自然语言处理---Transformer机制详解之GPT模型介绍

news2025/1/13 2:50:02

1 GPT介绍

  • GPT是OpenAI公司提出的一种语言预训练模型.
  • OpenAI在论文<< Improving Language Understanding by Generative Pre-Training >>中提出GPT模型.
  • OpenAI后续又在论文<< Language Models are Unsupervised Multitask Learners >>中提出GPT2模型.
  • GPT和GPT2模型结构差别不大, 但是GPT2采用了更大的数据集进行训练.

  • OpenAI GPT模型是在Google BERT模型之前提出的, 与BERT最大的区别在于GPT采用了传统的语言模型方法进行预训练, 即使用单词的上文来预测单词, 而BERT是采用了双向上下文的信息共同来预测单词.

  • 正是因为训练方法上的区别, 使得GPT更擅长处理自然语言生成任务(NLG), 而BERT更擅长处理自然语言理解任务(NLU).

2 GPT的架构

  • 看三个语言模型的对比架构图, 中间的就是GPT:
  • 从上图可以很清楚的看到GPT采用的是单向Transformer模型, 例如给定一个句子[u1, u2, ..., un], GPT在预测单词ui的时候只会利用[u1, u2, ..., u(i-1)]的信息, 而BERT会同时利用上下文的信息[u1, u2, ..., u(i-1), u(i+1), ..., un].

  • 作为两大模型的直接对比, BERT采用了Transformer的Encoder模块, 而GPT采用了Transformer的Decoder模块. 并且GPT的Decoder Block和经典Transformer Decoder Block还有所不同, 如下图所示:

  • 如上图所示, 经典的Transformer Decoder Block包含3个子层, 分别是Masked Multi-Head Attention层, encoder-decoder attention层, 以及Feed Forward层. 但是在GPT中取消了第二个encoder-decoder attention子层, 只保留Masked Multi-Head Attention层, 和Feed Forward层.

  • 作为单向Transformer Decoder模型, GPT利用句子序列信息预测下一个单词的时候, 要使用Masked Multi-Head Attention对单词的下文进行遮掩, 来防止未来信息的提前泄露. 例如给定一个句子包含4个单词[A, B, C, D], GPT需要用[A]预测B, 用[A, B]预测C, 用[A, B, C]预测D. 很显然的就是当要预测B时, 需要将[B, C, D]遮掩起来.

  • 具体的遮掩操作是在slef-attention进行softmax之前进行的, 一般的实现是将MASK的位置用一个无穷小的数值-inf来替换, 替换后执行softmax计算得到新的结果矩阵. 这样-inf的位置就变成了0. 如上图所示, 最后的矩阵可以很方便的做到当利用A预测B的时候, 只能看到A的信息; 当利用[A, B]预测C的时候, 只能看到A, B的信息.

  • 注意: 对比于经典的Transformer架构, 解码器模块采用了6个Decoder Block; GPT的架构中采用了12个Decoder Block.

3 GPT训练过程

GPT的训练也是典型的两阶段过程:

  • 第一阶段: 无监督的预训练语言模型.
  • 第二阶段: 有监督的下游任务fine-tunning.

3.1 无监督的预训练语言模型

3.2 有监督的下游任务fine-tunning

4 小结

  • 什么是GPT.

    • GPT是OpenAI公司提出的一种预训练语言模型.
    • 本质上来说, GPT是一个单向语言模型.
  • GPT的架构.

    • GPT采用了Transformer架构中的解码器模块.
    • GPT在使用解码器模块时做了一定的改造, 将传统的3层Decoder Block变成了2层Block, 删除了encoder-decoder attention子层, 只保留Masked Multi-Head Attention子层和Feed Forward子层.
    • GPT的解码器总共是由12个改造后的Decoder Block组成的.
  • GPT的预训练任务.

