16.2 ARP 主机探测技术

news2024/11/19 15:23:36

ARP (Address Resolution Protocol,地址解析协议),是一种用于将 IP 地址转换为物理地址(MAC地址)的协议。它在 TCP/IP 协议栈中处于链路层,为了在局域网中能够正确传输数据包而设计,由协议数据单元和对应的操作命令组成。ARP 既可以由操作系统处理,也可以由网卡处理。

该协议的作用是通过一个局域网上的互联网协议(IP)地址来查询对应的物理硬件地址,如数据包发送到路由器时,ARP 协议将使用嵌入在数据包中的目的 IP 地址查找对应的物理地址,路由器根据获取的 MAC 地址转发数据包到下一个网络。

协议工作过程如下:

  • 主机A通过查找其ARP缓存表,比对目标的IP地址是否存在于ARP缓存表中。
  • 如果目标机器的IP地址不存在于本地ARP缓存表中,则主机A需要进行ARP请求过程,它广播一个ARP请求。
  • 当其他主机收到这个请求时,它会比对主机A设置的这个目标IP地址和自己的IP地址是否一致。
  • 如果一致的话,说明被查询的这个IP地址正是自己的IP地址,此时这个主机就会直接向主机A发送ARP响应数据包。
  • 主机A在获得了目标主机的MAC地址信息之后,会把这个MAC地址信息存储到自己的ARP缓存表中,以便以后再次使用。

ARP主机探测原理是通过发送 ARP 查询报文,来获取目标主机的 MAC 地址,进而获取目标主机的 IP 地址。

主机探测的具体实现步骤如下:

  • 构造一个ARP查询报文,报文中的目标IP地址为需要探测的主机IP地址,源IP地址为探测主机的IP地址,源MAC地址为探测主机网卡的MAC地址。
  • 发送ARP查询报文。如果目标主机在线,且相应功能正常,它将返回一个ARP响应报文,其中包含目标主机的MAC地址。
  • 接收到ARP响应报文之后,分析报文,从中提取出目标主机的MAC地址和IP地址等信息。

Windows系统下,我们可以调用SendARP()函数实现ARP探测,该函数用于发送ARP请求到指定的 IP 地址,以获取其 MAC 地址。该函数参数传入目标 IP 地址时能够返回对应 MAC 地址。

SendARP 函数原型如下:

DWORD SendARP(
    IN IPAddr DestIP,             // 目标 IP 地址
    IN IPAddr SrcIP,              // 源 IP 地址(可以为 0)
    OUT PULONG pMacAddr,          // 接收目标 MAC 地址
    IN OUT PULONG PhyAddrLen      // 接收目标 MAC 地址的缓冲区大小,单位为字节
);

该函数的第一个参数为目标IP地址,第二个参数为本地主机IP地址(可以填 0),第三个参数为接收返回的目标 MAC 地址的指针,第四个参数为指向缓冲区大小的指针。

当调用 SendARP() 函数时,如果目标 IP 地址是在同一物理网络中,则返回目标 IP 地址对应的 MAC 地址,并且函数返回值为 NO_ERROR。如果目标 IP 地址无效,或者无法获得对应的 MAC 地址,则函数返回值为错误代码,应该根据错误代码来进行处理。

如下代码实现了扫描局域网中指定ARP主机地址的功能。代码主要使用了SendARP()函数来查询目标主机的MAC地址,并将结果输出。具体实现步骤如下:

#include <stdio.h>
#include <winsock2.h>
#include <IPHlpApi.h>

#pragma comment (lib,"ws2_32.lib")  
#pragma comment (lib,"iphlpapi.lib")

// 扫描局域网中指定ARP主机地址
void ArpScan(char *LocalIP,char *TargetIP)
{
  ULONG localIP = inet_addr(LocalIP);
  ULONG targetIP = inet_addr(TargetIP);

  ULONG macBuf[2] = { 0 };
  ULONG macLen = 6;

