1------HCLK和PCLK分别挂载在AHB总线和APB总线上面-----在线上面又挂载了许多外设

        1:  晶振经过锁相环,  在经过FCLK处理完的晶振频率直接给到ARM芯片(CPU);  FCLK处理之后的晶振频率在经过HDIVN和PDIVN分频器的处理分别得到HCLK和PCLK ;

4:总线

时钟工作的最大频率:

5:寄存器

我们程序实现:  FCLK=400MHZ     HCLK=100MHZ    PCLK=50MHZ

A:FCLK--MPLLCON

通过编辑MPLLCON寄存器的MDIV, PDIV, SDIV;  来得到FCLK相应的频率

 我们看到了输入为12MHZ的晶振, 为了得到输出为400MHZ的晶振

MDIV=92(0x5c)       PDIV=1       SDIV=1

 公式为:


 

    ldr r0, =0x4C000004
	ldr r1, =(92<<12)|(1<<4)|(1<<0)
	str r1, [r0]

 B:HCLK和PCLK--CLKDIVN

 当CAMDIVN[9] = 0时, DHIVN[2:1]=10;                 DHIVN------400/4=100

PDIVN[0]=1--------PDIVN=100/2=50

CLKDIVN[2:0]=101=0x5

    ldr r0, =0x4C000014
	ldr r1, =0x5
	str r1, [r0]

不要忘记了CAMDIVN[9] = 0

我们可以看到了第9为默认为0, 但是我们为了保险设置一下

    ldr r0, =0x4C000018
	ldr r1, =(0<<9)
	str r1, [r0]

 完整代码

    ldr r0, =0x4C000018
	ldr r1, =(0<<9)
	str r1, [r0]
        
    ldr r0, =0x4C000014
	ldr r1, =0x5
	str r1, [r0]

C:注意

        1. CLKDIVN的设置要小心,不要超过HCLK和PCLK的限制。

        2. 如果HDIVN不是O,则需要按照下面的说明将CPU总线模式从快速总线模式切换到异步总线模式(S3C2440不支持同步总线模式)。

        3: 当HDIVN不为0且CPU总线模式为快速总线模式时,CPU将通过HCLK工作。该特性可以在不影响HCLK和PCLK的情况下,将CPU频率改变一半或更多。 

        所以我们需要在异步模式下工作, 将他调节为异步模式

/* 设置CPU工作于异步模式 */
	mrc p15,0,r0,c1,c0,0
	orr r0,r0,#0xc0000000   //R1_nF:OR:R1_iA
	mcr p15,0,r0,c1,c0,0

二:上电复位

1:上电复位

        上电复位(XTIpll)上电复位顺序的时钟行为如图所示。晶体振荡器在几毫秒内开始振荡。当OSC (XTipll)时钟稳定后释放nRESET后,PLL开始按照默认PLL配置工作。然而,PLL通常在上电复位后不稳定,因此在软件重新配置PLLCON之前,Fin直接馈送到FCLK而不是Mpll (PLL输出)。即使用户在复位后不希望改变PLLCON寄存器的默认值,用户也应该通过软件将相同的值写入PLLCON寄存器。只有软件为PLL配置了新的频率后,PLL才会向新的频率重新启动锁相序列。FCLK可以配置为锁定时间后立即PLL输出(Mpll)。

        这个nRESET。这里会维持一段时间。为什么一上电的时候nRESET不能够立刻拉高呢?因为。他要维持一段时间,等待你这个电源稳定,谁来帮你维持这个nRESET这么一段时间呢?我们的二四零里面有专用的复位芯片。

锁存时间寄存器

2:时钟选择

        时钟源的选择S3C2440A的模式控制引脚(OM3和OM2)组合与源时钟选择的关系。OM[3:2]状态通过参考nRESET上升沿的OM3和OM2引脚在内部锁存。

        虽然MPLL在复位后启动,但直到软件将有效设置写入MPLLCON寄存器时,MPLL输出(MPLL)才被用作系统时钟。在此有效设置之前,来自外部晶体或EXTCLK源的时钟将直接用作系统时钟。即使用户不想改变MPLLCON寄存器的默认值,用户也应该将相同的值写入MPLLCON寄存器。当OM[1:0]为11时,OM[3:2]用于确定测试模式。

三:代码


.text
.global _start

_start:
/* 关闭看门狗 */
	ldr r0, =0x53000000
	ldr r1, =0
	str r1, [r0]