    • 第一阶段: 无监督的预训练语言模型. 只利用单词前面的信息来预测当前单词.
    • 第二阶段: 有监督的下游任务fine-tunning.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1119597.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

自然语言处理---RNN、LSTM、GRU模型

RNN模型 RNN模型概述 RNN(Recurrent Neural Network)&#xff0c;中文称作循环神经网络&#xff0c;它一般以序列数据为输入&#xff0c;通过网络内部的结构设计有效捕捉序列之间的关系特征&#xff0c;一般也是以序列形式进行输出。RNN的循环机制使模型隐层上一时间步产生的…

MIPS指令集摘要

目录 MIPS指令R I J三种格式 MIPS五种寻址方式 立即数寻址 寄存器寻址 基址寻址 PC相对寻址 伪直接寻址 WinMIPS64汇编指令 助记 从内存中加载数据 lb lbu lh lhu lw lwu ld l.d lui 存储数据到内存 sb sh sw sd s.d 算术运算 daddi daddui dadd…

自然语言处理---Transformer机制详解之GPT2模型介绍

1 GPT2的架构 从模型架构上看, GPT2并没有特别新颖的架构, 它和只带有解码器模块的Transformer很像. 所谓语言模型, 作用就是根据已有句子的一部分, 来预测下一个单词会是什么. 现实应用中大家最熟悉的一个语言模型应用, 就是智能手机上的输入法, 它可以根据当前输入的内容智…

hdlbits系列verilog解答(向量)-11

文章目录 一、问题描述二、verilog源码三、仿真结果一、问题描述 向量用于使用一个名称对相关信号进行分组,以使其更易于操作。例如,声明一个名为 8 位向量, wire [7:0] w; 该向量在 w 功能上等效于具有 8 个单独的线网(wire w0, w1, w2, w3, w4, w5, w6, w7)。 与C语言…

【Ubuntu系统搭建STM32开发环境(国内镜像全程快速配置)】

源于本人失败的经历苦心研究 虚拟机安装ubuntu换源VScode安装安装Java环境安装cubemx安装 arm-Linux-gcc安装gdb server安装OpenOCD 虚拟机安装ubuntu 系统镜像可以在阿里云镜像站且下载速度很快。 选择安装的版本。 我选择的是&#xff1a;ubuntu-22.10-desktop-amd64.iso。…

Hadoop3教程(三十四):(生产调优篇)MapReduce生产经验汇总

文章目录 &#xff08;164&#xff09;MR跑得慢的原因&#xff08;165&#xff09;MR常用调优参数Map阶段Reduce阶段 &#xff08;166&#xff09;MR数据倾斜问题参考文献 &#xff08;164&#xff09;MR跑得慢的原因 MR程序执行效率的瓶颈&#xff0c;或者说当你觉得你的MR程…

json-server工具准备后端接口服务环境

1.安装全局工具json-server&#xff08;全局工具仅需要安装一次&#xff09; 官网&#xff1a;json-server - npm 点击Getting started可以查看使用方法 在终端中输入yarn global add json-server或npm i json-server -g 2.代码根目录新建一个db目录 3.在db目录下创建index…

061:mapboxGL利用fitBounds同时将多个点放在可视范围内

第061个 点击查看专栏目录 本示例的目的是介绍演示如何在vue+mapbox中加载geojson数据,利用fitBounds同时将多个点放在可视范围内。 直接复制下面的 vue+mapbox源代码,操作2分钟即可运行实现效果 文章目录 示例效果配置方式示例源代码(共134行)相关API参考:专栏目标示例…

linux性能分析(四)如何学习linux性能优化

一 如何学习linux性能优化 强调&#xff1a; 由于知识记忆曲线以及某些知识点不常用,所以一定要注重复习思考&#xff1a; 如何进行能力转义以及能力嫁接? --> 真正站在巨人的肩膀上性能调优的目的&#xff1a; 不影响系统稳定性的资源最大利用化补充&#xff1a; 性能…

【Spring Cloud】如何确定微服务项目的Spring Boot、Spring Cloud、Spring Cloud Alibaba的版本

文章目录 1. 版本选择2. 用脚手架快速生成微服务的pom.xml3. 创建一个父工程4. 代码地址 本文描述如何确定微服务项目的Spring Boot、Spring Cloud、Spring Cloud Alibaba的版本。 1. 版本选择 我们知道Spring Boot、Spring Cloud、Spring Cloud Alibaba的版本选择一致性非常重…

CSS常见的预处理器有哪些?