  DWORD retValue = SendARP(targetIP, localIP, macBuf, &macLen);

  unsigned char *mac = (unsigned char*)macBuf;
  printf("IP: %-12s --> MAC: ", TargetIP);
  for (int x = 0; x < macLen; x++)
  {
    printf("%.2X", mac[x]);
    if (x != macLen - 1)
      printf("-");
  }
  printf("\n");
}

int main(int argc,char * argv[])
{
  for (int x = 1; x < 100; x++)
  {
    char target[32] = { 0 };
    sprintf(target, "192.168.1.%d", x);
    ArpScan("192.168.1.2", target);
  }
  system("pause");
  return 0;
}

根据端口探测中所使用的方法,实现多线程也很容易,如下代码实现了使用多线程方式扫描局域网内存活的主机。代码中使用 SendARP() 函数来探测目标主机是否存活,并使用多线程方式来加快扫描速度,同时使用临界区来控制多线程条件下的输出效果。

具体实现过程如下:

  • 定义 checkActive() 函数,该函数使用 SendARP() 函数来判断目标主机是否存活。如果目标主机存活,则在屏幕上输出其 IPMAC 地址。

  • 定义 threadProc() 函数来作为多线程的回调函数。该函数接收一台主机的 IP 地址,并调用 checkActive() 函数来探测该主机是否在线。

  • main() 函数中,定义开始和结束的 IP 地址,并使用 for 循环遍历这个 IP 地址段。在循环中,使用 CreateThread() 函数来创建多个线程,每个线程负责探测其中一台主机是否在线。

  • checkActive() 函数中,多线程会涉及到在界面上的输出,为了控制多线程在输出上的次序,使用了 EnterCriticalSection()LeaveCriticalSection() 函数来表示临界区,只有进入临界区的线程能够打印输出,其他线程需要等待进入临界区。

#include <stdio.h>
#include <winsock2.h>
#include <iphlpapi.h>

#pragma comment(lib,"ws2_32.lib")
#pragma comment(lib,"iphlpapi.lib")

// 临界区,控制多线程打印顺序
CRITICAL_SECTION g_critical;

bool checkActive(in_addr ip)
{
  ULONG dstMac[2] = { 0 };
  memset(dstMac, 0xff, sizeof(dstMac));
  ULONG size = 6;
  HRESULT re = SendARP(ip.S_un.S_addr, 0, dstMac, &size);

  if (re == NO_ERROR && size == 6)
  {
    // 线程进入临界区,其他线程不能再进入,控制多线程在界面上的打印顺序
    EnterCriticalSection(&g_critical);

    printf("[+] 发现存活主机: %-15s ---> MAC :", inet_ntoa(ip));
    BYTE *bPhysAddr = (BYTE *)& dstMac;
    for (int i = 0; i < (int)size; i++)
    {
      // 如果是mac地址的最后一段,就输出换行
      if (i == (size - 1))
      {
        printf("%.2X\n", (int)bPhysAddr[i]);
      }
      else
      {
        // 否则没有到最后一段,依旧输出,但不换行
        printf("%.2X-", (int)bPhysAddr[i]);
      }
    }

    // 线程离开临界区,其他线程能够继续进入
    LeaveCriticalSection(&g_critical);
    return true;
  }
  else
  {
    return false;
  }
}

// 启动多线程
DWORD WINAPI threadProc(LPVOID lpThreadParameter)
{
  in_addr ip;
  ip.S_un.S_addr = (ULONG)lpThreadParameter;
  checkActive(ip);
  return 0;
}

int main(int argc, char *argv[])
{
  in_addr ip_start, ip_end;

  // 定义开始IP
  ip_start.S_un.S_addr = inet_addr("192.168.9.1");

  // 定义结束IP
  ip_end.S_un.S_addr = inet_addr("192.168.9.254");

