Clickhouse表引擎

news2024/11/24 1:54:14

前言:

有关Clickhouse的前置知识详见:

1.ClickHouse的安装启动_clickhouse后台启动_THE WHY的博客-CSDN博客

2.ClickHouse目录结构_clickhouse 目录结构-CSDN博客


Cickhouse创建表时必须指定表引擎

表引擎(即表的类型)决定了:

  • 数据的存储方式和位置,写到哪里以及从哪里读取数据

数据一般存储在本地,默认路径是/var/lib/clickhouse/

除此之外也可以集成一些外部的数据库,如Hive,MySQL等

  • 支持哪些查询以及如何支持

数组在mergetree引擎中无法使用

  • 并发数据访问
  • 索引的使用(如果存在)
  • 是否可以执行多线程请求
  • 数据复制参数

TinyLog

以列文件的形式保存在磁盘上,不支持索引,没有并发控制。一般保存少量数据的小表,生产环境上作用有限。可以用于平时练习测试用

Memory

内存引擎,数据以未压缩的原始形式直接保存在内存当中,服务器重启数据就会消失。读写操作不会相互阻塞,不支持索引。简单查询下有非常非常高的性能表现(超过 10G/s)。

一般用到它的地方不多,除了用来测试,就是在需要非常高的性能,同时数据量又不太大(上限大概 1 亿行)的场景

MergeTree*(合并树)

MergeTree支持索引和分区

建表语句如下:

create table t_order_mt(id UInt32, sku_id String, total_amount Decimal(16,2), create_time Datetime)engine = MergeTree partition by toYYYYMMDD(create_time) primary key(id) order by (id,sku_id);

需要注意的是,clickhouse中主键会自动创建索引,但并不唯一;

而且order by设置的排序是在分区内排序

插入数据

insert into t_order_mt values \
(101,'sku_001',1000.00,'2020-06-01 12:00:00') ,\
(102,'sku_002',2000.00,'2020-06-01 11:00:00'),\
(102,'sku_004',2500.00,'2020-06-01 12:00:00'),\
(102,'sku_002',2000.00,'2020-06-01 13:00:00'),\
(102,'sku_002',12000.00,'2020-06-01 13:00:00'),\
(102,'sku_002',600.00,'2020-06-02 12:00:00');

进行查询:

可以看到通过命令行查询出的数据可以明显观察到分区

语法知识

MergeTree | ClickHouse Docs

可以看到,primary key 和 partition by字段都不是必须的,但order by字段是必须的

分区合并

分区的目的主要是降低扫描的范围,优化查询速度

在hive中,分区是通过HDFS中分目录实现的;clickhouse中也是通过分目录实现的,只不过是在本地磁盘

MergeTree 是以列文件+索引文件+表定义文件组成的,但是如果设定了分区那么这些文件就会保存到不同的分区目录中

具体操作

向表中插入数据:

在本地按分区存储数据:

再次插入数据:

可以看到数据并没有纳入任何分区,这是因为任何一个批次的数据写入都会产生一个临时分区,不会纳入任何一个已有的分区;写入后的某个时刻(大概 10-15 分钟后),ClickHouse 会自动执行合并操作

也可以手动通过 optimize 执行,把临时分区的数据,合并到已有分区中:

optimize table xxxx final

详细语法见:OPTIMIZE Statement | ClickHouse Docs

查看数据文件可以看到合并后的分区数据:

可以看到最小分区块编号、最大分区块编号和合并层级都发生了变化

需要注意:手动执行分区合并后会生成新的数据文件,但过期数据不会立即删除

等到自动合并操作执行后,过期数据就会被删除了;因此过一段时间再去查看:

除此之外,optimize还可以指定要合并的分区:

optimize table xxxx PARTITION partition final;

示例:

插入一些数据,目前的分区如下:

接下来只合并分区id为20200601的数据:

optimize table t_order_mt partition '20200601' final;

