【JavaEE】线程安全的集合类 -- 多线程篇(9)

news2024/12/23 16:54:53

线程安全的集合类

  • 多线程环境使用 ArrayList
  • 多线程环境使用队列
  • 多线程环境使用哈希表

多线程环境使用 ArrayList

  1. 自己使用同步机制 (synchronized 或者 ReentrantLock)
  2. Collections.synchronizedList(new ArrayList);
    • synchronizedList 是标准库提供的一个基于 synchronized 进行线程同步的 List.
    • synchronizedList 的关键操作上都带有 synchronized
  3. 使用 CopyOnWriteArrayList
    • CopyOnWrite容器即写时复制的容器。
      • 当我们往一个容器添加元素的时候,不直接往当前容器添加,而是先将当前容器进行Copy,复制出一个新的容器,然后新的容器里添加元素,
      • 添加完元素之后,再将原容器的引用指向新的容器。
    • 这样做的好处是我们可以对CopyOnWrite容器进行并发的读,而不需要加锁,因为当前容器不会添加任何元素。
    • 所以CopyOnWrite容器也是一种读写分离的思想,读和写不同的容器
    • 优点:
      • 在读多写少的场景下, 性能很高, 不需要加锁竞争.
    • 缺点:
      • 占用内存较多.
      • 新写的数据不能被第一时间读取到.

多线程环境使用队列

  1. ArrayBlockingQueue
    • 基于数组实现的阻塞队列
  2. LinkedBlockingQueue
    • 基于链表实现的阻塞队列
  3. PriorityBlockingQueue
    • 基于堆实现的带优先级的阻塞队列
  4. TransferQueue
    • 最多只包含一个元素的阻塞队列

多线程环境使用哈希表

HashMap 本身不是线程安全的.
在多线程环境下使用哈希表可以使用:

  • Hashtable
  • ConcurrentHashMap

Hashtable

只是简单的把关键方法加上了 synchronized 关键字.

在这里插入图片描述

  • 这相当于直接针对 Hashtable 对象本身加锁.
    • 如果多线程访问同一个 Hashtable 就会直接造成锁冲突.
    • size 属性也是通过 synchronized 来控制同步, 也是比较慢的.
    • 一旦触发扩容, 就由该线程完成整个扩容过程. 这个过程会涉及到大量的元素拷贝, 效率会非常低.

在这里插入图片描述

ConcurrentHashMap

相比于 Hashtable 做出了一系列的改进和优化. 以 Java1.8 为例

  • 读操作没有加锁(但是使用了 volatile 保证从内存读取结果), 只对写操作进行加锁. 加锁的方式仍然是是用 synchronized, 但是不是锁整个对象, 而是 “锁桶” (用每个链表的头结点作为锁对象), 大大降低了锁冲突的概率.
  • 充分利用 CAS 特性. 比如 size 属性通过 CAS 来更新. 避免出现重量级锁的情况.
  • 优化了扩容方式: 化整为零
    • 发现需要扩容的线程, 只需要创建一个新的数组, 同时只搬几个元素过去.
    • 扩容期间, 新老数组同时存在.
    • 后续每个来操作 ConcurrentHashMap 的线程, 都会参与搬家的过程. 每个操作负责搬运一小部分元素.
    • 搬完最后一个元素再把老数组删掉.
    • 这个期间, 插入只往新数组加.
    • 这个期间, 查找需要同时查新数组和老数组

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1119623.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【AIGC】百度文库文档助手之 - 一键生成PPT

百度文库文档助手之 - 一键生成PPT 引言一、文档助手:体验一键生成PPT二、文档助手:进阶用法三、其它生成PPT的方法3.1 ChatGPT3.2 文心一言 引言 就在上个月百度文库升级为一站式智能文档平台,开放四大AI能力:智能PPT、智能总结、…

