Flink-基本的合流操作

news2024/11/18 15:38:39

文章目录

    • 1.基本的合流操作
      • 2.1联合(Union)
      • 2.2 连接(Connect)
    • 2.基于时间的合流——双流联结(Join)
      • 2.1 窗口联结(Window Join)
      • 2.2 间隔联结(Interval Join)
      • 2.3 窗口同组联结(Window CoGroup)

💎💎💎💎💎

更多资源链接,欢迎访问作者gitee仓库:https://gitee.com/fanggaolei/learning-notes-warehouse/tree/master

1.基本的合流操作

2.1联合(Union)

image-20221130093816683

在代码中,我们只要基于 DataStream 直接调用.union()方法,传入其他 DataStream 作为参数,就可以实现流的联合了;得到的依然是一个 DataStream:

stream1.union(stream2, stream3, ...)

注意:union()的参数可以是多个 DataStream,所以联合操作可以实现多条流的合并。

注意:对于合流之后的水位线,也是要以最小的那个为准

数据类型不能改变

import com.atguigu.chapter05.Event;
import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.ProcessFunction;
import org.apache.flink.util.Collector;

import java.time.Duration;

public class UnionTest {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);



        SingleOutputStreamOperator<Event> stream1 = env.socketTextStream("hadoop102", 7777)
                .map(data -> {
                    String[] field = data.split(",");
                    return new Event(field[0].trim(), field[1].trim(), Long.valueOf(field[2].trim()));
                })
                .assignTimestampsAndWatermarks(WatermarkStrategy.<Event>forBoundedOutOfOrderness(Duration.ofSeconds(2))
                        .withTimestampAssigner(new SerializableTimestampAssigner<Event>() {
                            @Override
                            public long extractTimestamp(Event element, long recordTimestamp) {
                                return element.timestamp;
                            }
                        })
                );
        stream1.print("stream1");

        SingleOutputStreamOperator<Event> stream2 = env.socketTextStream("hadoop103", 7777)
                .map(data -> {
                    String[] field = data.split(",");
                    return new Event(field[0].trim(), field[1].trim(), Long.valueOf(field[2].trim()));
                })
                .assignTimestampsAndWatermarks(WatermarkStrategy.<Event>forBoundedOutOfOrderness(Duration.ofSeconds(5))
                        .withTimestampAssigner(new SerializableTimestampAssigner<Event>() {
                            @Override
                            public long extractTimestamp(Event element, long recordTimestamp) {
                                return element.timestamp;
                            }
                        })
                );

        stream2.print("stream2");

        // 合并两条流
        stream1.union(stream2)
                .process(new ProcessFunction<Event, String>() {
                    @Override
                    public void processElement(Event value, Context ctx, Collector<String> out) throws Exception {
                        out.collect("水位线:" + ctx.timerService().currentWatermark());
                    }
                })
                .print();


        env.execute();
    }
}

image-20221223135455973

2.2 连接(Connect)

image-20221130093835415

1.连接流(ConnectedStreams)

import org.apache.flink.streaming.api.datastream.ConnectedStreams;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.CoMapFunction;

public class ConnectTest {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        DataStream<Integer> stream1 = env.fromElements(1,2,3);
        DataStream<Long> stream2 = env.fromElements(1L,2L,3L);

        ConnectedStreams<Integer, Long> connectedStreams = stream1.connect(stream2);
        SingleOutputStreamOperator<String> result = connectedStreams.map(new CoMapFunction<Integer, Long, String>() {
            @Override
            public String map1(Integer value) {
                return "Integer: " + value;
            }

            @Override
            public String map2(Long value) {
                return "Long: " + value;
            }
        });

        result.print();

        env.execute();
    }
}

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ejyQTMlQ-1671785198433)(https://pic-1313413291.cos.ap-nanjing.myqcloud.com/image-20221223140620202.png)]

2.CoProcessFunction

对于连接流 ConnectedStreams 的处理操作,需要分别定义对两条流的处理转换,因此接口中就会有两个相同的方法需要实现,用数字“1”“2”区分,在两条流中的数据到来时分别调用。我们把这种接口叫作“协同处理函数”(co-process function)。

