聚焦产业链上下游企业研发设计、生产制造、运维服务、经营管理、供应链管理等场景,以场景为切入点梳理数字化转型痛点需求,绘制重点行业、重点产业链数字化转型场景图谱(简称“一图谱”),明确企业数字化转型路径,促进产业链上下游企业协同开展转型升级。分场景梳理数据要素、知识模型、工具软件、人才技能等数字化转型要素清单(简称“四清单”,合称“一图四清单”),助力政产学研各界联合攻坚场景数字化转型关键难点。
一、场景参考架构
场景是制造业全生命周期的基本单元,也是供需双方协同推进数字化转型的纽带。制造业数字化转型可以转化为多个更具操作性的场景转型,通过打造标准化的数字场景解决方案,实现以场景转型之“和”形成行业整体转型之“解”。
(一)场景分类
基于企业或产业链创造价值的过程,将场景划分为研发设计、生产制造、运维服务、经营管理、供应链管理等,同时区分跨环节协同类(如下图所示)。具体如下:
场景分类
1. 研发设计:利用计算机辅助设计、数字化仿真、数字样机、模型驱动设计等数字技术和工具,开展产品样品或服务样例设计和仿真,包含产品平台化设计、产品协同测试验证、产品工艺虚拟仿真、产线及工厂三维优化设计等细分场景。
2. 生产制造:利用物联网、计算机辅助生产、数字化制造执行系统等数字技术和工具,将原材料、零部件、能源、信息等批量转化为产品或服务,包含多工厂/多基地协同排产、生产工艺优化、质量智能检测、远程能耗监测、安环监测与监管等细分场景。
3. 运维服务:利用互联网连接、数字化售后服务等,开展企业设备健康管理,并为客户提供产品售后跟踪和技术支持,包括设备在线监测维护、产品运维及后市场服务等细分场景。
4. 经营管理:利用数字化技术手段和信息管理系统,对企业经营过程进行计划、组织、指挥、协调和控制,包括财务智能化管理、客户洞察与营销管理、人员数字化管理等细分场景。
5. 供应链管理:利用物联网、大数据、人工智能等数字技术和企业资源计划(ERP)、供应链管理(SCM)、客户关系管理(CRM)等数字化工具,对产品从原材料采购到产品质量追溯全流程的计划、过程进行管理,包括多级供应商管理、无人仓储及智能物流、供应链产品质量追溯、供应链断链预测预警等细分场景。
6. 跨环节协同:应用数据集成、模型打通等方式,联通企业不同业务管理环节,实现跨环节整体协同优化,包括基于系统工程(MBSE)的产品全生命周期管理、基于从消费者到生产者(C2M)的大规模定制化生产等细分场景。
(二)场景数字化要素
场景的数字化转型需要相配套的数字化要素支撑。围绕场景转型所需的“人、机、料、法、环”等资源,将场景数字化要素划分为数据要素、知识模型、工具软件、人才技能等 4 类要素以及数字基础设施保障(如下图所示)。
场景的数字化要素
1. 数据要素:以电子形式存在,利用运算、挖掘、建模等方式,支撑实际生产经营业务活动并发挥重要价值,是场景数字化转型的关键驱动要素。
2. 知识模型:利用数据挖掘、机器学习、人工智能等技术,对场景中对象、现象和原理进行数字化、结构化处理,形成反映工业机理、业务逻辑等现实场景的算法、数据结构或数字模块等,是场景数字化转型的重要载体。
3. 工具软件:场景数字化转型所需的各类数字化工具,包括数字化集成工具、通用软件工具、专用软件工具等,是场景数字化转型的关键支撑要素。
4. 人才技能:场景数字化转型过程中相关决策者、管理者、执行者等应当具备的关键能力要求,包含技术研发类、应用实施类、业务管理类等所需相关技能,是场景数字化转型的关键保障要素。
(三)场景数字化协同
依据数字化转型场景图谱(如下图所示),通过工具打通、数据互连、模型互认等要素连接,畅通场景间工具链、数据链、模型链等数字主线,实现产业链上下游各环节以及企业内研、产、管、服等各类业务活动的数字化贯通和网络化协同。通过提质、降本、节能等价值标签明确场景转型成效,将数字化语言转化为企业管理语言,更高效助力企业实现精益化管理。
数字化转型场景图谱
二、典型场景示例
(一)研发设计
1. 产品平台化设计
引导企业应用云化软件工具,按需订阅产品设计、仿真模拟等软件服务,提升产品设计和仿真效率,降低软件运维成本。鼓励企业应用基于 AI 的创成式设计软件工具,构建设计模型、仿真模型等数据集,开展模型训练,快速生成固定参数和约束条件下的产品结构性能设计方案,实现产品敏捷研发。
2. 产品协同测试验证
鼓励制造业企业开展协同设计,支持企业建设协同设计平台,集成常用研发设计软件和产品模型库,打造统一在线协同研发环境,整合需求开发、产品结构设计、功能性能仿真等环节,联合配套零部件企业基于平台开展协同测试验证,缩短产品设计和求解时间。鼓励企业应用数字孪生技术构建产品数字样机,利用云平台存储和共享数字样机数据,支撑跨部门、跨区域实时访问和性能评估,通过机器学习快速定位数字样机潜在问题,降低中试成本。
