Redis之缓存

news2024/11/28 6:32:51

文章目录

  • 前言
  • 一、缓存
    • 使用缓存的原因
  • 二、使用缓存
    • 实现思路
    • 提出问题
  • 三、三大缓存问题
    • 缓存穿透
    • 缓存雪崩
    • 缓存击穿
      • 互斥锁实现
      • 逻辑过期时间实现
  • 总结


前言

本篇文章即将探索的问题(以黑马点评为辅助讲解,大家主要体会实现逻辑)

  • 使用redis缓存的原因
  • 数据库与缓存不一致问题
  • 三大缓存问题(缓存穿透、缓存雪崩、缓存击穿)。

`

一、缓存

缓存(Cache),就是数据交换的缓冲区,俗称的缓存就是缓冲区内的数据,一般从数据库中获取,存储于本地代码。

1:Static final ConcurrentHashMap<K,V> map = new ConcurrentHashMap<>(); 本地用于高并发

例2:static final Cache<K,V> USER_CACHE = CacheBuilder.newBuilder().build(); 用于redis等缓存

例3:Static final Map<K,V> map =  new HashMap(); 本地缓存

由于其被Static修饰,所以随着类的加载而被加载到内存之中,作为本地缓存,由于其又被final修饰,所以其引用(例3:map)和对象(例3:new HashMap())之间的关系是固定的,不能改变,因此不用担心赋值(=)会导致缓存失效;

使用缓存的原因

速度快、好用

  • 缓存数据存储于代码中,而代码运行在内存中,内存的读写性能远高于磁盘,缓存可以大大降低用户访问并发量带来的服务器读写压力。
  • 实际开发过程中,企业的数据量,少则几十万,多则几千万,这么大数据量,如果没有缓存来作为"避震器",系统是几乎撑不住的,所以企业会大量运用到缓存技术。
  • 但是缓存也会增加代码复杂度和运营的成本。
  • 使用Redis缓存可以很好的解决大量操作访问数据库的带来的压力,让数据处理和响应更快,提高用户体验,毕竟Redis是100000+QPS级别的。

在这里插入图片描述

二、使用缓存

  • 在一个项目中,存在一些很久不会变化的信息,如果每次访问都去数据库中读取,显然每次都要重复的动作是费时而毫无意义的。
  • 案例: 在美团等应用上的商家店铺信息,比如照片,店铺名称,店铺位置等等几乎不经常变化的信息,我们每一次访问都去数据库中获取,会导致响应慢,而且还有高并发访问量给数据库带来巨大压力,所以我们就可以将这些放入redis中,下次响应直接去redis中获取,redis的性能能够大大改善这种问题。

在这里插入图片描述

实现思路

核心思路就是客户端先向Redis中获取,如果Redis中没有,再去数据库中获取,数据库中获取后,将获取的数据写入缓存,这样下一次访问就能在Redis中获取。如果数据库没有,那就是真的没有了,返回报错,比如该商铺不存在等等。

在这里插入图片描述

public Shop queryWithPassThrough(Long id){
        String key = "cache:shop:" + id;
        // 1.从redis查询商铺缓存
        String shopJson = stringRedisTemplate.opsForValue().get(key);
        // 2.判断是否存在
        if (StrUtil.isNotBlank(shopJson)){
            // 3.存在,直接返回
            return JSONUtil.toBean(shopJson, Shop.class);
        }
        // 判断命中的是否是空值
        if (shopJson != null) {
            // 返回一个错误信息
            return null;
        }
        // 4.不存在,根据id查询数据库
        Shop shop = getById(id);
        // 5.不存在,返回错误
        if (shop == null) {
            return Result.fail("店铺不存在!");
        }
        // 6.存在,写入redis
        stringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop));
        // 7.返回
        return shop;
    }

提出问题

第一次获取时Redi没有,去数据库中获取,这时候的数据肯定是准确的(排除一些数据库脏读幻读等等情况),但是这些存入Redis中的数据虽然是不经常发生改变的,但是肯定会存在改变的情况,当数据库信息改变的时候,你再去访问,还是先获取Redis中的,所以就会导致缓存更新的问题,数据库和缓存不一致的问题。