抽象类 CoProcessFunction 在源码中定义如下:

public abstract class CoProcessFunction<IN1, IN2, OUT> extends 
AbstractRichFunction {

	public abstract void processElement1(IN1 value, Context ctx, Collector<OUT> out) throws 	Exception;
	
	public abstract void processElement2(IN2 value, Context ctx, Collector<OUT> out) throws 	Exception;
	
	public void onTimer(long timestamp, OnTimerContext ctx, Collector<OUT> out) throws 			Exception {}
	
	public abstract class Context {...}

}

我们可以看到,很明显 CoProcessFunction 也是“处理函数”家族中的一员,用法非常相似。它需要实现的就是 processElement1()、processElement2()两个方法,在每个数据到来时,会根据来源的流调用其中的一个方法进行处理。CoProcessFunction 同样可以通过上下文 ctx 来访问 timestamp、水位线,并通过 TimerService 注册定时器;另外也提供了.onTimer()方法,用于定义定时触发的处理操作。

下面是 CoProcessFunction 的一个具体示例:我们可以实现一个实时对账的需求,也就是app 的支付操作和第三方的支付操作的一个双流 Join。App 的支付事件和第三方的支付事件将会互相等待 5 秒钟,如果等不来对应的支付事件,那么就输出报警信息。程序如下:

import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.state.ValueState;
import org.apache.flink.api.common.state.ValueStateDescriptor;
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.api.java.tuple.Tuple4;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.CoProcessFunction;
import org.apache.flink.util.Collector;

// 实时对账
public class BillCheckExample {

    public static void main(String[] args) throws Exception{
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        // 来自app的支付日志
        SingleOutputStreamOperator<Tuple3<String, String, Long>> appStream = env.fromElements(
                Tuple3.of("order-1", "app", 1000L),
                Tuple3.of("order-2", "app", 2000L)
        ).assignTimestampsAndWatermarks(WatermarkStrategy.<Tuple3<String, String, Long>>forMonotonousTimestamps()
                .withTimestampAssigner(new SerializableTimestampAssigner<Tuple3<String, String, Long>>() {
                    @Override
                    public long extractTimestamp(Tuple3<String, String, Long> element, long recordTimestamp) {
                        return element.f2;
                    }
                })
        );

        // 来自第三方支付平台的支付日志
        SingleOutputStreamOperator<Tuple4<String, String, String, Long>> thirdpartStream = env.fromElements(
                Tuple4.of("order-1", "third-party", "success", 3000L),
                Tuple4.of("order-3", "third-party", "success", 4000L)
        ).assignTimestampsAndWatermarks(WatermarkStrategy.<Tuple4<String, String, String, Long>>forMonotonousTimestamps()
                .withTimestampAssigner(new SerializableTimestampAssigner<Tuple4<String, String, String, Long>>() {
                    @Override
                    public long extractTimestamp(Tuple4<String, String, String, Long> element, long recordTimestamp) {
                        return element.f3;
                    }
                })
        );

        // 检测同一支付单在两条流中是否匹配,不匹配就报警
        appStream.connect(thirdpartStream)
                .keyBy(data -> data.f0, data -> data.f0)
                .process(new OrderMatchResult())
                .print();

        env.execute();
    }

    // 自定义实现CoProcessFunction
    public static class OrderMatchResult extends CoProcessFunction<Tuple3<String, String, Long>, Tuple4<String, String, String, Long>, String>{
        // 定义状态变量,用来保存已经到达的事件
        private ValueState<Tuple3<String, String, Long>> appEventState;
        private ValueState<Tuple4<String, String, String, Long>> thirdPartyEventState;

        @Override
        public void open(Configuration parameters) throws Exception {
            appEventState = getRuntimeContext().getState(
                    new ValueStateDescriptor<Tuple3<String, String, Long>>("app-event", Types.TUPLE(Types.STRING, Types.STRING, Types.LONG))
            );

            thirdPartyEventState = getRuntimeContext().getState(
                    new ValueStateDescriptor<Tuple4<String, String, String, Long>>("thirdparty-event", Types.TUPLE(Types.STRING, Types.STRING, Types.STRING,Types.LONG))
            );
        }