/* 设置MPLL, FCLK : HCLK : PCLK = 400m : 100m : 50m */
	/* LOCKTIME(0x4C000000) = 0xFFFFFFFF */
	ldr r0, =0x4C000000
	ldr r1, =0xFFFFFFFF
	str r1, [r0]


/* CLKDIVN(0x4C000014) = 0X5, tFCLK:tHCLK:tPCLK = 1:4:8  */
    ldr r0, =0x4C000018
	ldr r1, =(0<<9)
	str r1, [r0]
        
    ldr r0, =0x4C000014
	ldr r1, =0x5
	str r1, [r0]

/* 设置CPU工作于异步模式 */
	mrc p15,0,r0,c1,c0,0
	orr r0,r0,#0xc0000000   //R1_nF:OR:R1_iA
	mcr p15,0,r0,c1,c0,0

/*设置MPLLCON*/
	ldr r0, =0x4C000004
	ldr r1, =(92<<12)|(1<<4)|(1<<0)
	str r1, [r0]

	/* 一旦设置PLL, 就会锁定lock time直到PLL输出稳定
	 * 然后CPU工作于新的频率FCLK
	 */
	

 /*设置内存: sp栈* 我们判断是nor启动还是nand启动/

	mov r1, #0
	ldr r0, [r1] /* 读出原来的值备份 */
	str r1, [r1] /* 0->[0] */ 
	ldr r2, [r1] /* r2=[0] */
	cmp r1, r2   /* r1==r2? 如果相等表示是NAND启动 */
	ldr sp, =0x40000000+4096 /* 先假设是nor启动 */
	moveq sp, #4096  /* nand启动 */
	streq r0, [r1]   /* 恢复原来的值 */
	 bl main


halt:
	b halt

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1200233.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

node插件express(路由)的插件使用(二)——cookie 和 session的基本使用区别

文章目录 前言一、express 框架中的 cookie0、cookie的介绍和作用1. 设置cookie2.删除cookie3.获取cookie&#xff08;1&#xff09;安装cookie-parser&#xff08;2&#xff09;导入cookie-parser&#xff08;3&#xff09;注册中间件&#xff08;4&#xff09;获取cookie&…

类和对象(3):拷贝构造函数

引入&#xff1a; class Stack { public:Stack(int capacity 3){_a (int*)malloc(sizeof(int) * capacity);if (nullptr _a){perror("malloc");exit(-1);}_top 0;_capacity capacity;}~Stack(){free(_a);_top _capacity 0;_a nullptr;}private:int* _a;int _…

终止进程,GPU显存仍被占用 | kill -9彻底杀死进程

问题描述&#xff1a;在Linux终端把进程终止后&#xff0c;发现显存没有被释放出来&#xff01; 显示所有进程 ps aux|grep python杀死单个进程 kill -9 PID杀死多个进程 kill -9 PID PID PID...结果如下&#xff0c;显存已经被释放出来了&#xff01;

【操作系统】1.1 操作系统的基础概念、功能以及特性

&#x1f4e2;&#xff1a;如果你也对机器人、人工智能感兴趣&#xff0c;看来我们志同道合✨ &#x1f4e2;&#xff1a;不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】 &#x1f4e2;&#xff1a;文章若有幸对你有帮助&#xff0c;可点赞 &#x1f44d;…

gpt支持json格式的数据返回(response_format: ‘json_object‘)

Api.h5.chatCreateChatCompletion({model: gpt-3.5-turbo-1106,token: sk-f4fe8b67-fcbe-46fd-8cc9-fd1dac5d6d59,messages: [{role: user,content:使用json格式返回十二生肖&#xff0c;包含中文名和英文名&#xff0c;[{id:"1", enName:"", cnName: &quo…

Python 多进程多线程

多任务 并发&#xff1a;在一段时间内交替执行多个任务 并行&#xff1a;在一段时间内同事一起执行多个任务 进程 Process 进程&#xff1a;一个程序运行在系统之上&#xff0c; 便称这个程序喂一个运行进程&#xff0c;并分配进程ID方便系统管理。操作系统进行资源分配和调…

Android开发之apk瘦身计划

为什么apk越来越大&#xff1f; 1.项目不断发展&#xff0c;功能越多&#xff0c;代码量增加的同时&#xff0c;资源文件也在不断的增多。 2.app支持的主流dpi越来越多&#xff0c;如ldpi、mdpi、hdpi、xh xxh xxxh等等&#xff0c;间接导致资源增多。 3.引入的第三方sdk或开…