解决方案(三种常用的读写策略):
在这里插入图片描述

  • Cache Aside Pattern (旁路缓存)人工编码方式:缓存调用者在更新完数据库后再去更新缓存,也称之为双写方案。
  • Read/Write Through Pattern(读写穿透) : 由系统本身完成,数据库与缓存的问题交由系统本身去处理。
  • Write Behind Caching Pattern(异步缓存) :调用者只操作缓存,其他线程去异步处理数据库,实现最终一致。
  • 三种模式各有优劣,不存在最佳模式,根据具体的业务场景选择适合自己的缓存读写模式。
  • 第一种方案常用,适合请求比较多的场景,这里综合考虑我们也使用该方案。
  • 但是作为调用者处理上面对着三个问题:
    • 删除缓存还是更新缓存
      • 更新缓存:每次更新数据库都更新缓存,无效写操作较多
      • 删除缓存:更新数据库时让缓存失效,查询时再更新缓存
    • 如何保证缓存与数据库的操作同时成功或失败
      • 单体系统,将缓存与数据库操作放在一个事务
      • 分布式系统,利用TCC等分布式事务方案
    • 先操作缓存还是先操作数据库
      • 先删除缓存,再操作数据库:假设第一个线程先删除缓存,然后更新数据库,但是更新前有第二个线程来获取数据,它肯定先获取redis缓存,但是缓存已经被第一个线程删除,所以去数据库查询,然后将查询完的又写入redis缓存中。最后第一个线程再更新数据库,但是它更新数据库前第二个线程把原来的数据已经写入缓存了,又出现了不一致现象。
      • 先操作数据库,再删除缓存:这种方案如果上诉场景也会出现不一致,但是第二次访问时就会一致,因为它操作完数据库后把缓存删了,所以删除缓存后,无论谁来访问肯定是要去访问数据库,然后再写入redis缓存中,实现了更新。
  • 最终思路:
    • 查询店铺时,如果缓存未命中,则查询数据库,将数据库结果写入缓存,并设置超时时间,设置超时时间后会实现定缓存失效,然后后面访问数据库实现再次查询数据库并写入缓存,并设置时间,形成一个良性循环。
    • 修改店铺时,先修改数据库,再删除缓存。
public Shop queryWithPassThrough(Long id){
        String key = CACHE_SHOP_KEY + id;
        // 1.从redis查询商铺缓存
        String shopJson = stringRedisTemplate.opsForValue().get(key);
        // 2.判断是否存在
        if (StrUtil.isNotBlank(shopJson)){
            // 3.存在,直接返回
            return JSONUtil.toBean(shopJson, Shop.class);
        }
        // 判断命中的是否是空值
        if (shopJson != null) {
            // 返回一个错误信息
            return Result.fail("店铺不存在!");
        }
        // 4.不存在,根据id查询数据库
        Shop shop = getById(id);
        // 5.不存在,返回错误
        if (shop == null) {
            // 将空值写入redis
            stringRedisTemplate.opsForValue().set(key,"",CACHE_NULL_TTL,TimeUnit.MINUTES);
            return null;
        }
        // 6.存在,写入redis
        stringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop),CACHE_SHOP_TTL, TimeUnit.MINUTES);
        // 7.返回
        return shop;
    }
@Transactional
    public Result update(Shop shop) {
        Long id = shop.getId();
        if (id == null) {
            return Result.fail("店铺id不能为空");
        }
        // 1.更新数据库
        updateById(shop);
        // 2.删除缓存
        stringRedisTemplate.delete(CACHE_SHOP_KEY + id);
        return Result.ok();
    }

三、三大缓存问题

缓存穿透

缓存穿透 :缓存穿透是指客户端请求的数据在缓存中和数据库中都不存在,这样缓存永远不会生效,这些请求都会打到数据库。

  • 常见两种解决方案:
  • 缓存空对象
    • 优点:实现简单,维护方便
    • 缺点:1.额外的内存消耗;2.可能造成短期不一致
  • 布隆过滤
    • 优点:内存占用较少,没有多余key
    • 缺点:1.实现复杂;2.存在误判可能