合并结果如下:

primary key

MergeTree | ClickHouse Docs

  • 只提供了数据的一级索引,但是却不是唯一约束
  • 主键的设定主要依据是查询语句中的 where 条件,根据条件通过对主键进行某种形式的二分查找,能够定位到对应的 index granularity避免了全表扫描

index granularity:索引粒度;也就是在稀疏索引中两个相邻索引对应数据的间隔。ClickHouse 中的 MergeTree 默认是 8192;官方不建议修改这个值,除非该列存在大量重复值,比如在一个分区中几万行才有一个不同数据

稀疏索引的好处就是可以用很少的索引数据,定位更多的数据,代价就是只能定位到索引粒度的第一行,然后再进行进行一点扫描

order by

  • order by进行分区内排序,是必须设置的(因为clickhouse使用稀疏索引,如果数据无序,无法根据索引来进行定位)
  • 主键必须是 order by 字段的前缀字段

比如 order by 字段是 (id,sku_id) 那么主键必须是 id 或者(id,sku_id)

假如主键是sku_id,那么可以发现数据在主键维度上是无序的,索引依然无法定位

二级索引

clickhouse从v20.1.2.4 开始全面支持二级索引

创建二级索引的语法:

INDEX a total_amount TYPE minmax GRANULARITY 5

索引名 对应的列 二级索引的类型 粒度

注意:这里的粒度指的是二级索引相对于一级索引的粒度

测试

建表

create table t_order_mt2( \
 id UInt32,\
 sku_id String,\
 total_amount Decimal(16,2),\
 create_time Datetime,\
INDEX a total_amount TYPE minmax GRANULARITY 5\
) engine =MergeTree\
 partition by toYYYYMMDD(create_time)\
 primary key (id)\
 order by (id, sku_id);

插入数据:

insert into t_order_mt2 values \
(101,'sku_001',1000.00,'2020-06-01 12:00:00') ,\
(102,'sku_002',2000.00,'2020-06-01 11:00:00'),\
(102,'sku_004',2500.00,'2020-06-01 12:00:00'),\
(102,'sku_002',2000.00,'2020-06-01 13:00:00'),\
(102,'sku_002',12000.00,'2020-06-01 13:00:00'),\
(102,'sku_002',600.00,'2020-06-02 12:00:00');

测试二级索引是否发挥作用:

clickhouse-client --send_logs_level=trace <<< 'select * from t_order_mt2 where total_amount > toDecimal32(900., 2)';

可以看到:

index a在查询过程中起到了粒度划分的作用;

TTL

MergeTree | ClickHouse Docs

TTL 即 Time To Live,MergeTree 提供了可以管理数据表或者列的生命周期的功能

对于表和列都可以指定TTL;

指定列的TTL(建表时)

TTL time_column + interval

建表测试:

create table t_order_mt3(\
 id UInt32,\
 sku_id String,\
 total_amount Decimal(16,2) TTL create_time+interval 10 SECOND,\
 create_time Datetime \
) engine =MergeTree\
partition by toYYYYMMDD(create_time)\
 primary key (id)\
 order by (id, sku_id);

total_amount列设置了TTL

插入数据:

insert into t_order_mt3 values \
(106,'sku_001',1000.00,'2023-07-31 20:45:10'),\
(107,'sku_002',2000.00,'2023-07-31 20:45:10'),\
(110,'sku_003',600.00,'2023-07-31 20:45:10');

插入完成后可以正常查询到数据:

等待到20:45:20之后再次查询:

发现依然能查询到数据:

可能是因为尚未合并导致的,因此手动合并:

optimize table t_order_mt3 final

发现字段值已经清空:


如果没有反应,可以尝试重启以下clickhouse的服务器,因为TTL操作是单独开启一个进程去完成的,如果机器资源较少,可能出现应答不及时的情况;

修改列的TTL

语法:

通过MODIFY COLUMN实现,简单来说就是重新定义一下这个列;

指定表的TTL

语法:

就是在ORDER BY后面设置TTL即可

官网给出了TTL到达后的三种策略

DELETE:删除对应数据

TO DISK 'aaa':将数据移动到磁盘'aaa'

TO VOLUME 'bbb':将数据移动到磁盘'bbb'

修改表的TTL

语法:

ReplacingMergeTree(去重)