3. 产品工艺虚拟仿真
引导企业利用虚拟现实、增强现实技术,在数字化环境中创建产品加工过程的仿真模型,结合人工智能算法和大数据分析,根据产品特征和生产要求,模拟产品实际生产过程的工艺参数,自动生成工艺加工路线,实现工艺过程快速设计优化。
4. 产线及工厂三维优化设计
鼓励企业基于数字孪生建立工厂、产线、物流系统的数字化模型,开展虚拟环境下的仿真分析,灵活调整设备位置、产线走向等,对工厂生产运作进行可视化设计、验证,实现产线性能、生产流程和资源配置的优化。
(二)生产制造
1.多工厂/ 多基地协同排产
支持企业应用基于工业互联网平台的订单管理工业APP,集成集团采购、生产、仓储等多环节数据,建立统一的生产计划管理体系,结合各工厂产能情况,综合制定跨工厂/跨基地生产订单执行计划,实现集团效益的最大化。
2.生产工艺优化
支持企业部署分布式控制系统(DCS)、先进控制系统(APC)、实时优化控制系统(RTO),构建推广基于数字孪生、大模型的产线智能控制应用,以大模型方式比较不同生产条件下产品收率变化情况,形成最佳工艺参数控制策略,叠加数字孪生技术,支撑制造过程传感、监测与自适应控制等,实现生产工艺、装备调参、物料平衡等生产作业的智能化提升。
3.生产流程优化
支持企业开发部署高级计划排产系统(APS),基于云平台打通设计、计划、加工、检测等数据并实时分析。鼓励企业按需打造柔性生产应用,根据生产执行情况,实时监控计划异常,提供可视化的插单、异常处理机制,支持基于约束规则的最优生产能力配置,并在业务持续运行中智能优化排程与调度模型,实现模型在车间智能排产与调度系统中固化及复用。
4.质量智能检测
鼓励企业应用基于工业互联网平台的质量管理工业APP,建立贯穿产品全生命周期的质量管控体系,融合机器视觉、缺陷机理分析、工业大模型、标识解析等,开展产品质量在线检测与分析,快速识别缺陷种类与影响因素,推动产品全生命周期质量精准追溯,实现产品迭代优化。
5.远程能耗监测
鼓励企业部署基于工业互联网平台的能耗管理工业APP,应用智能传感、大数据等技术,开展全环节能耗数据可视化监测,建立能效平衡与优化模型,进行能源平衡智能优化分析,结合大模型、寻优算法等技术,实现工厂能源综合平衡与优化调度,提高企业绿色化水平。
6.安环监测与监管
鼓励企业部署基于工业互联网平台的安环管理工业APP,采用智能传感、机器视觉、大数据分析等技术,动态感知危化品、危险环节、污染源等各类安环风险,开发安全生产风险监测与污染物管理模型,实现智能预测、预警及全过程检测,提高企业安全生产水平。
(三)运维服务
1.设备在线监测维护
鼓励企业部署基于工业互联网平台的设备管理工业APP,运用机器学习、人工智能等技术进行在线诊断,智能分析设备状态并进行预测性维护,提升设备可靠性和运营效率,实现长期的成本节约。
2.产品运维及后市场服务
鼓励企业搭建工业互联网平台,结合人工智能等技术,实现对产品配件采购、库存和物流的可视化管理与分析,并通过平台管理产品信息,探索提供设备租赁与产能共享等一站式配套服务,促进资源共享,优化资源配置,提高设备利用效率。鼓励企业开展平台化设计、定制化服务、供应链管理和产品全生命周期管理等服务,探索产品服务化、工程服务化和知识服务化等创新服务模式,加快企业沿产业链向高附加值环节跃升。
(四)经营管理
1.财务智能化管理
面对企业财务管理流程长、重复工作多、人为失误不可避免等问题,鼓励企业针对财务管理,应用机器人流程自动化(RPA)技术改进流程,推动重复性工作的自动化处理,减少人工操作和失误。引导集团型企业部署统一的财务管理平台,推动财务管理系统与业务系统集成,支持基于平台的线上实时协作管理,实现业务活动全流程资金及时响应。
2.客户洞察与营销管理
引导企业基于人工智能、大数据等技术构建商业智能(BI),通过集成客户关系管理(CRM)、办公自动化(OA)、企业资源计划(ERP)等不同业务信息系统,开展经营数据汇聚和经营分析模型应用,快速分析客户需求,识别高价值客户群体,实现基于模型的客户洞察与营销智能决策。
3.人员数字化管理
支持企业部署云化人员绩效管理系统,实时记录绩效表现,并分析绩效趋势和问题。部署在线学习平台和数字化培训工具,依托虚拟现实、增强现实等技术,实现虚拟化环境下的知识和操作技能学习,并在线追踪学习进展,提高人员培训效率。
(五)供应链管理
1.多级供应商采购管理
