算法之【时间复杂度】与【空间复杂度】

news2024/11/23 23:54:39

目录

一、算法

1、算法定义

2、两种算法的比较

3、算法的特性

4、算法设计的要求

二、算法的复杂度

1、时间复杂度

1.1定义

1.2大O的渐近表示法

1.3推导大O阶方法

1.4最坏情况与平均情况

1.5常见的时间复杂度计算示例

🍂常数阶:

🍂线性阶: 

🍂对数阶:

🍂平方阶:

2、空间复杂度


一、算法

1、算法定义

算法就是定义良好的计算过程,它取一个或一组的值为输入,并产生出一个或一组的值作为输出。简单来说算法就是一系列的计算步骤,用来将输入数据转化成输出结果。概括起来就是数据结构是在内存当中存储、管理数据;算法是对各种数据进行处理,怎么处理就看我们自己的需求了。

2、两种算法的比较

现在要求写一个求1+2+3+······+100结果的程序,大多数人会马上写出下面的C语言代码:

#include <stdio.h>
int main()
{
	int i;
	int sum = 0;
	int  n = 100;
	for (i = 1; i <= 100; i++)
	{
		sum += i;
	}
	printf("%d\n", sum);

	return 0;
}

这是最简单的计算机程序之一,它就是一种算法,但这种算法是最高效的吗?

这个时候,我们就得将伟大的数学家高斯的童年故事拿来说一遍。据说18世纪生于德国小村庄的高斯,上小学的一天,课堂很乱,老师就非常生气,于是在放学时,就要求每个学生都计算1+2+···+100的结果,谁先算出来谁先回家。天才当然不会被这样的问题难倒,高斯很快就得出了答案,是5050。老师非常惊讶,因为他自己想必也是通过1+2=3,3+3=6,······4950+100=5050这样算出来的,也算了很久很久。可是,眼前这个少年,一个上小学的孩子,为何可以这么快的得出结果?高斯解释道:

sum = 1 + 2 + 3 + ... + 99 + 100
sum = 100 + 99 + 98 + ... + 2 + 1
2 * sum  = 100 + 101 + 101 +  ... + 101 + 101 (共100个)

所以sum = 5050

用程序实现如下:

#include <stdio.h>
int main()
{
	int sum = 0;
	int n = 100;
	sum = (1 + n) * n / 2;
	printf("%d\n", sum);

	return 0;
}

 高斯的方法相当于一种求等差数列的算法,不仅仅可以用于1加到100,就是加到1千,1万,1亿,也就是瞬间之事。但如果用第一种挨个加的程序,显然计算机要循环1千,1万,1亿次的加法运算。

3、算法的特性

算法具有五个基本特性:输入输出有穷性确定性可行性

🍂输入输出:

算法具有零个或多个输入,至少有一个或多个输出。

🍂有穷性:

指算法在执行有限的步骤之后,自动结束而不会出现无限循环,并且每一个步骤在可接受的时间内完成。

🍂确定性:

算法的每一步骤都具有确定的含义,不会出现二义性。

🍂可行性:

算法的每一步都必须是可行的,也就是说,每一步都能够通过执行有限次数完成。

4、算法设计的要求

好的算法设计有四个要求:正确性可读性健壮性时间效率高和存储量低

🌻正确性:

算法的正确性是指算法至少应该具有输入、输出和加工处理无歧义性,能正确反映问题的需求,能够得到问题的正确答案。 

🌻可读性:

算法设计的另一目的是为了方便阅读、理解和交流。

🌻健壮性:

当输入数据不合法时,算法也能做出相关处理,而不是产生异常或莫名其妙的结果。

🌻时间效率高和存储量低:

时间效率指的是算法的执行时间,执行时间短的算法效率高,执行时间长的效率低;存储量需求指的是算法在执行过程中需要的最大存储间,主要指算法程序运行时所占用的内存或外部硬盘存储空间。