ReplacingMergeTree 是 MergeTree 的一个变种,它存储特性完全继承 MergeTree,只是

多了一个去重的功能(根据order by字段进行去重,而不是主键)

去重时机:数据的去重只会在合并的过程中出现(合并会在未知的时间在后台进行,所以你无法预先作出计划。有一些数据可能仍未被处理)

在新版本中插入数据时会先进行一次去重

去重范围:分区内去重,无法跨分区去重

测试

创建表,指定引擎为ReplacingMergeTree

create table t_order_rmt(\
 id UInt32,\
 sku_id String,\
 total_amount Decimal(16,2) ,\
 create_time Datetime \
) engine =ReplacingMergeTree(create_time)\
 partition by toYYYYMMDD(create_time)\
 primary key (id)\
 order by (id, sku_id);

ReplacingMergeTree() 填入的参数为版本字段,重复数据保留版本字段值最大的

如果不填版本字段,默认按照插入顺序保留最后一条

插入数据:

insert into t_order_rmt values\
(101,'sku_001',1000.00,'2020-06-01 12:00:00') ,\
(102,'sku_002',2000.00,'2020-06-01 11:00:00'),\
(102,'sku_004',2500.00,'2020-06-01 12:00:00'),\
(102,'sku_002',2000.00,'2020-06-01 13:00:00'),\
(102,'sku_002',12000.00,'2020-06-01 13:00:00'),\
(102,'sku_002',600.00,'2020-06-02 12:00:00');

查询结果如下:

与下图对比可知在插入数据时已经进行了去重

注意到有两条数据的版本字段相同:

最终保留的数据是:

因此可以看到,但版本字段相同时,按照插入顺序保留最后一条


接下来再次插入数据,查询结果如下:

可以看到同一分区内的数据并未进行去重

因此手动执行合并后再查询:

可以看到已经进行了去重;

SummingMergeTree(聚合)

适用于不查询明细,只关心以维度进行汇总聚合结果的场景,可以避免因临时聚合而带来的开销

测试

创建表,指定引擎为SummingMergeTree

create table t_order_smt(\
 id UInt32,\
 sku_id String,\
 total_amount Decimal(16,2) ,\
 create_time Datetime \
) engine =SummingMergeTree(total_amount)\
 partition by toYYYYMMDD(create_time)\
 primary key (id)\
 order by (id,sku_id );

注意,SummingMergeTree()中的字段为聚合字段,即在哪一维度上进行聚合,这里指定的是total_amount,也可以指定多个字段,但必须是数值类型;

如果不填,以所有非维度列且为数字列的字段为汇总数据列

插入数据:

insert into t_order_smt values\
(101,'sku_001',1000.00,'2020-06-01 12:00:00'),\
(102,'sku_002',2000.00,'2020-06-01 11:00:00'),\
(102,'sku_004',2500.00,'2020-06-01 12:00:00'),\
(102,'sku_002',2000.00,'2020-06-01 13:00:00'),\
(102,'sku_002',12000.00,'2020-06-01 13:00:00'),\
(102,'sku_002',600.00,'2020-06-02 12:00:00');

查询结果如下:

首先可以发现,SummingMergeTree是以order by的列作为维度列进行聚合的,而且是分区内聚合

同时可以看到,同一分区内的相应数据已经进行了聚合:

                                                                        👇

除了维度列和聚合字段之外,create_time这一列保留最早插入的一行;


再次插入数据进行测试:
可以看到并未进行聚合:

这是因为SummingMergeTree和ReplacingMergeTree一样,都是只有在同一批次插入(新版本)或分片合并时才会进行聚合

因此手动执行合并:optimize table t_order_smt final

可以看到成功聚合:

根据聚合表的特性,在实际开发中设计聚合表时,唯一键值、流水号可以去掉,所有字段全部是维度、度量或者时间戳

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1194963.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SpringBoot 使用EasyExcel 导出Excel报表(单元格合并)

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、导入依赖二、代码1. 导出简单的Excel2. 代码控制导出报表的格式 总结 前言 SpringBoot 使用Alibaba提供的EasyExcel导出Excel报表。 本文中涉及的业务逻辑…