        @Override
        public void processElement1(Tuple3<String, String, Long> value, Context ctx, Collector<String> out) throws Exception {
            // 看另一条流中事件是否来过
            if (thirdPartyEventState.value() != null){
                out.collect("对账成功:" + value + "  " + thirdPartyEventState.value());
                // 清空状态
                thirdPartyEventState.clear();
            } else {
                // 更新状态
                appEventState.update(value);
                // 注册一个5秒后的定时器,开始等待另一条流的事件
                ctx.timerService().registerEventTimeTimer(value.f2 + 5000L);
            }
        }

        @Override
        public void processElement2(Tuple4<String, String, String, Long> value, Context ctx, Collector<String> out) throws Exception {
            if (appEventState.value() != null){
                out.collect("对账成功:" + appEventState.value() + "  " + value);
                // 清空状态
                appEventState.clear();
            } else {
                // 更新状态
                thirdPartyEventState.update(value);
                // 注册一个5秒后的定时器,开始等待另一条流的事件
                ctx.timerService().registerEventTimeTimer(value.f3 + 5000L);
            }
        }

        @Override
        public void onTimer(long timestamp, OnTimerContext ctx, Collector<String> out) throws Exception {
            // 定时器触发,判断状态,如果某个状态不为空,说明另一条流中事件没来
            if (appEventState.value() != null) {
                out.collect("对账失败:" + appEventState.value() + "  " + "第三方支付平台信息未到");
            }
            if (thirdPartyEventState.value() != null) {
                out.collect("对账失败:" + thirdPartyEventState.value() + "  " + "app信息未到");
            }
            appEventState.clear();
            thirdPartyEventState.clear();
        }
    }}


image-20221223144920814

3.广播连接流(BroadcastConnectedStream)

关于两条流的连接,还有一种比较特殊的用法:DataStream 调用.connect()方法时,传入的参数也可以不是一个 DataStream,而是一个“广播流”(BroadcastStream),这时合并两条流得到的就变成了一个“广播连接流”(BroadcastConnectedStream)。

2.基于时间的合流——双流联结(Join)

2.1 窗口联结(Window Join)

Flink 为这种场景专门提供了一个窗口联结(window join)算子,可以定义时间窗口,并将两条流中共享一个公共键(key)的数据放在窗口中进行配对处理。

image-20221130093911782

1.窗口联结的调用

stream1.join(stream2)
 	.where(<KeySelector>)
 	.equalTo(<KeySelector>)
 	.window(<WindowAssigner>)
 	.apply(<JoinFunction>)

2. 窗口联结的处理流程

import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.JoinFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;

// 基于窗口的join
public class WindowJoinTest {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        DataStream<Tuple2<String, Long>> stream1 = env
                .fromElements(
                        Tuple2.of("a", 1000L),
                        Tuple2.of("b", 1000L),
                        Tuple2.of("a", 2000L),
                        Tuple2.of("b", 2000L)
                )
                .assignTimestampsAndWatermarks(
                        WatermarkStrategy
                                .<Tuple2<String, Long>>forMonotonousTimestamps()
                                .withTimestampAssigner(
                                        new SerializableTimestampAssigner<Tuple2<String, Long>>() {
                                            @Override
                                            public long extractTimestamp(Tuple2<String, Long> stringLongTuple2, long l) {
                                                return stringLongTuple2.f1;
                                            }
                                        }
                                )
                );

        DataStream<Tuple2<String, Long>> stream2 = env
                .fromElements(
                        Tuple2.of("a", 3000L),
                        Tuple2.of("b", 3000L),
                        Tuple2.of("a", 4000L),
                        Tuple2.of("b", 4000L)
                )
                .assignTimestampsAndWatermarks(
                        WatermarkStrategy
                                .<Tuple2<String, Long>>forMonotonousTimestamps()
                                .withTimestampAssigner(
                                        new SerializableTimestampAssigner<Tuple2<String, Long>>() {
                                            @Override
                                            public long extractTimestamp(Tuple2<String, Long> stringLongTuple2, long l) {
                                                return stringLongTuple2.f1;
                                            }
                                        }
                                )
                );