缓存空对象思路分析:当我们客户端访问不存在的数据时,先请求redis,但是此时redis中没有数据,此时会访问到数据库,但是数据库中也没有数据,这个数据穿透了缓存,直击数据库,我们都知道数据库能够承载的并发不如redis这么高,如果大量的请求同时过来访问这种不存在的数据,这些请求就都会访问到数据库,简单的解决方案就是哪怕这个数据在数据库中也不存在,我们也把这个数据存入到redis中去,这样,下次用户过来访问这个不存在的数据,那么在redis中也能找到这个数据就不会进入到缓存了。
布隆过滤:布隆过滤器其实采用的是哈希思想来解决这个问题,通过一个庞大的二进制数组,走哈希思想去判断当前这个要查询的这个数据是否存在,如果布隆过滤器判断存在,则放行,这个请求会去访问redis,哪怕此时redis中的数据过期了,但是数据库中一定存在这个数据,在数据库中查询出来这个数据后,再将其放入到redis中,假设布隆过滤器判断这个数据不存在,则直接返回。这种方式优点在于节约内存空间,存在误判,误判原因在于:布隆过滤器走的是哈希思想,只要哈希思想,就可能存在哈希冲突。
在这里插入图片描述

在原来的逻辑中,我们如果发现这个数据在mysql中不存在,直接就返回404了,这样是会存在缓存穿透问题的。大家可以想想如果有人恶意攻击你的网站,多个本来不存在的数据获取同时访问,因为缓存中没有,都会直达数据库。
现在的逻辑中:如果这个数据不存在,我们不会返回404 ,还是会把这个数据写入到Redis中,并且将value设置为空,再次发起查询时,我们如果发现命中之后,判断这个value是否是null,如果是null,则是之前写入的数据,证明是缓存穿透数据,如果不是,则直接返回数据。

在这里插入图片描述

    public Shop queryWithPassThrough(Long id){
        String key = "cache:shop:" + id;
        // 1.从redis查询商铺缓存
        String shopJson = stringRedisTemplate.opsForValue().get(key);
        // 2.判断是否存在
        if (StrUtil.isNotBlank(shopJson)){
            // 3.存在,直接返回
            return JSONUtil.toBean(shopJson, Shop.class);
        }
        // 判断命中的是否是空值
        if (shopJson != null) {
            // 返回一个错误信息
            return null;
        }
        // 4.不存在,根据id查询数据库
        Shop shop = getById(id);
        // 5.不存在,返回错误
        if (shop == null) {
            // 将空值写入redis
            stringRedisTemplate.opsForValue().set(key,"",30L,TimeUnit.MINUTES);
            return null;
        }
        // 6.存在,写入redis
        stringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop),CACHE_SHOP_TTL, TimeUnit.MINUTES);
        // 7.返回
        return shop;
    }

缓存穿透的解决方案有哪些?

  • 缓存null值
  • 布隆过滤
  • 增强id的复杂度,避免被猜测id规律
  • 做好数据的基础格式校验
  • 加强用户权限校验
  • 做好热点参数的限流

缓存雪崩

  • 缓存雪崩是指在同一时段大量的缓存key同时失效或者Redis服务宕机,导致大量请求到达数据库,带来巨大压力。
  • 解决方案:
    • 给不同的Key的TTL添加随机值
    • 利用Redis集群提高服务的可用性
    • 给缓存业务添加降级限流策略
    • 给业务添加多级缓存

在这里插入图片描述

缓存击穿

  • 缓存击穿问题也叫热点Key问题,就是一个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击。
  • 常见的解决方案(两种):
    • 互斥锁
    • 逻辑过期锁
  • 逻辑分析:假设线程1在查询缓存之后,本来应该去查询数据库,然后把这个数据重新加载到缓存的,此时只要线程1走完这个逻辑,其他线程就都能从缓存中加载这些数据了,但是假设在线程1没有走完的时候,后续的线程2,线程3,线程4同时过来访问当前这个方法, 那么这些线程都不能从缓存中查询到数据,那么他们就会同一时刻来访问查询缓存,都没查到,接着同一时间去访问数据库,同时的去执行数据库代码,对数据库访问压力过大。

在这里插入图片描述

互斥锁实现

因为锁能实现互斥性。假设线程过来,只能一个人一个人的来访问数据库,从而避免对于数据库访问压力过大,但这也会影响查询的性能,因为此时会让查询的性能从并行变成了串行,我们可以采用tryLock方法 + double check来解决这样的问题。
假设现在线程1过来访问,他查询缓存没有命中,但是此时他获得到了锁的资源,那么线程1就会一个人去执行逻辑,假设现在线程2过来,线程2在执行过程中,并没有获得到锁,那么线程2就可以进行到休眠,直到线程1把锁释放后,线程2获得到锁,然后再来执行逻辑,此时就能够从缓存中拿到数据了。