C/C++内存管理——“C++”

各位CSDN的uu们你们好呀&#xff0c;好久没有更新小雅兰的C专栏啦&#xff0c;下面&#xff0c;小雅兰继续开始更新C专栏的内容&#xff01;&#xff01;&#xff01;今天&#xff0c;小雅兰的内容是C和C的内存管理&#xff0c;下面&#xff0c;让我们进入C的世界吧&#xff01…

【Nginx40】Nginx学习:动静分离与日志分割

Nginx学习&#xff1a;动静分离与日志分割 放轻松放轻松&#xff0c;最后两篇文章学习的内容是比较轻松的。首先&#xff0c;我们来看看 Nginx 动静分离的概念&#xff0c;然后再看看怎么为 Nginx 做日志分割。内容都很简单&#xff0c;完全不需要有任何的压力。 动静分离 动静…

FPGA高端项目:图像缩放+GTX+UDP架构,高速接口以太网视频传输,提供2套工程源码加QT上位机源码和技术支持

目录 1、前言免责声明本项目特点 2、相关方案推荐我这里已有的 GT 高速接口解决方案我这里已有的以太网方案我这里已有的图像处理方案 3、设计思路框架设计框图视频源选择IT6802解码芯片配置及采集动态彩条跨时钟FIFO图像缩放模块详解设计框图代码框图2种插值算法的整合与选择 …

SSL证书申请安全审核失败?

随着HTTPS普及&#xff0c;申请安装使用SSL证书成为了我们的必备项。但这个SSL证书申请过程中&#xff0c;遇到问题也是不少。今天我们来浅了解一下SSL证书为什么会出现安全审核失败&#xff1f; SSL证书申请会出现安全审核失败的情况可能是以下原因&#xff1a; 域名验证不通…

docker-compose安装es以及ik分词同义词插件

目录 1 前言 2 集成利器Docker 2.1 Docker环境安装 2.1.1 环境检查 2.1.2 在线安装 2.1.3 离线安装 2.2 Docker-Compose的安装 2.2.1 概念简介 2.2.2 安装步骤 2.2.2.1 二进制文件安装 2.2.2.2 离线安装 2.2.2.3 yum安装 3 一键安装ES及Kibana 3.1 yml文件的编写…

多组学整合,快速定位关键代谢通路,解析分子机制

生物学是一种复杂的学科&#xff0c;往往单一组学无法探究想要了解的生物学问题&#xff0c;这时就要运用到多组学联合分析。近年来&#xff0c;多组学研究的不断发展和持续火热&#xff0c;越来越多的研究者开始将微生物组学和代谢组学联合起来。16s全长扩增子测序可提供细菌构…

JAVA集合学习和源码分析

一、结构 List和Set继承了Collection接口&#xff0c;Collection继承了Iterable Object类是所有类的根类&#xff0c;包括集合类&#xff0c;集合类中的元素通常是对象&#xff0c;继承了Object类中的一些基本方法&#xff0c;例如toString()、equals()、hashCode()。 Collect…

Mysql数据备份 —Navicat

一 Navicat 对于表的备份 根据自己的需求来选择 可以直接备份数据表 操作简单明了 二 Navicat 对于库的备份 对于数据库 直接通过转储SQL文件 保存结构和数据 需要新创建数据库 字符集和编码格式要对应 否则容易乱码 运行刚才生成的文件即可

【Git】GUI图形化界面的使用SSH协议IDEA集成Git

&#x1f973;&#x1f973;Welcome Huihuis Code World ! !&#x1f973;&#x1f973; 接下来看看由辉辉所写的关于Git的相关操作吧 目录 &#x1f973;&#x1f973;Welcome Huihuis Code World ! !&#x1f973;&#x1f973; 一. GUI图形化界面的使用 1.使用Gui​ 2.常…

Linux - 基础IO(Linux 当中的文件,文件系统调用接口,文件描述符)- 上篇

前言 首先&#xff0c;关于文件我们最先要理解的是&#xff0c;文件不仅仅存储的是数据&#xff0c;一个文件包括 内容 数据。内容好理解&#xff0c;就是我们先要这文件存储哪一些数据&#xff0c;这些数据就是文件的内容。 但是&#xff0c;在计算机当中&#xff0c;有两种…

