💥💥💥💞💞💞欢迎来到本博客❤️❤️❤️💥💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
目录
💥1 概述
📚2 运行结果
2.1 BP神经网络
2.2 RBF
2.3 PSO-RBF
🎉3 参考文献
🌈4 Matlab代码实现
💥1 概述
RBF神经网络结构一般包含输入层、隐含层和神经网络的输出层11。RBF神经网络将复杂的非线性问题转化为高维特征空间,使问题转化为线性可分,避免了局部最小的问题,需要更多的隐层神经元。RBF神经网络结构如图1所示。
📚2 运行结果
2.1 BP神经网络
2.2 RBF
2.3 PSO-RBF
部分代码:
粒子群算法中的两个参数
c1 = 1.49445;
c2 = 1.49445;
popcount=10; %粒子数
poplength=6; %粒子维数
Wstart=0.9;%初始惯性权值
Wend=0.2;%迭代次数最大时惯性权值
%个体和速度最大最小值
Vmax=1;
Vmin=-1;
popmax=4;
popmin=-4;
%粒子位置速度和最优值初始化
for i=1:popcount
pop(i,:)=rand(1,9);%初始化粒子位置
V(i,:)=rand(1,9);%初始化粒子速度
%计算粒子适应度值
Center=pop(i,1:3);
SP=pop(i,4:6);
W=pop(i,7:9);
Distance=dist(Center',SamIn);
SPMat=repmat(SP',1,SamNum);%repmat具体作用
UnitOut=radbas(Distance./SPMat);%径向基函数
NetOut=W*UnitOut;%网络输出
Error=SamOut-NetOut;%网络误差
%SSE=sumsqr(Error);
%fitness(i)=SSE;
RMSE=sqrt(sumsqr(Error)/SamNum);
fitness(i)=RMSE;
%fitness(i)=fun(pop(i,:));
end
%适应度函数(适应度值为RBF网络均方差)
[bestfitness bestindex]=min(fitness);
gbest=pop(bestindex,:);%全局最优值
pbest=pop;%个体最优值
pbestfitness=fitness;%个体最优适应度值
gbestfitness=bestfitness;%全局最优适应度值
%迭代寻优
for i=1:MaxEpoch
Vmax=1.00014^(-i);
Vmin=-1.00014^(-i);
for j=1:popcount
% if (fitness(j)<gbestfitness|fitness==gbestfitness)
% S(j)=0;
%end
%S(j)=1-(fitness(j)/100)^2;
% GW(j)=Wstart-S(j)*(Wstart-Wend);
% GW(j)=Wend+(GW(j)-Wend)*(MaxEpoch-i)/MaxEpoch;
GW=Wstart-(Wstart-Wend)*i/MaxEpoch;
%速度更新(第一种方法精度最高)
V(j,:) = 1.000009^(-i)*(gbestfitness/fitness(j)+2)*rand*V(j,:) + c1*rand*(pbest(j,:) - pop(j,:)) + c2*rand*(gbest - pop(j,:));
%V(j,:) = GW*((fitness(j)/2000)^2+1)*rand*V(j,:) + c1*rand*(pbest(j,:) - pop(j,:)) + c2*rand*(gbest - pop(j,:));
%V(j,:) = GW*V(j,:) + c1*rand*(pbest(j,:) - pop(j,:)) + c2*rand*(gbest - pop(j,:));
%V(j,:) = 0.9*V(j ,:) + c1*rand*(pbest(j,:) - pop(j,:)) + c2*rand*(gbest - pop(j,:));
%V(j,:) = 0.9*1.0003^(-j)* V(j,:) + c1*rand*(pbest(j,:) - pop(j,:)) + c2*rand*(gbest - pop(j,:));
%V(j,:) = (gbestfitness/(exp(-fitness(j))+1)+0.5)*rand*V(j,:) + c1*rand*(pbest(j,:) - pop(j,:)) + c2*rand*(gbest - pop(j,:));
V(j,find(V(j,:)>Vmax))=Vmax;
V(j,find(V(j,:)<Vmin))=Vmin;
%粒子更新
pop(j,:)=pop(j,:)+0.5*V(j,:);
pop(j,find(pop(j,:)>popmax))=popmax;
pop(j,find(pop(j,:)<popmin))=popmin;
%计算粒子适应度值
Center=pop(j,1:3);
SP=pop(j,4:6);
W=pop(j,7:9);
Distance=dist(Center',SamIn);
SPMat=repmat(SP',1,SamNum);%repmat具体作用
UnitOut=radbas(Distance./SPMat);
NetOut=W*UnitOut;%网络输出
Error=SamOut-NetOut;%网络误差
%SSE=sumsqr(Error);
%fitness(j)=SSE;
RMSE=(sumsqr(Error)/SamNum);
fitness(j)=RMSE;
% Center=pop(j,1:10);
% SP=pop(j,11:20);
% W=pop(j,21:30);
% fitness(j)=fun(pop(j,:));
end
for j=1:popcount
%个体最优更新
if fitness(j) < pbestfitness(j)
pbest(j,:) = pop(j,:);
pbestfitness(j) = fitness(j);
end
%群体最优更新
if fitness(j) < gbestfitness
gbest = pop(j,:);
gbestfitness = fitness(j);
end
end
gbesthistory=[gbesthistory,gbest];
%mse(i)=gbestfitness;
%将群体最优值赋给RBF参数
Center=gbest(1,1:3);
SP=gbest(1,4:6);
W=gbest(1,7:9);
%Center=gbest(1,1:5);
%SP=gbest(1,11:20);
% W=gbest(1,21:30);
Distance=dist(Center',SamIn);
SPMat=repmat(SP',1,SamNum);%repmat具体作用
UnitOut=radbas(Distance./SPMat);
NetOut=W*UnitOut;%网络输出
Error=SamOut-NetOut;%网络误差
%sse(i)=sumsqr(Error);
mse(i)=(sumsqr(Error)/SamNum);
% sse(i)=fun(gbest);
%if sse(i)<E0,break,end
end
toc;
% 测试
Center=gbest(1,1:3);
SP=gbest(1,4:6);
W=gbest(1,7:9);
TestDistance=dist(Center',TargetIn);
TesatSpreadsMat=repmat(SP',1,TargetSamNum);
TestHiddenUnitOut=radbas(TestDistance./TesatSpreadsMat);
TestNNOut=W*TestHiddenUnitOut;
%作图 分别在训练集和测试集上
subplot(1,2,1)
plot(1:length(NetOut),NetOut,'*',1:length(NetOut),SamOut,'o')
title('In Train data')
subplot(1,2,2)
plot(1:3,TestNNOut,'*',1:3,TargetOut,'o')
title('In Test data')
%求出误差 训练集和测试集
train_error=sum(abs(SamOut-NetOut))/length(SamOut);
test_error=sum(abs(TargetOut-TestNNOut))/length(TargetOut);
🎉3 参考文献
[1]王媛媛.基于改进PSO优化RBF神经网络的温室温度预测研究[J].计算机与数字工程,2016,44(07):1210-1215.
[2]向昭君. 群智能算法优化RBF神经网络的研究与应用[D].兰州大学,2016.DOI:10.27204/d.cnki.glzhu.2016.000078.