在这里插入图片描述
核心思路:利用redis的setnx方法来表示获取锁,该方法含义是redis中如果没有这个key,则插入成功,返回1,在stringRedisTemplate中返回true, 如果有这个key则插入失败,则返回0,在stringRedisTemplate返回false,我们可以通过true,或者是false,来表示是否有线程成功插入key,成功插入的key的线程我们认为他就是获得到锁的线程。

在这里插入图片描述


private boolean tryLock(String key) {
    Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);
    return BooleanUtil.isTrue(flag);
}

private void unlock(String key) {
    stringRedisTemplate.delete(key);
}
 public Shop queryWithMutex(Long id)  {
        String key = CACHE_SHOP_KEY + id;
        // 1、从redis中查询商铺缓存
        String shopJson = stringRedisTemplate.opsForValue().get("key");
        // 2、判断是否存在
        if (StrUtil.isNotBlank(shopJson)) {
            // 存在,直接返回
            return JSONUtil.toBean(shopJson, Shop.class);
        }
        //判断命中的值是否是空值
        if (shopJson != null) {
            //返回一个错误信息
            return null;
        }
        // 4.实现缓存重构
        //4.1 获取互斥锁
        String lockKey = "lock:shop:" + id;
        Shop shop = null;
        try {
            boolean isLock = tryLock(lockKey);
            // 4.2 判断否获取成功
            if(!isLock){
                //4.3 失败,则休眠重试
                Thread.sleep(50);
                return queryWithMutex(id);
            }
            //4.4 成功,根据id查询数据库
             shop = getById(id);
            // 5.不存在,返回错误
            if(shop == null){
                 //将空值写入redis
                stringRedisTemplate.opsForValue().set(key,"",CACHE_NULL_TTL,TimeUnit.MINUTES);
                //返回错误信息
                return null;
            }
            //6.写入redis
            stringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop),CACHE_NULL_TTL,TimeUnit.MINUTES);

        }catch (Exception e){
            throw new RuntimeException(e);
        }
        finally {
            //7.释放互斥锁
            unlock(lockKey);
        }
        return shop;
    }

逻辑过期时间实现

我们把过期时间设置在 redis的value中,注意:这个过期时间并不会直接作用于redis,而是我们后续通过逻辑去处理。假设线程1去查询缓存,然后从value中判断出来当前的数据已经过期了,此时线程1去获得互斥锁,那么其他线程会进行阻塞,获得了锁的线程他会开启一个 线程去进行 以前的重构数据的逻辑,直到新开的线程完成这个逻辑后,才释放锁, 而线程1直接进行返回,假设现在线程3过来访问,由于线程线程2持有着锁,所以线程3无法获得锁,线程3也直接返回数据,只有等到新开的线程2把重建数据构建完后,其他线程才能走返回正确的数据。

在这里插入图片描述
思路分析:当用户开始查询redis时,判断是否命中,如果没有命中则直接返回空数据,不查询数据库,而一旦命中后,将value取出,判断value中的过期时间是否满足,如果没有过期,则直接返回redis中的数据,如果过期,则在开启独立线程后直接返回之前的数据,独立线程去重构数据,重构完成后释放互斥锁。
在这里插入图片描述

因为现在redis中存储的数据的value需要带上过期时间,此时要么你去修改原来的实体类,要么你就是重新封装。

@Data
public class RedisData {
    private LocalDateTime expireTime;// 过期时间
    private Object data;// 存储的对象
}
private static final ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10);
public Shop queryWithLogicalExpire( Long id ) {
    String key = CACHE_SHOP_KEY + id;
    // 1.从redis查询商铺缓存
    String json = stringRedisTemplate.opsForValue().get(key);
    // 2.判断是否存在
    if (StrUtil.isBlank(json)) {
        // 3.存在,直接返回
        return null;
    }
    // 4.命中,需要先把json反序列化为对象
    RedisData redisData = JSONUtil.toBean(json, RedisData.class);
    Shop shop = JSONUtil.toBean((JSONObject) redisData.getData(), Shop.class);
    LocalDateTime expireTime = redisData.getExpireTime();
    // 5.判断是否过期
    if(expireTime.isAfter(LocalDateTime.now())) {
        // 5.1.未过期,直接返回店铺信息
        return shop;
    }
    // 5.2.已过期,需要缓存重建
    // 6.缓存重建
    // 6.1.获取互斥锁
    String lockKey = LOCK_SHOP_KEY + id;
    boolean isLock = tryLock(lockKey);
    // 6.2.判断是否获取锁成功
    if (isLock){
        CACHE_REBUILD_EXECUTOR.submit( ()->{

            try{
                //重建缓存
                this.saveShop2Redis(id,20L);
            }catch (Exception e){
                throw new RuntimeException(e);
            }finally {
                unlock(lockKey);
            }
        });
    }
    // 6.4.返回过期的商铺信息
    return shop;
}