        stream1
                .join(stream2)
                .where(r -> r.f0)
                .equalTo(r -> r.f0)
                .window(TumblingEventTimeWindows.of(Time.seconds(5)))
                .apply(new JoinFunction<Tuple2<String, Long>, Tuple2<String, Long>, String>() {
                    @Override
                    public String join(Tuple2<String, Long> left, Tuple2<String, Long> right) throws Exception {
                        return left + "=>" + right;
                    }
                })
                .print();

        env.execute();
    }
}

image-20221223164452487

2.2 间隔联结(Interval Join)

image-20221130093933294

  间隔联结在代码中,是基于 KeyedStream 的联结(join)操作。DataStream 在 keyBy 得到KeyedStream 之后,可以调用.intervalJoin()来合并两条流,传入的参数同样是一个 KeyedStream,两者的 key 类型应该一致;得到的是一个 IntervalJoin 类型。后续的操作同样是完全固定的:先通过.between()方法指定间隔的上下界,再调用.process()方法,定义对匹配数据对的处理操作。调用.process()需要传入一个处理函数,这是处理函数家族的最后一员:“处理联结函数”ProcessJoinFunction。

stream1
	.keyBy(<KeySelector>)
	.intervalJoin(stream2.keyBy(<KeySelector>))
 	.between(Time.milliseconds(-2), Time.milliseconds(1))
 	.process (new ProcessJoinFunction<Integer, Integer, String(){
 @Override
 public void processElement(Integer left, Integer right, Context ctx, Collector<String> out)  	  {
 		out.collect(left + "," + right);
 	}
 });

  在电商网站中,某些用户行为往往会有短时间内的强关联。我们这里举一个例子,我们有两条流,一条是下订单的流,一条是浏览数据的流。我们可以针对同一个用户,来做这样一个联结。也就是使用一个用户的下订单的事件和这个用户的最近十分钟的浏览数据进行一个联结查询。

import com.atguigu.chapter05.Event;
import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.ProcessJoinFunction;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.Collector;

// 基于间隔的join
public class IntervalJoinTest {

    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        SingleOutputStreamOperator<Tuple3<String, String, Long>> orderStream = env.fromElements(
                Tuple3.of("Mary", "order-1", 5000L),
                Tuple3.of("Alice", "order-2", 5000L),
                Tuple3.of("Bob", "order-3", 20000L),
                Tuple3.of("Alice", "order-4", 20000L),
                Tuple3.of("Cary", "order-5", 51000L)
        ).assignTimestampsAndWatermarks(WatermarkStrategy.<Tuple3<String, String, Long>>forMonotonousTimestamps()
                .withTimestampAssigner(new SerializableTimestampAssigner<Tuple3<String, String, Long>>() {
                    @Override
                    public long extractTimestamp(Tuple3<String, String, Long> element, long recordTimestamp) {
                        return element.f2;
                    }
                })
        );

        SingleOutputStreamOperator<Event> clickStream = env.fromElements(
                new Event("Bob", "./cart", 2000L),
                new Event("Alice", "./prod?id=100", 3000L),
                new Event("Alice", "./prod?id=200", 3500L),
                new Event("Bob", "./prod?id=2", 2500L),
                new Event("Alice", "./prod?id=300", 36000L),
                new Event("Bob", "./home", 30000L),
                new Event("Bob", "./prod?id=1", 23000L),
                new Event("Bob", "./prod?id=3", 33000L)
        ).assignTimestampsAndWatermarks(WatermarkStrategy.<Event>forMonotonousTimestamps()
                .withTimestampAssigner(new SerializableTimestampAssigner<Event>() {
                    @Override
                    public long extractTimestamp(Event element, long recordTimestamp) {
                        return element.timestamp;
                    }
                })
        );

        orderStream.keyBy(data -> data.f0)
                .intervalJoin(clickStream.keyBy(data -> data.user))
                .between(Time.seconds(-5), Time.seconds(10))
                .process(new ProcessJoinFunction<Tuple3<String, String, Long>, Event, String>() {
                    @Override
                    public void processElement(Tuple3<String, String, Long> left, Event right, Context ctx, Collector<String> out) throws Exception {
                        out.collect(right + " => " + left);
                    }
                })
                .print();

        env.execute();
    }}

image-20221223162950631

2.3 窗口同组联结(Window CoGroup)