【Maven教程】(十):使用 Hudson 进行持续集成—— 从Hudson的安装到任务创建 ~

Maven 使用 Hudson 进行持续集成 1️⃣ 持续集成的作用、过程和优势2️⃣ Hudson 简介与安装3️⃣ 准备 Subversion 仓库4️⃣ Hudson 的基本系统设置5️⃣ 创建 Hudson 任务5.1 Hudson 任务的基本配置5.2 Hudson 任务的源码仓库配置5.3 Hudson 任务的构建触发配置5.4 Hudson …

Linux:权限篇 (彻底理清权限逻辑!)

shell命令以及运行原理&#xff1a; Linux严格意义上说的是一个操作系统&#xff0c;我们称之为“核心&#xff08;kernel&#xff09;“ &#xff0c;但我们一般用户&#xff0c;不能直接使用kernel。而是通过kernel的“外壳”程序&#xff0c;也就是所谓的shell&#xff0c;来…

Ubuntu18.04.6安装qt5.7.1(超级详细教程)

目录 1、下载对应Linux版本的qt 2、安装完qt&#xff0c;可能也要安装下对应的编译工具 1、下载对应Linux版本的qt &#xff08;1&#xff09;准备安装的是qt5.7.1&#xff1a;qt-opensource-linux-x64-5.7.1.run &#xff08;2&#xff09;在虚拟机进入存放qt安装包的目录…

jQuery HTML/CSS 参考文档

jQuery HTML/CSS 参考文档 文章目录 应用样式 示例属性方法示例 jQuery HTML/CSS 参考文档 应用样式 addClass( classes ) 方法可用于将定义好的样式表应用于所有匹配的元素上。可以通过空格分隔指定多个类。 示例 以下是一个简单示例&#xff0c;设置了para标签 <p&g…

CVE-2023-25194 Kafka JNDI 注入分析

Apache Kafka Clients Jndi Injection 漏洞描述 Apache Kafka 是一个分布式数据流处理平台&#xff0c;可以实时发布、订阅、存储和处理数据流。Kafka Connect 是一种用于在 kafka 和其他系统之间可扩展、可靠的流式传输数据的工具。攻击者可以利用基于 SASL JAAS 配置和 SASL …

django|报错SQLite 3.8.3 or later is required的解决方案

迁移原同事写的程序&#xff0c;到新服务器上边。运行报错。解决方案有三种 降低django版本升级sqlite3&#xff0c;不低于3.8.3版本修改django源码 方案一、降低django版本 卸载高版本django pip uninstall django安装低版本&#xff0c;如 pip install django2.1.7注意&…

ARM 基础学习记录 / 异常与GIC介绍

GIC概念 念课本&#xff08;以下内容都是针对"通用中断控制器&#xff08;GIC&#xff09;"而言&#xff0c;直接摘录的&#xff0c;有的地方可能不符人类的理解方式&#xff09;&#xff1a; 通用中断控制器&#xff08;GIC&#xff09;架构提供了严格的规范&…

【C语言 | 预处理】C语言预处理详解(三)——内存对齐、手把手教你计算结构体大小

&#x1f601;博客主页&#x1f601;&#xff1a;&#x1f680;https://blog.csdn.net/wkd_007&#x1f680; &#x1f911;博客内容&#x1f911;&#xff1a;&#x1f36d;嵌入式开发、Linux、C语言、C、数据结构、音视频&#x1f36d; &#x1f923;本文内容&#x1f923;&a…

Elasticsearch:Lucene 中引入标量量化

作者&#xff1a;BENJAMIN TRENT 我们如何将标量量化引入 Lucene。 Lucene 中的自动字节量化 虽然 HNSW 是一种强大而灵活的存储和搜索向量的方法&#xff0c;但它确实需要大量内存才能快速运行。 例如&#xff0c;查询 768 维的 1MM float32 向量大约需要 1,000,000*4*(7681…