总结

以上就是Redis缓存的详细讲解与实现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1192559.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Nmap-NSE

一.Nmap的脚本引擎类别 参数说明ALL允许所有的脚本Auth认证Default默认的脚本引擎&#xff0c;-sC&#xff1a;equivalent to --script default 或 --script default &#xff0c;执行一些脚本的脚本扫描Discovery发现&#xff0c;获取目标的深度信息External扩展&#xff0c…

2023面试笔记四

1、gc导致的cpu冲高 排查是否为gc导致&#xff0c;看如下两点&#xff1a; gc频率和耗时 内存占用率 &#xff08;1&#xff09;gc频率和耗时有两种手段看&#xff1a; 第一种&#xff1a;根据gc日志的打印时间&#xff0c;可确定每次gc间隔的时间和耗时&#xff1a; 使用…

聚铭国产化日志合规版 → 中小企事业单位等保建设的最优解

聚铭网络最新发布聚铭综合日志分析系统国产化合规版本 &#xff0c;相较于同类型同档次非国产化设备性能无衰减、功能无裁减、成本不提高&#xff0c;适用于信创替换以及等保日志建设等应用场景。 面对日趋复杂的外部环境&#xff0c;近年来&#xff0c;国家越来越重视关键技术…

谭浩强【C语言程序设计】第一章习题详解

目录 1&#xff0c;什么是程序&#xff1f;什么是程序设计&#xff1f; 2&#xff0c;为什么需要计算机语言&#xff1f;高级语言有哪些特点&#xff1f; 3&#xff0c;正确理解以下名词及其含义&#xff1a; (1)源程序&#xff0c;目标程序&#xff0c;可执行程序。 (2)程…

免费小程序HTTPS证书

随着互联网的快速发展&#xff0c;小程序已经成为人们日常生活中不可或缺的一部分。然而&#xff0c;在小程序的开发和使用过程中&#xff0c;安全问题一直是开发者们关注的重点。其中&#xff0c;HTTPS 证书是保障小程序安全的重要工具之一。在这方面&#xff0c;免费的小程序…

【机器学习】正则化到底是什么?

先说结论&#xff1a;机器学习中的正则化主要解决模型过拟合问题。 如果模型出现了过拟合&#xff0c;一般会从两个方面去改善&#xff0c;一方面是训练数据&#xff0c;比如说增加训练数据量&#xff0c;另一方面则是从模型角度入手&#xff0c;比如&#xff0c;降低模型复杂…

HDR 成像技术学习(四)

HDR(High Dynamic Range,高动态范围)仿佛是成像领域永恒的话题,动态范围越大,图像能清晰呈现的明暗差别也就越大。与传统的SDR(标准动态范围)相比,HDR图像能够以更高质量同时显示画面的亮部和暗部。 随这些年CMOS图像传感器工艺技术进步,以及后端数字信号处理算力的提升…

编译内核源码

本文将记录内核源码编译步骤&#xff0c;供有需要的人参考使用。 一、内核源码下载网址 内核源码网址&#xff1a;https://kernel.org/ 二、准备编译环境 这里需要注意区分x86架构和arm架构&#xff0c;需要不同的架构内核就准备对应的服务器即可&#xff0c;在服务器上安装…

arthas常用命令

arthas常用命令 IDEA插件 arthas idea退出arthasjad 反编译watch 方法执行数据观测tracemonitor https://arthas.aliyun.com/doc/ IDEA插件 arthas idea 退出arthas # quit或者exit命令,只是退出当前的连接, Attach到目标进程上的arthas还会继续运行&#xff0c;端口会保持开…