二、算法的复杂度

算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源。因此衡量一个算法的好坏,一般是从时间和空间两个角度来衡量的,即时间复杂度空间复杂度

时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早期,计算机的存储容量很小,所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要在特别关注一个算法的空间复杂度。

1、时间复杂度

1.1定义

在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是都可以上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例。算法中的基本操作的执行次数,为算法的时间复杂度。即找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

1.2大O的渐近表示法

我们先来看一段代码,请计算一下Func1中++count语句总共执行了多少次?

void Func1(int N)
{
	int count = 0;
	for (int i = 0; i < N; ++i)
	{
		for (int j = 0; j < N; ++j)
		{
			++count;
		}
	}
	for (int k = 0; k < 2 * N; ++k)
	{
		++count;
	}
	int M = 10;
	while (M--)
	{
		++count;
	}

printf("%d\n", count);
}

Func1 执行的基本操作次数:F(N) = N^2 + 2*N + 10

  • 实际中我们计算时间复杂度时,其实并不一定要计算精确的执行次数,而只需要计算大概执行次数,那么这里我们使用大O的渐进表示法。
  • 大O符号(Big O notation):是用于描述函数渐进行为的数学符号 。

1.3推导大O阶方法

  1. 用常数1取代运行时间中的所有加法常数。
  2. 在修改后的运行次数函数中,只保留最高阶项。
  3. 如果最高阶项存在且其系数不是1,则去除与这个项相乘的系数。

得到的结果就是大O阶。

 🎈上面的代码使用大O渐进法以后,Func1的时间复杂度为:O(N^2)

1.4最坏情况与平均情况

通过上面的代码示例我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。另外有些算法的时间复杂度存在最好、平均和最坏情况:

🍁最坏情况:任意输入规模的最大运行次数(上界)
🍁平均情况:任意输入规模的期望运行次数
🍁最好情况:任意输入规模的最小运行次数(下界)

例如:我们在一个长度为N的数组中查找某个数字:

🍁最好情况:1次找到
🍁最坏情况:N次找到
🍁平均情况:N/2次找到

在实际中一般在没有特殊说明的情况下,关注的都是算法的最坏运行情况,即最坏时间复杂度,所以数组中搜索数据时间复杂度为O(N)。


1.5常见的时间复杂度计算示例

🍂常数阶:
int sum = 0,n = 100;//执行一次
sum = (1 + n) * n / 2;//执行一次
printf("%d\n", sum);//执行一次

这个算法的运行次数函数是f(n) = 3。根据我们推导大O阶的方法,第一步就是把常数项3改为1。在保留最高项阶时发现,它根本没有最高阶项,所以这个算法的时间复杂度为O(1)。

另外,我们试想一下,如果这个算法当中的语句sum = (1 + n) * n / 2有10句,即:

int sum = 0, n = 100;//执行1次
sum = (1 + n) * n / 2;//执行第1次
sum = (1 + n) * n / 2;//执行第2次
sum = (1 + n) * n / 2;//执行第3次
sum = (1 + n) * n / 2;//执行第4次
sum = (1 + n) * n / 2;//执行第5次
sum = (1 + n) * n / 2;//执行第6次
sum = (1 + n) * n / 2;//执行第7次
sum = (1 + n) * n / 2;//执行第8次
sum = (1 + n) * n / 2;//执行第9次
sum = (1 + n) * n / 2;//执行第10次
printf("%d\n", sum);//执行1次

事实上无论n为多少,上面的两段代码就是3次执行和12次执行的差异。这种与问题的大小(n的大小)无关,执行时间恒定的算法,我们称之为具有O(1)的时间复杂度,又叫常数阶。

注意:不管这个常数是多少,我们都记作O(1),而不能是O(3)、O(12)等其它任何数字。

🍂线性阶: 