  除窗口联结和间隔联结之外,Flink 还提供了一个“窗口同组联结”(window coGroup)操作。它的用法跟 window join 非常类似,也是将两条流合并之后开窗处理匹配的元素,调用时只需要将.join()换为.coGroup()就可以了。

stream1.coGroup(stream2)
 .where(<KeySelector>)
 .equalTo(<KeySelector>)
 .window(TumblingEventTimeWindows.of(Time.hours(1)))
 .apply(<CoGroupFunction>)

  内部的.coGroup()方法,有些类似于 FlatJoinFunction 中.join()的形式,同样有三个参数,分别代表两条流中的数据以及用于输出的收集器(Collector)。不同的是,这里的前两个参数不再是单独的每一组“配对”数据了,而是传入了可遍历的数据集合。也就是说,现在不会再去计算窗口中两条流数据集的笛卡尔积,而是直接把收集到的所有数据一次性传入, 至于要怎样配对完全是自定义的。这样.coGroup()方法只会被调用一次,而且即使一条流的数据没有任何另一条流的数据匹配,也可以出现在集合中、当然也可以定义输出结果了。

   所以能够看出,coGroup 操作比窗口的 join 更加通用,不仅可以实现类似 SQL 中的“内连接”(inner join),也可以实现左外连接(left outer join)、右外连接(right outer join)和全外连接(full outer join)。事实上,窗口 join 的底层,也是通过 coGroup 来实现的。

import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.CoGroupFunction;

import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.Collector;

// 基于窗口的join
public class CoGroupTest {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        DataStream<Tuple2<String, Long>> stream1 = env
                .fromElements(
                        Tuple2.of("a", 1000L),
                        Tuple2.of("b", 1000L),
                        Tuple2.of("a", 2000L),
                        Tuple2.of("b", 2000L)
                )
                .assignTimestampsAndWatermarks(
                        WatermarkStrategy
                                .<Tuple2<String, Long>>forMonotonousTimestamps()
                                .withTimestampAssigner(
                                        new SerializableTimestampAssigner<Tuple2<String, Long>>() {
                                            @Override
                                            public long extractTimestamp(Tuple2<String, Long> stringLongTuple2, long l) {
                                                return stringLongTuple2.f1;
                                            }
                                        }
                                )
                );

        DataStream<Tuple2<String, Long>> stream2 = env
                .fromElements(
                        Tuple2.of("a", 3000L),
                        Tuple2.of("b", 3000L),
                        Tuple2.of("a", 4000L),
                        Tuple2.of("b", 4000L)
                )
                .assignTimestampsAndWatermarks(
                        WatermarkStrategy
                                .<Tuple2<String, Long>>forMonotonousTimestamps()
                                .withTimestampAssigner(
                                        new SerializableTimestampAssigner<Tuple2<String, Long>>() {
                                            @Override
                                            public long extractTimestamp(Tuple2<String, Long> stringLongTuple2, long l) {
                                                return stringLongTuple2.f1;
                                            }
                                        }
                                )
                );

        stream1
                .coGroup(stream2)
                .where(r -> r.f0)
                .equalTo(r -> r.f0)
                .window(TumblingEventTimeWindows.of(Time.seconds(5)))
                .apply(new CoGroupFunction<Tuple2<String, Long>, Tuple2<String, Long>, String>() {
                    @Override
                    public void coGroup(Iterable<Tuple2<String, Long>> iter1, Iterable<Tuple2<String, Long>> iter2, Collector<String> collector) throws Exception {
                        collector.collect(iter1 + "=>" + iter2);
                    }
                })
                .print();

        env.execute();
    }
}

image-20221223163625593

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/111186.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