正则表达式提取http和http内容

http.* 这样匹配到的就是我们要的内容 取反正则:^((?!要取反的正则表达式).)*$ 取反:^((?!http.).)$ 这样匹配到的就是我们不要的内容 提取域名 /[(http|ftp|https):\/\/]?([\w_-](?:(?:\.[\w_-])))([\w.,?^%&:\/~#-]*[\w?^%&\/~#-]…

APK与小程序渗透

文章目录 APK与小程序渗透1. APK2. 小程序2.1 源代码2.2 小程序的默认下载位置 3. 安装证书3.1 openssl配置环境变量3.2 安装证书 APK与小程序渗透 由于APK和小程序与服务器通信还是采用的是https协议,只是使用了加密。只要获取到了HTTP的请求报文就可以回归到Web渗…

单目3D目标检测论文汇总

基于语义和几何约束的方法 1. Deep3DBox 3D Bounding Box Estimation Using Deep Learning and Geometry [CVPR2017] https://arxiv.org/pdf/1612.00496.pdfhttps://zhuanlan.zhihu.com/p/414275118 核心思想:通过利用2D bounding box与3D bounding box之间的几何约…

『C语言进阶』字符函数和内存函数(2)

🔥博客主页: 小羊失眠啦. 🔖系列专栏: C语言、Linux、Cpolar ❤️感谢大家点赞👍收藏⭐评论✍️ 文章目录 一、strtok函数1.1 函数认识1.2 注意事项 二、strerror函数2.1 函数认识2.2 注意事项 三、memcpy函数3.1 函数…

1024渗透测试如何暴力破解其他人主机的密码(第十一课)

1024渗透测试如何暴力破解其他人主机的密码(第十一课) 1 crunch 工具 crunch是一个密码生成器,一般用于在渗透测试中生成随机密码或者字典攻击。下面是常见的一些使用方法: 生成密码字典 生成6位数字的字典:crunch 6 6 -t -o dict.txt …

【LeetCode】145. 二叉树的后序遍历 [ 左子树 右子树 根结点]

题目链接 文章目录 Python3方法一: 递归 ⟮ O ( n ) ⟯ \lgroup O(n) \rgroup ⟮O(n)⟯方法二: 迭代 ⟮ O ( n ) ⟯ \lgroup O(n) \rgroup ⟮O(n)⟯方法三: Morris ⟮ O ( n ) 、 O ( 1 ) ⟯ \lgroup O(n)、O(1) \rgroup ⟮O(n)、O(1)⟯写…

学成在线第二天-查询课程、查询课程分类、新增课程接口实现以及跨域的处理思路和全局异常处理的使用以及面试题

目录 一、接口的实现 二、跨域的处理思路 三、全局异常处理 四、面试题 五、总结 一、接口的实现 1. 查询课程接口 思路: 典型的分页查询 按需查询 模糊查询的查询 controller: ApiOperation(value "课程列表", notes "课程…

字节码进阶之java Instrumentation原理详解

文章目录 0. 前言1. 基础2. Java Instrumentation API使用示例 3. Java Agent4. 字节码操作库5. 实际应用6. 注意事项和最佳实践 0. 前言 Java Instrumentation是Java API的一部分,它允许开发人员在运行时修改类的字节码。使用此功能,可以实现许多高级操…

记录一次线下渗透电气照明系统(分析与实战)

项目地址:https://github.com/MartinxMax/S-Clustr 注意 本次行动未造成任何设备损坏,并在道德允许范围内测试 >ethical hacking< 发现过程 在路途中,发现一个未锁的配电柜,身为一个电工自然免不了好奇心(非专业人士请勿模仿,操作不当的话220V人就直了) 根据照片,简…

c++踩坑点,类型转换

std::string转换到PVOID std::string转换到PVOID的方式如下 这样的话成功转换 “const char *” 类型的实参与 “WCHAR *” “const char *” 类型的实参与 “WCHAR *” 类型的形参不兼容 可以看到这种报错&#xff0c;可以直接强转如下&#xff1a; 但是在我们这里不适…