火力全开!腾讯云这次直接开卖5年

如果你是一名网站管理员&#xff0c;或者是一名创业公司的CEO&#xff0c;那么腾讯云这个词一定不会陌生。作为国内领先的云计算服务提供商&#xff0c;腾讯云一直以来都在为各行各业的用户提供着高效、稳定、安全的云计算服务。 而在今天&#xff0c;我们要给大家带来一个重磅…

2020年五一杯数学建模B题基于系统性风险角度的基金资产配置策略分析解题全过程文档及程序

2020年五一杯数学建模 B题 基于系统性风险角度的基金资产配置策略分析 原题再现 近年来&#xff0c;随着改革开放程度的不断提高&#xff0c;我国经济运行中的各种风险逐渐暴露并集中传导和体现于金融领域。党的“十九大”报告提出“守住不发生系统性金融风险的底线”要求&am…

官媒代运营:让大众倾听品牌的声音

在当今数字时代&#xff0c;媒体的影响力和多样性远远超出了以往的范畴。品牌和企业越来越依赖媒体来传播信息、建立声誉以及与大众互动。而媒体矩阵成为了现代品牌传播的关键策略&#xff0c;使大众能够倾听品牌的声音。媒体矩阵&#xff1a;多元化的传播渠道 媒体矩阵是指利…

使用双动态令牌混合器学习全局和局部动态以进行视觉识别

TransXNet: Learning Both Global and Local Dynamics with a Dual Dynamic Token Mixer for Visual Recognition 1、问题与解决2、引言3、方法3.1 双动态令牌混合器(D- Mixer)3.2 IDConv(Input-dependent Depthwise Convolution)3.3 Overlapping Spatial Reduction Attention …

玩具品牌的国际化之路:市场推广战略解析

玩具产业一直是全球市场中备受瞩目的领域之一。随着全球化的发展和互联网的普及&#xff0c;越来越多的玩具品牌开始进军国际市场。这既是机遇&#xff0c;也是挑战。在竞争激烈的全球市场中&#xff0c;如何成功推广玩具品牌是一个关键的问题。本文Nox聚星将和大家探讨玩具品牌…

Live800:企业客户服务如何数字化转型?

现代社会&#xff0c;随着互联网的快速发展&#xff0c;企业客户服务也在不断的数字化转型。数字化转型不仅可以更好地为客户提供服务&#xff0c;也可以提高企业的效率和降低成本。那么&#xff0c;企业客户服务如何数字化转型呢&#xff1f; 一、在线客服系统 在线客服系统是…

ECharts常用配置

1.使用&#xff1a; &#xff08;1&#xff09;.下载引入 npm install echarts(版本号) --save import * as echarts from "echarts"; &#xff08;2&#xff09;.准备一个DOM容器 &#xff08;3&#xff09;.初始化echarts实例对象 echarts.init(document.getE…

获取小程序页面路径完整流程

应用场景&#xff1a;因为所涉及的功能要跳转到滴滴打车小程序的代驾页面&#xff0c;而我并不知道他的appid和对应的页面路径&#xff0c;所以跟着我的步骤走下&#xff0c;这里拿滴滴打车小程序举例。 现在的话我们是拿到了小程序对应的appid了&#xff0c;接下来就去获取小程…

软件测试:性能测试工具Jmeter与Locust

Apache JMeter™和Locust都是是最受欢迎的性能测试工具。 JMeter 和 Locust 简介 JMeter是久经考验的性能框架之一&#xff0c;其第一个版本大约在20年前发布。 它是用纯Java语言编写的。 最初&#xff0c;JMeter开发用于执行Web和FTP应用程序的负载测试。 但是&#xff0c;现…

算法打卡02——删除有序数组中的重复项

题目&#xff1a;删除有序数组中的重复项 给你一个 非严格递增排列 的数组 nums &#xff0c;请你 原地 删除重复出现的元素&#xff0c;使每个元素 只出现一次 &#xff0c;返回删除后数组的新长度。元素的 相对顺序 应该保持 一致 。然后返回 nums 中唯一元素的个数。 考虑…

ECRS工时分析软件:精益成本管理的得力助手

在制造业领域&#xff0c;精益成本管理已经成为提高企业竞争力、实现持续发展的关键因素。而在精益成本管理中&#xff0c;ECRS改善分析法是一种非常实用的工具。ECRS工时分析软件&#xff0c;结合了ECRS改善分析法和VIOOVI精益成本管理法的精髓&#xff0c;为IE部门在优化生产…