《面向对象分析与设计》总结

面向对象的软件工程1 面向对象的演化1.1 生活中复杂系统的特点1.2 软件系统的复杂性1.2.1 复杂性的四个方面1.2.1.1 问题域的复杂性1.2.1.2 管理开发的困难性1.2.1.3 软件中的灵活性1.2.1.4 描述离散系统行为1.2.2 复杂系统的五个属性1.2.2.1 层次结构1.2.2.1.1 对象结构1.2.2.…

数据分析神器:数据自动录入并生成BI报表

做报表、分析数据、做汇报是许多打工人的日常&#xff0c;每天都要耗费不少的时间用Excel来整理、清洗数据和生成好看的报表。如果这些数据都是手动整理、复制粘贴的话&#xff0c;不仅费时费力&#xff0c;而且很容易出错。 在越来越多企业采用SaaS产品和不同数据应用的今天&…

来看一个vue-element-表单之登录页面,最后送上一个登录页面

vue-element 表单之登录页面使用 0. 先留下属性表格 表单验证&#xff1a;Form 组件提供了表单验证的功能&#xff0c;只需要通过 rules 属性传入约定的验证规则&#xff0c;并将 Form-Item 的 prop 属性设置为需校验的字段名即可。 1. 表单属性表(el-form) 2. 表单项属性表…

php工作流引擎再发新版本—Tpflow7.0重磅发布

2022年已接近尾声&#xff0c;又到了每年发布大版本的时候&#xff0c;Tpflow历经一个多月的意见征集及版本优化&#xff0c;从底层改进&#xff0c;从UI调整&#xff0c;增强了事件功能。 发布日期&#xff1a;2022年12月23日 发布版号&#xff1a;V7.0.0 Tpflow 工作流引擎…

短视频引流+私域流量沉淀,一个全新的短视频和链动模式结合方案

在微盟企微助手微盟智慧零售团队的协助下&#xff0c;今年7月底么么茶正式开始运营企微私域&#xff0c;截至当前&#xff0c;在短短3个月时间已成功沉淀7万私域客户&#xff0c;线上商城GMV超145万。 么么茶旅拍的核心流量来源自公域短视频平台&#xff0c;品牌基于服务覆盖下…

OB0206 obsidian 表格编辑插件:advanced Tables插件使用

序号解读&#xff1a; 01——软件基础使用、基础语法 02——插件使用 03——综合实战 0 写在前面 Ob社区插件汇总&#xff1a;Airtable - OB社区插件汇总 - Johnny整理 - 每周更新 - B站 Johnny学Explore the "OB社区插件汇总 - Johnny整理 - 每周更新 - B站 Johnny学&qu…

执行操作后的变量值,我的题解首次优于官方

2011. 执行操作后的变量值 难度简单46 存在一种仅支持 4 种操作和 1 个变量 X 的编程语言&#xff1a; X 和 X 使变量 X 的值 加 1--X 和 X-- 使变量 X 的值 减 1 最初&#xff0c;X 的值是 0 给你一个字符串数组 operations &#xff0c;这是由操作组成的一个列表&#xf…

求N阶矩阵的幂(一维,二维多种方法)

引用&#xff1a;对于矩阵的计算想必都是一件很头疼的事情吧&#xff0c;因为计算量是比较大&#xff0c;因为你要用前一个矩阵的行乘以后矩阵的列且对应相加才得到新矩阵的第一个元素&#xff0c;且两个矩阵可以相乘的条件也是前一个矩阵的列等于后一个矩阵的行&#xff0c;操…

Simulink代码生成: Switch模块及其代码

本文描述Switch模块的建模并研究生成的代码。 文章目录1 Simulink中的Switch模块2 Switch模块建模及代码生成3 Switch模块其他用法3.1 多重Switch3.2 通过标定量Switch4 总结1 Simulink中的Switch模块 在Simulink中Switch模块时非常常见的&#xff0c;通常用于根据一定地条件选…

Python学习笔记(十九)——Matplotlib入门上

目录 Matplotlib简介 导入matplotlib模块 图的参数说明 matplotlib图像组成部分介绍 matplotlib绘图步骤分析 matplotlib实现简单图像 matplotlib画布 画布-plt.figure() 实例 同一画布制作多张图像 创建多个子图 实例 plt.subplots 相关参数 调整subplot周围的间距…