  // 循环探测主机

  //初始临界区
  InitializeCriticalSection(&g_critical);

  for (in_addr ip = ip_start; ip.S_un.S_addr < ip_end.S_un.S_addr; ip.S_un.S_un_b.s_b4++)
  {
    printf("探测: %s \r", inet_ntoa(ip));
    CreateThread(NULL, 0, threadProc, (LPVOID)ip.S_un.S_addr, 0, 0);
  }

  system("pause");
  return 0;
}

编译并运行上述代码片段,则会探测192.168.9.1192.168.9.254网段内存活的主机,并输出该主机的MAC信息,输出效果图如下所示;

本文作者: 王瑞
本文链接: https://www.lyshark.com/post/57dc46.html
版权声明: 本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1116836.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C嘎嘎之类和对象上

> 作者简介&#xff1a;დ旧言~&#xff0c;目前大二&#xff0c;现在学习Java&#xff0c;c&#xff0c;c&#xff0c;Python等 > 座右铭&#xff1a;松树千年终是朽&#xff0c;槿花一日自为荣。 > 目标&#xff1a;掌握类的引用和定义&#xff0c;熟悉类成员函数的…

代码随想录算法训练营第二十九天丨 回溯算法part06

回溯总结 对于回溯算法&#xff0c;我们需要知道的是 回溯是递归的副产品&#xff0c;只要有递归就会有回溯&#xff0c;所有回溯法常与二叉树遍历【前中后序遍历】&#xff0c;深搜混在一起&#xff0c;原因是都涉及到的递归。 回溯法 暴力搜索&#xff0c;它的效率并不高&…

FreeRTOS入门教程(事件组概念和函数使用)

文章目录 前言一、事件组概念二、事件组和信号量&#xff0c;队列的区别三、事件组相关函数三、事件组应用示例1.等待多个事件2.任务同步 总结 前言 本篇文章将带大家学习什么是事件组以及如何使用事件组。 一、事件组概念 事件组通常是由一组位&#xff08;bits&#xff09…

CSS页面基本布局

前提回顾 1. 超文本标记语言&#xff08;HTML&#xff09;是一种标记语言&#xff0c;用来结构化我们的网页内容并赋予内容含义&#xff1b; &#xff08;超文本标记语言&#xff08;英语&#xff1a;HyperText Markup Language /ˈhaɪpətekst ˈmɑːkʌp ˈlŋɡwɪdʒ /…

Linux小技巧之awk必知必会

Linux Shell 三剑客之一&#xff0c;废话不多说直接上干货。 目录 1. 指定分隔符2.指定打印行数3.打印最后一列4.打印倒数第二列5.匹配输出6.if 判断7.统计列总数值8.时间格式转换 示例数据&#xff1a; 1. 指定分隔符 awk -F | {print $1} log.txt # awk -F | {print $1}…

STM32MP135和STM32MP157的区别

本文介绍了STMicroelectronics公司推出的两款多核处理器STM32MP135和STM32MP157之间的区别&#xff0c;包括主频、集成硬件模块数量、内存大小和电压调节模块等方面。 STMicroelectronics是一家领先的半导体解决方案提供商&#xff0c;在嵌入式系统领域有着丰富的经验。他们…

序列合并

题目描述 有两个长度为 N 的单调不降序列 A,B&#xff0c;在 A,B 中各取一个数相加可以得到 个和&#xff0c;求这 个和中最小的 个。 输入格式 第一行一个正整数 N&#xff1b; 第二行 N 个整数 1…N​。 第三行 N 个整数 1…N​。 输出格式 一行 N 个整数&#xff…

从头开始使用 KNN 进行 KNN 和 MNIST 手写数字识别的初学者指南

坦维佩努穆迪 Kaggle参考&#xff1a; MNIST Perfect 100% using kNN | Kaggle 一、说明 MNIST &#xff08;“修改后的国家标准与技术研究所”&#xff09;是事实上的计算机视觉“hello world”数据集。自 1999 年发布以来&#xff0c;这个经典的手写图像数据集一直作为分类算…

编写内联函数求解 2x²+4x+5的值,并用主函数调用该函数

动态内存分配可以根据实际需要在程序运行过程中动态地申请内存空间,这种内存空间的分配和释放是由程序员自己管理的,因此也被称为手动内存分配。 C++ 中,动态内存的分配和释放是通过 new 和 delete 操作符进行的。new 操作符用于在堆内存上为对象动态分配空间,dele…

Python之哈希表-哈希表原理

Python之哈希表-哈希表原理 集合Set 集合&#xff0c;简称集。由任意个元素构成的集体。高级语言都实现了这个非常重要的数据结构类型。Python中&#xff0c;它是可变的、无序的、不重复的元素的集合 初始化 set() -> new empty set objectset(iterable) -> new set …

Docker——如何自定义镜像【将自己的项目制作成镜像】?