论文总结:EXPRESSIVE SPEECH-DRIVEN FACIAL ANIMATION WITH CONTROLLABLE EMOTIONS

存在的问题:现有的语音驱动面部动画方法可以产生令人满意的嘴部运动和嘴唇同步,但在情感表达和情感控制方面存在不足。 作者使用wav2vec2.0和transformer encoder来获取文本向量和全局风格向量。将其拼接起来通过Auido2FLAME模块来预测flame的参数,Auido2FLAME由多层CNN组成…

大厂秋招真题【贪心】大疆20230813秋招T1-矩形田地

题目描述与示例 题目描述 给定一个矩形田地&#xff0c;其高度为 h 且宽度为 w。同时&#xff0c;你将获得两个整数数组 horizontalCutting 和 verticalCutting&#xff0c;其中 horizontalCutting[i] 表示从矩形田地顶部到第 i 个水平切口的距离&#xff0c;verticalCutting…

【二维差分】ICPC南京 A

https://codeforces.com/gym/104128/problem/A 题意 思路 二维差分经典模型 考虑如果没有洞那么经历操作之后会剩下什么样子的袋鼠。发现上下左右移动可以看成是边界在移动&#xff0c;边界一直保持一个原初的矩形形状&#xff0c;而且上下移动和左右移动没有任何关系。一旦…

自然语言处理---Transformer机制详解之GPT模型介绍

1 GPT介绍 GPT是OpenAI公司提出的一种语言预训练模型.OpenAI在论文<< Improving Language Understanding by Generative Pre-Training >>中提出GPT模型.OpenAI后续又在论文<< Language Models are Unsupervised Multitask Learners >>中提出GPT2模型.…

自然语言处理---RNN、LSTM、GRU模型

RNN模型 RNN模型概述 RNN(Recurrent Neural Network)&#xff0c;中文称作循环神经网络&#xff0c;它一般以序列数据为输入&#xff0c;通过网络内部的结构设计有效捕捉序列之间的关系特征&#xff0c;一般也是以序列形式进行输出。RNN的循环机制使模型隐层上一时间步产生的…

MIPS指令集摘要

目录 MIPS指令R I J三种格式 MIPS五种寻址方式 立即数寻址 寄存器寻址 基址寻址 PC相对寻址 伪直接寻址 WinMIPS64汇编指令 助记 从内存中加载数据 lb lbu lh lhu lw lwu ld l.d lui 存储数据到内存 sb sh sw sd s.d 算术运算 daddi daddui dadd…

自然语言处理---Transformer机制详解之GPT2模型介绍

1 GPT2的架构 从模型架构上看, GPT2并没有特别新颖的架构, 它和只带有解码器模块的Transformer很像. 所谓语言模型, 作用就是根据已有句子的一部分, 来预测下一个单词会是什么. 现实应用中大家最熟悉的一个语言模型应用, 就是智能手机上的输入法, 它可以根据当前输入的内容智…

hdlbits系列verilog解答(向量)-11

文章目录 一、问题描述二、verilog源码三、仿真结果一、问题描述 向量用于使用一个名称对相关信号进行分组,以使其更易于操作。例如,声明一个名为 8 位向量, wire [7:0] w; 该向量在 w 功能上等效于具有 8 个单独的线网(wire w0, w1, w2, w3, w4, w5, w6, w7)。 与C语言…

【Ubuntu系统搭建STM32开发环境(国内镜像全程快速配置)】

源于本人失败的经历苦心研究 虚拟机安装ubuntu换源VScode安装安装Java环境安装cubemx安装 arm-Linux-gcc安装gdb server安装OpenOCD 虚拟机安装ubuntu 系统镜像可以在阿里云镜像站且下载速度很快。 选择安装的版本。 我选择的是&#xff1a;ubuntu-22.10-desktop-amd64.iso。…