使用HGS算法调整PD控制器增益的无人机动态性能数据——基于启发式的无人机路径跟踪优化(Matlab代码实现)

&#x1f468;‍&#x1f393;个人主页&#xff1a;研学社的博客 &#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜…

【Sentinel 预热加载】

系列文章目录 Sentinel 预热加载 目录 系列文章目录 前言 一、概念解释&#xff1f; 二、使用步骤 1.引入库 2.dashboard 配置 总结 前言 一、概念解释&#xff1f; Warm Up&#xff1a;根据coldFactor&#xff08;冷加载因子&#xff0c;默认3&#xff09;的值&#xff0c;从…

有了 HTTP,为什么还要 RPC?

RPC主要是基于TCP/IP协议的&#xff0c;而HTTP服务主要是基于HTTP协议的&#xff0c;我们都知道HTTP协议是在传输层协议TCP之上的&#xff0c;所以效率来看的话&#xff0c;RPC当然是要更胜一筹啦&#xff01;下面来具体说一说RPC服务和HTTP服务。 OSI网络七层模型 在说RPC和…

Android HIDL和hwservicemanager

HIDL软件包 HIDL 接口软件包位于 hardware/interfaces 或 vendor/ 目录下&#xff08;个别情况除外&#xff09;。顶层 hardware/interfaces 会直接映射到 android.hardware 软件包命名空间&#xff1b;版本是软件包&#xff08;而不是接口&#xff09;命名空间下的子目录。 h…

ALPHA项目的测试电机、性能信息和动态推力近似值数据库(Matlab代码实现)

目录 &#x1f4a5;1 概述 &#x1f4da;2 运行结果 &#x1f389;3 参考文献 &#x1f468;‍&#x1f4bb;4 Matlab代码 &#x1f4a5;1 概述 按照电机试验的完整性&#xff0c;可以将电机试验分为型式试验、单项目或部分项目试验等&#xff1b;其中型式试验包括产品的性…

【深入浅出Spring原理及实战】「开发实战系列」SpringSecurity与JWT实现权限管控以及登录认证指南

SpringSecurity介绍 SpringSecurity是一个用于Java 企业级应用程序的安全框架&#xff0c;主要包含用户认证和用户授权两个方面&#xff0c;相比较Shiro而言&#xff0c;Security功能更加的强大&#xff0c;它可以很容易地扩展以满足更多安全控制方面的需求&#xff0c;但也相…

刷爆力扣之重复叠加字符串匹配

刷爆力扣之重复叠加字符串匹配 HELLO&#xff0c;各位看官大大好&#xff0c;我是阿呆 &#x1f648;&#x1f648;&#x1f648; 今天阿呆继续记录下力扣刷题过程&#xff0c;收录在专栏算法中 &#x1f61c;&#x1f61c;&#x1f61c; 该专栏按照不同类别标签进行刷题&…

leetcode10---动态规划

题目地址leetcode10 本题的解题思路 题目中的匹配是一个逐步匹配的过程&#xff0c;我们每次从字符串p中取一个字符出来&#xff0c;有两种可能&#xff0c;一种是取出来字母字符或者‘.’&#xff0c;另外一种是取出来[字符‘*’]组合&#xff0c;他可以在s中匹配任意自然数个…

Vulnhub靶机:LAMPSECURITY_ CTF5

目录介绍信息收集主机发现主机信息探测网站探测敏感信息泄露挂马提权敏感信息收集提权成功介绍 系列&#xff1a;LAMPSecurity&#xff08;此系列共5台&#xff09; 发布日期&#xff1a;2009年5月10日 难度&#xff1a;初 运行环境&#xff1a;VMware Workstation 目标&#…

Canvas学习记录

Canvas学习基本用法1.首先得有canvas元素2.获取渲染上下文3.检查浏览器支持性4.例子绘制图形1.矩形2. 绘制路径3. 移动笔触4. 绘制直线5. 圆弧二次贝塞尔曲线与三次贝塞尔曲线Path2D 对象创建Path2D对象Path2D.addPath()使用样式和颜色色彩Colors透明度 Transparency线型 Line …