目录 前言&#xff1a;我们以前是如何部署项目的&#xff1f; 1、镜像由哪几部分构成的 2、如何手动自定义一个镜像 2.1、Dockerfile 2.2、dockerfile文本文件中&#xff0c;最终要写什么&#xff1f; 2.3、构建镜像 3、案例&#xff1a;部署java项目 4、如何与其他容器…

Python 机器学习入门之ID3决策树算法

系列文章目录 第一章 Python 机器学习入门之线性回归 第一章 Python 机器学习入门之梯度下降法 第一章 Python 机器学习入门之牛顿法 第二章 Python 机器学习入门之逻辑回归 番外 Python 机器学习入门之K近邻算法 番外 Python 机器学习入门之K-Means聚类算法 第三章 Python 机…

华为云HECS云服务器docker环境下安装nacos

华为云HECS云服务器&#xff0c;安装docker环境&#xff0c;查看如下文章。 华为云HECS安装docker-CSDN博客 一、拉取镜像 docker pull nacos/nacos-server二、宿主机创建挂载目录 执行如下命令&#xff1a; mkdir -p /usr/local/nacos/logs mkdir -p /usr/local/nacos/con…

服务端监控要怎么做?

目录 前言 一、Google的四类黄金指标 二、RED方法 三、USE方法 RED方法 vs USE方法 四、监控指标 WEB服务监控 MySQL数据库监控 QPS TPS 最大连接数 缓存监控 总结 前言 众所周知&#xff0c;业界各种大中型软件系统在生产运行时&#xff0c;总会有一些手段来…

ESP32C3 LuatOS TM1650②动态显示累加整数

--注意:因使用了sys.wait()所有api需要在协程中使用 -- 用法实例 PROJECT "ESP32C3_TM1650" VERSION "1.0.0" _G.sys require("sys") local tm1650 require "tm1650"-- 拆分整数&#xff0c;并把最低位数存放在数组最大索引处 loc…

车载网关通信能力解析——SV900-5G车载网关推荐

随着车联网的发展,各类车载设备对车载网关的需求日益增长。车载网关作为车与车、车与路、车与云之间连接的关键设备,其通信能力直接影响整个系统的性能。本文将详细解析车载网关的通信能力,并推荐性价比高的SV900-5G车载网关。 链接直达&#xff1a;https://www.key-iot.com/i…

类与对象-对象特性-构造函数与析构函数

#include<iostream> using namespace std; class Person { public: //构造函数 : //没有返回值,不写void //函数名与类名相同 //构造函数可以有参数,能发生重载 //创建对象时,构造函数会自动调用,而且只调用一次 Person() { cout << &quo…

哈里斯鹰算法优化BP神经网络(HHO-BP)回归预测研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

Python爬虫:ad广告引擎的模拟登录

⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️ &#x1f434;作者&#xff1a;秋无之地 &#x1f434;简介&#xff1a;CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作&#xff0c;主要擅长领域有&#xff1a;爬虫、后端、大数据…

Ubuntu桌面环境的切换方法

你在找它吗&#xff1f; 国内麒麟、深度等系统虽然界面更炫&#xff0c;但——软件仓库与Ubuntu官方已不兼容。国内系统遇到稳定性问题&#xff0c;还是得拿Ubuntu做参照。今天本来介绍下这款Linux桌面。 为什么在 Ubuntu 上考虑 LXQt&#xff1f; 性能&#xff1a;LXQt设计为…