CSS常见的预处理器有以下几种&#xff1a; 1&#xff1a;Sass&#xff08;Syntactically Awesome Style Sheets&#xff09;&#xff1a;Sass是一种成熟且广泛使用的CSS预处理器。它提供了许多功能&#xff0c;如变量、嵌套规则、混合&#xff08;Mixins&#xff09;、继承&am…

RT-Thread学习笔记(四):RT-Thread Studio工具使用

RT-Thread Studio工具使用 官网详细资料实用操作1. 查看 RT-Thread RTOS API 文档2.打开已创建的工程3.添加头文件路径4. 如何设置生成hex文件5.新建工程 官网详细资料 RT-Thread Studio 用户手册 实用操作 1. 查看 RT-Thread RTOS API 文档 2.打开已创建的工程 如果打开项目…

库的操作【MySQL】

文章目录 创建数据库字符集和校验规则概念分类例子 查看数据库显示创建语句修改数据库删除数据库备份和恢复备份恢复 创建数据库 SQL: CREATE DATABASE [IF NOT EXISTS] db_name [[DEFAULT] CHARSETcharset_name] [[DEFAULT] COLLATEcollation_name];其中&#xff0c;大写的单…

数据结构与算法设计分析——动态规划

目录 一、动态规划的定义二、动态规划的基本要素和主要步骤&#xff08;一&#xff09;最优子结构&#xff08;二&#xff09;重叠子问题 三、贪心法、分治法和动态规划的对比&#xff08;一&#xff09;贪心法&#xff08;二&#xff09;分治法&#xff08;三&#xff09;动态…

flink中使用GenericWriteAheadSink的优缺点

背景 GenericWriteAheadSink是flink中提供的实现几乎精确一次输出的数据汇抽象类&#xff0c;本文就来看一下使用GenericWriteAheadSink的优缺点 GenericWriteAheadSink的优缺点 先看一下GenericWriteAheadSink的原理图 优点&#xff1a; 几乎可以精确一次的输出&#xf…

[人工智能-综述-15]:第九届全球软件大会(南京)有感 -4-大语言模型全流程、全方面提升软件生产效能

目录 一、软件生产通用模型 1.1 企业软件生产模型 1.2 软件项目管理 VS 软件工程 1.3 企业管理与部门管理 二、第一步&#xff1a;企业数字化&#xff1a;企业信息系统 三、第二步&#xff1a;软件生产自动化&#xff1a;DevOps 四、第四步&#xff1a;软件生产智能化&a…

LeetCode讲解篇之77. 组合

文章目录 题目描述题解思路题解代码 题目描述 题解思路 遍历nums&#xff0c;让当前数字添加到结果前缀中&#xff0c;递归调用&#xff0c;直到前缀的长度为k&#xff0c;然后将前缀添加到结果集 题解代码 func combine(n int, k int) [][]int {var nums make([]int, n)fo…

lv8 嵌入式开发-网络编程开发 20 域名解析与http服务实现原理

目录 1 域名解析 2 如何实现万维网服务器&#xff1f; 2.1 HTTP 的操作过程 2.2 万维网服务器实现 1 域名解析 域名解析gethostbyname函数 主机结构在 <netdb.h> 中定义如下&#xff1a; struct hostent {char *h_name; /* 官方域名 */char **h_alias…

MIT 6.824 -- Cache Consistency -- 11

MIT 6.824 -- Cache Consistency -- 11 引言严峻挑战锁服务缓存一致性问题案例演示优化 原子性问题故障恢复问题log内容故障恢复 小结 课程b站视频地址: MIT 6.824 Distributed Systems Spring 2020 分布式系统 推荐伴读读物: 极客时间 – 大数据经典论文解读DDIA – 数据密集…

网工记背命令(7)----静态路由(负载分担,主备备份)

1.静态路由负载分担 如图所示&#xff0c;属于不同网段的主机通过几台 Switch 相连&#xff0c;要求不配置动态路由协议&#xff0c;使不同网 段的任意两台主机之间能够互通&#xff0c;从拓扑图中可以看出&#xff0c;从 PCA 到 PCC 有两条路径可以过去&#xff0c;分别是 PC…