线性阶的循环结构会复杂很多。要确定某个算法的阶次,我们常常需要确定某个特定语句或某个语句集运行的次数。因此,我们要分析算法的复杂度,关键就是要分析循环结构的运行情况。

int i;
for (i = 0; i < n; i++)
{

}

 上面这段代码,循环体中的代码需要执行n次,所以它的时间复杂度就为O(n)。

🍂对数阶:
int count = 1;
while (count < n)
{
	count = count * 2;
}

上面这段代码,由于每次count乘以2之后,就距离n更近了一分。也就是说,有多少个2相乘后大于n,则会退出循环。由2^x=n得到x=log以2为底的n次方。所以这个循环的时间复杂度为O(logn)。 

🍂平方阶:
int i, j;
for (i = 0; i < n; i++)
{
	for (j = 0; j < n; j++)
	{

	}
}

上面这段代码是一个嵌套循环,它的内层循环时间复杂度为O(n);而对于外层的循环,不过是内部这个时间复杂度为O(n)的语句,再循环n次。所以这段代码的时间复杂度为O(n^2)。

如果外循环的循环次数改为了m,时间复杂度就变为O(m*n)。

int i, j;
for (i = 0; i < n; i++)
{
	for (j = 0; j < m; j++)
	{

	}
}

🌲所以我们可以总结得出,循环的时间复杂度等于循环体的复杂度乘以该循环的运行次数。 


 那么下面这个循环嵌套,它的时间复杂度是多少呢?

int i, j;
for (i = 0; i < n; i++)
{
	for (j = i; j < n; j++)
	{

	}
}

由于当i = 0时,内循环执行了n次,当i  = 1时执行了n-1次,······当i = n - 1时,执行了1次。所以总的执行次数为:

n + (n-1) + (n-2) +···+1 = n(n+1)/2 = n^2/2 + n/2

用我们推导大O阶的方法,第一条,没有加法常数不予考虑;第二条,只保留最高阶项,因此保留n^2/2;第三条,去除与这个项相乘的常数,也就是去除1/2,最终这段代码的时间复杂度为O(n^2)。 


🍒常见的时间复杂度如下表所示:

🍒常用的时间复杂度所耗费的时间从小到大依次是:

O(1) < O(logn) < O(n) < O(nlogn) < O(n^2) < O(n^3) < O(2^n) < O(n!) < O(n^n)

2、空间复杂度

  • 空间复杂度也是一个数学表达式,是一个算法在运行过程中临时占用存储空间大小的量度 。
  • 空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。
  • 空间复杂度计算规则基本跟时间复杂度类似,也使用大O渐进表示法。

🎈注意:

函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候申请的额外空间来确定。


🌴实例1:

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
	assert(a);
	for (size_t end = n; end > 0; --end)
	{
		int exchange = 0;
		for (size_t i = 1; i < end; ++i)
		{
			if (a[i - 1] > a[i])
			{
				Swap(&a[i - 1], &a[i]);
				exchange = 1;
			}
		}
		if (exchange == 0)
			break;
	}
}

上面这段代码使用了常数个额外空间,所以空间复杂度为 O(1) 。

🌴实例2:

// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{
	if (n == 0)
		return NULL;
	long long* fibArray = (long long*)malloc((n + 1) * sizeof(long long));
	fibArray[0] = 0;
	fibArray[1] = 1;
	for (int i = 2; i <= n; ++i)
	{
		fibArray[i] = fibArray[i - 1] + fibArray[i - 2];
	}
	return fibArray;
}

上面这段代码动态开辟了N个空间,空间复杂度为 O(N) 。

🌴实例3:

// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
	if (N == 0)
		return 1;
	return Fac(N - 1) * N;
}

上面这段代码递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间,所以空间复杂度为O(N) 。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1164903.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Pinia的十个简答小案例

1. 使用Pinia进行状态管理&#xff1a; import { defineStore } from piniaexport const useCounterStore defineStore({id: counter,state: () > ({count: 0}),actions: {increment() {this.count},decrement() {this.count--}} }) 2. 在组件中使用Pinia&#xff1a; &…