支持企业构建基于工业互联网平台的多级供应商采购管理系统,基于模型优化供应资源结构,将一级供应商管理延伸至二级供应商或多级供应商,引导一级、二级供应商上链用链,开展多级供应商台账管理,应用大数据分析技术开展供应商寻优,及时备份关键供应节点,开展供应商提前接入,保障零部件的质量稳定、交付及时,提升最终成品综合性能。
2.无人仓储及智能物流
支持企业基于数字化平台开展订单全流程跟踪,建设自动化立体仓库和无人搬运车(AGV),重点部署和打通生产计划、仓储管理等环节,应用大数据分析技术优化仓储布局和出入库管理,基于模型算法开展货物装载、卸载、搬运的路径优化,提高仓储物流效率,实现订单精准配送和准时交付。
3.供应链产品质量追溯
支持企业利用数字化供应链开展售后质量追溯,打通出厂产品和供应链系统数据,实时响应用户产品维保需求,针对反馈的产品数据开展大数据分析,为产品研发设计阶段的参数优化提供依据,提升产品售后服务满意度和交付质量,增强用户粘性。
4.供应链断链预测预警
鼓励企业建立供应链数据监测系统,整合企业资源计划、生产执行、仓储管理、客户管理等系统数据,利用大数据建模构建供应链风险评估模型,针对供应商交货延迟、物流运输堵塞等关键指标设定报警阈值,实现供应链断链的提前报警以及应急调度。
(六)跨环节协同
1.基于 MBSE 的产品全生命周期管理
支持企业开展产品全生命周期管理,构建基于模型的系统工程(MBSE)平台工具,支持各类产品模型在需求、设计、分析、验证等全生命周期贯通,并进一步与产品实时运维数据相结合,实现基于全生命周期数据和模型集成融合的智能决策,进而达到产品最优设计、最优制造和最优运维。
2.基于 C2M 的大规模定制化生产
鼓励企业搭建工业互联网平台,构建用户参与设计的功能模块,打造可以模块化编排的数字工艺和柔性产线,建设按需生产的弹性供应链系统,打通用户订单、生产计划、采购管理、加工生产、物流管理等数字化系统,实现用户可自行搭建产品、工厂可按需柔性生产、配送可按时指定送达。
三、企业数字化转型优选工具
织信Informat作为一款“乐高型”的低代码系统搭建平台,其具有高度灵活的“数据+流程+角色”动态信息管理模型。平台深耕制造业,专注低代码行业解决方案,可以更专业快速的搭建企业运营所需的各类管理系统,大幅节约研发成本和时间,帮助企业实现全方位的数字化转型。
织信Informat低代码快速开发工具,让系统开发更智能、更高效。
1、企业IT需求的日益增长与预算受限的矛盾:大型企业的信息化需求逐年增长,其软件外包费用或人力成本开支与日俱增,财务预算却逐年下降。中小型企业受限于目前各类办公软件较高的费用而推行信息化速度迟缓。
2、研发周期长,无法满足现实需求:传统软件开发要经历业务需求、开发测试和部署发布三个大环节,复杂系统动辄需要一个团队半年以上时间,对于一些需求不能灵敏变更。
3、传统软件无法满足功能的灵活性:传统软件的功能只能受限于厂商对于客户需求的理解,且无法满足企业不同时期或业务转型的变动。
4、置换已有应用系统的成本高,风险高:中大型企业业务流程和架构较为复杂,替换已部署应用的置换成本高,并存在信息安全等风险。
这些问题通过织信Informat低代码均能很好解决。
结语:
不可否认,制造企业进行数字化转型是必然趋势,但仍有不少企业对转型望而却步。据专业机构数据显示,89%的成长型企业处于数字化转型的探索阶段。一方面,中小企业缺乏数字化平台、转型能力不足;另一方面,MES等工业应用行业水平低、市场不集中,开发效率低、成本高等问题普遍存在,这都成为阻碍制造企业向智能化、数字化迈进的因素。
织信Informat低代码快速开发工具立足于自身在制造业的长期专注与沉淀,树立“好MES用织信开发”,实现技术突破、知识沉淀和复用,让工业软件开发更简单,工业企业的应用和投资更简单,帮助企业形成适应自身发展阶段的数字化能力。
1、基于织信低代码平台,以行业标准套件满足不同行业的业务需求,以微服务单元化重构业务,以低代码开发满足个性需求。
2、提供全云化的开发平台和各种敏捷的开发工具,可以实现工业场景的各种复杂应用的开发,例如各类工控端的应用开发,数字孪生工厂、分析报表看板、过程预警监控等等。
3、通过设备互联平台,可以快速简单互联各种协议的设备,快速实现IT与OT层数据对接。
4、沉淀了海量丰富的标准化组件,通过织信低代码平台复制与应用,快速构建SRM/MES等工业应用(一站式管理),让企业数字化转型过程更简单、转型周期更短、转型成本更低。
织信Informat通过数十载的行业深耕沉淀,现基于织信低代码平台,可为汽车电子、新能源、智能装备、电子装配、生物医药、半导体等重点行业提供了MES、SRM、WMS、PLM等众多优质好用的工业软件。未来,织信将持续打磨平台,帮助更多的制造企业通过工业软件实现数字化升级。