Linux进程空间地址

程序地址空间回顾 问题引入 ---------------明天再写0.0

Linux提取RPM包文件

在讲解如何从 RPM 包中提取文件之前&#xff0c;先来系统学习一下 cpio 命令。cpio 命令用于从归档包中存入和读取文件&#xff0c;换句话说&#xff0c;cpio 命令可以从归档包中提取文件&#xff08;或目录&#xff09;&#xff0c;也可以将文件&#xff08;或目录&#xff09…

【Go入门】面向对象

【Go入门】面向对象 前面两章我们介绍了函数和struct&#xff0c;那你是否想过函数当作struct的字段一样来处理呢&#xff1f;今天我们就讲解一下函数的另一种形态&#xff0c;带有接收者的函数&#xff0c;我们称为method method 现在假设有这么一个场景&#xff0c;你定义…

Qt贝塞尔曲线

目录 引言核心代码基本表达绘制曲线使用QEasingCurve 完整代码 引言 贝塞尔曲线客户端开发中常见的过渡效果&#xff0c;如界面的淡入淡出、数值变化、颜色变化等等。为了能够更深的了解地理解贝塞尔曲线&#xff0c;本文通过Demo将贝塞尔曲线绘制出来&#xff0c;如下所示&am…

SPC 的一些小知识

在生产管理系统种&#xff0c;经常回涉及到质量管理分&#xff0c;我们经常听说SPC、SPC控制图等和SPC相关的词汇&#xff0c;那么SPC是什么意思呢&#xff1f;它有什么作用呢&#xff1f;在这里通俗一点介绍一下SPC。 SPC是统计过程控制&#xff08;Statistical Process Cont…

xsschallenge通关攻略详解

xsschallenge通过攻略 文章目录 xsschallenge通过攻略第一关第二关第三关第四关第五关第六关第七关第八关第九关第十关第十一关第十二关第十三关 简述 xsschallenge挑战攻略 ps: 终极测试代码 <sCr<ScRiPt>IPT>OonN"\/(hrHRefEF)</sCr</ScRiPt>IPT&g…

系列八、Mybatis一对多查询,只查询出了一条记录

一、Mybatis一对多查询&#xff0c;只查询出了一条记录 1.1、问题说明 典型的权限管理框架的数据库表中&#xff0c;一般会存在这样3种角色的表&#xff0c;即用户表、角色表、用户角色关联表&#xff0c;表设计好之后&#xff0c;往这三张表中初始化了一些测试数据&#xff0…

LOW-POWER AUDIO KEYWORD SPOTTING USING TSETLIN MACHINES

基于TM的低功耗语音关键字识别 摘要1介绍2TM的介绍3KWS的音频预处理技术4实验结果MFC4.1C设置分位数数量4.3增加关键词数量4.4 声音相似的关键词4.5 每个类别的子句数量对KWS-TM的比较学习收敛和复杂性分析 摘要 在本文中&#xff0c;我们探讨了一种基于TM的关键词识别&#x…

【MySQL系列】第二章 · SQL(上)

写在前面 Hello大家好&#xff0c; 我是【麟-小白】&#xff0c;一位软件工程专业的学生&#xff0c;喜好计算机知识。希望大家能够一起学习进步呀&#xff01;本人是一名在读大学生&#xff0c;专业水平有限&#xff0c;如发现错误或不足之处&#xff0c;请多多指正&#xff0…

【云备份项目两万字总结】服务端篇 -----附源码

项目总结 整体回顾逐步实现utill.hppconfig.hppdata.hpphot.hppservice.hpp 代码 整体回顾 服务端的目标是&#xff1a; 对客户端的请求进行处理管理客户端上传的文件 于客户端进行数据交换&#xff0c;我们需要引入网络&#xff0c;所以我们引入第三方库----httplib.h库&am…

【Git】Git分支与应用分支Git标签与应用标签

一&#xff0c;Git分支 1.1 理解Git分支 在 Git 中&#xff0c;分支是指一个独立的代码线&#xff0c;并且可以在这个分支上添加、修改和删除文件&#xff0c;同时作为另一个独立的代码线存在。一个仓库可以有多个分支&#xff0c;不同的分支可以独立开发不同的功能&#xff0…

劲松HPV防治诊疗中心发布:HPV感染全面防治解决方案

在当今社会&#xff0c;HPV(人乳头瘤病毒)感染问题已成为广大公众关注的焦点。作为一种高度传染性的病毒&#xff0c;HPV感染不仅可能导致生殖器疣&#xff0c;还可能引发各种癌症。面对这一严重威胁&#xff0c;劲松HPV防治诊疗中心以其专业的医疗团队、正规的治疗流程和全方位…