【GitLab CI/CD、SpringBoot、Docker】GitLab CI/CD 部署SpringBoot应用,部署方式Docker

介绍 本文件主要介绍如何将SpringBoot应用使用Docker方式部署&#xff0c;并用Gitlab CI/CD进行构建和部署。 环境准备 已安装Gitlab仓库已安装Gitlab Runner&#xff0c;并已注册到Gitlab和已实现基础的CI/CD使用创建Docker Hub仓库&#xff0c;教程中使用的是阿里云的Docker…

Docker Tomcat 搭建文件服务器

本文基于openwrt上进行。 步骤 1: 安装 Docker 如果尚未安装Docker&#xff0c;首先需要安装Docker。根据你的操作系统&#xff0c;参考Docker官方文档来完成安装, 这里不做详细介绍。 步骤 2: 拉去docker Tomcat镜像 进入openwrt管理界面&#xff0c;docker选项中 拉取最新…

《算法设计与分析》 蛮力法实验报告一

1.&#xff08;洛谷 P1008&#xff09;将 1,2...9 共 9 个数分成三组,分别组成三个三位数,且使这三个三位数构成 1:2:3 的比例,试求出所有满足条件的三个三位数。 输入格式&#xff1a; 无 输出格式&#xff1a; 若干行&#xff0c;每行 3 个数字。按照每行第 1 个数字升序…

Run, Don‘t Walk: Chasing Higher FLOPS for Faster Neural Networks(CVPR2023)

文章目录 AbstractIntroduction过去工作存在的不足我们的工作主要贡献&#xff08;待参考&#xff09; Related workCNNViT, MLP, and variants Design of PConv and FasterNetPreliminaryPartial convolution as a basic operatorPConv followed by PWConvFasterNet as a gene…

【下载器】NDM和IDM介绍(含安装包和教程)

1 IDM&#xff08;增强型下载管理器&#xff09; 1.1 IDM介绍 官网&#xff1a;Internet Download Manager (IDM) 优缺点&#xff1a; 高速下载&#xff1a; IDM通过多线程下载和分段下载技术&#xff0c;能够显著提高下载速度&#xff0c;从而节省用户的时间。暂停和恢复功…

关于网络编程的3个问题

一、TCP 和 UDP 可以同时绑定相同的端口吗&#xff1f; 答案&#xff1a;可以的 在数据链路层中&#xff0c;通过 MAC 地址来寻找局域网中的主机。在网络层中&#xff0c;通过 IP 地址来寻找网络中互连的主机或路由器。在传输层中&#xff0c;需要通过端口进行寻址&#xff0…

【DP】最长上升公共子序列

一.题目来源 272. 最长公共上升子序列 - AcWing题库 二.简要思路 这道题易知是最长上升子序列&#xff08;LIS&#xff09;和最长公共子序列&#xff08;LCS&#xff09;的综合应用。我们可以先求最长公共子序列&#xff0c;然后再内循环最长上升子序列即可&#xff0c;直接看…

【ES专题】ElasticSearch搜索进阶

目录 前言阅读导航前置知识特别提醒笔记正文一、分词器详解1.1 基本概念1.2 分词发生的时期1.3 分词器的组成1.3.1 切词器&#xff1a;Tokenizer1.3.2 词项过滤器&#xff1a;Token Filter1.3.3 字符过滤器&#xff1a;Character Filter 1.4 倒排索引的数据结构 <font color…

《基于先验未知盲反卷积技术的包络谱重复瞬态的循环平稳性提取》阅读笔记及代码整理

论文阅读笔记及代码整理 《Extracting cyclo-stationarity of repetitive transients from envelope spectrum based on prior-unknown blind deconvolution technique》 代码有优化整理过&#xff0c;需要请下载&#xff1a;https://mbd.pub/o/bread/ZZaTl5ht 贡献&#xff1…

文件如何变成下载链接?

文件如何变成下载链接&#xff1f;有时候工作需要&#xff0c;要把一些文档&#xff08;比如Word&#xff0c;Excel&#xff0c;PPT&#xff0c;PDF等&#xff09;转成下载链接&#xff0c;作为公众号文章的附件&#xff0c;给粉丝们下载。 把文件转成下载链接&#xff0c;有几…

vue生命周期总结

包含页面的生命周期以及路由的生命周期 页面内&#xff1a; <script> export default {name: "",data() {return {value: "路由页面",};},// 组件不具有此钩子beforeRouteEnter(to, from, next) {console.log("beforeRouteEnter",this);/…

IntelliJ IDEA 2023 最新版如何试用?IntelliJ IDEA 2023最新版试用方法及验证ja-netfilter配置成功提示

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…

Langchain-Chatchat项目:4.1-P-Tuning v2实现过程

常见参数高效微调方法(Parameter-Efficient Fine-Tuning&#xff0c;PEFT)有哪些呢&#xff1f;主要是Prompt系列和LoRA系列。本文主要介绍P-Tuning v2微调方法。如下所示&#xff1a; Prompt系列比如&#xff0c;Prefix Tuning(2021.01-Stanford)、Prompt Tuning(2021.09-Goo…

OpenGL_Learn04

我这边并不是教程&#xff0c;只是学习记录&#xff0c;方便后面回顾&#xff0c;代码均是100%可以运行成功的。 1. 渐变三角形 #include <glad/glad.h> #include <GLFW/glfw3.h>#include <iostream> #include <cmath>void framebuffer_size_callba…

科学计数法 [极客大挑战 2019]BuyFlag1

打开题目 注意中说&#xff0c;我们需要买flag&#xff0c;首先必须是cuit的学生&#xff0c;其次必须输对正确的密码 查看源代码得到 代码审计 首先&#xff0c;检查是否存在名为 password 的POST请求。 如果 password 存在&#xff0c;将其存储在变量 $password 中。 然后…

你没有见过的 git log 风格

背景 git大家都不陌生&#xff0c;git log 也是大家经常用的指令&#xff0c;今天分享三种 git log的美化格式&#xff0c;大家看看哪种更易读。 git log -15 --graph --decorate --oneline 带有 pretty 格式的git log 风格 log --color --graph --prettyformat:‘%Cred%h%C…

【音视频 | Ogg】RFC3533 :Ogg封装格式版本 0(The Ogg Encapsulation Format Version 0)

&#x1f601;博客主页&#x1f601;&#xff1a;&#x1f680;https://blog.csdn.net/wkd_007&#x1f680; &#x1f911;博客内容&#x1f911;&#xff1a;&#x1f36d;嵌入式开发、Linux、C语言、C、数据结构、音视频&#x1f36d; &#x1f923;本文内容&#x1f923;&a…

Vue3入门指南:零基础小白也能轻松理解的学习笔记

文章目录 创建项目开发环境项目目录模板语法属性绑定条件渲染列表渲染事件处理内联事件处理器方法事件处理器&#xff08;常用&#xff09; 事件参数获取 event 事件事件传参 事件修饰符阻止默认事件阻止事件冒泡 数组变化侦测变更方法替换一个数组 计算属性class 绑定单对象绑…

汽车标定技术(一):XCP概述

目录 1.汽车标定概述 2.XCP协议由来及版本介绍 3.XCP技术通览 3.1 XCP上下机通信模型 3.2 XCP指令集 3.2.1 XCP帧结构定义 3.2.2 标准指令集 3.2.3 标定指令集 3.2.4 页切换指令集 3.2.5 数据采集指令集 3.2.6 刷写指令集 3.3 ECU描述文件(A2L)概述 3.3.1 标定上位…