【Linux】自旋锁 以及 读者写者问题

news2024/11/25 13:40:03

自旋锁 以及 读者写者问题

  • 一、自旋锁
    • 1、其他常见的各种锁
    • 2、自旋锁相关的API函数
  • 二、读者写者问题
    • 1、读者与写者的关系
    • 2、读写锁的API函数
    • 3、用伪代码理解读写锁的原理
    • 4、读写锁的演示使用

一、自旋锁

1、其他常见的各种锁

  • 悲观锁:在每次取数据时,总是担心数据会被其他线程修改,所以会在取数据前先加锁(读锁,写锁,行锁等),当其他线程想要访问数据时,被阻塞挂起。

  • 乐观锁:每次取数据时候,总是乐观的认为数据不会被其他线程修改,因此不上锁。但是在更新数据前,会判断当前数据在更新前有没有被修改过。主要采用两种方式:版本号机制和CAS操作。

CAS操作:当需要更新数据时,判断当前内存值和之前取得的值是否相等。如果相等则用新值更新。若不相等则失败,失败则重试,一般是一个自旋的过程,即不断重试。


介绍

  • 自旋锁与互斥锁比较类似,自旋锁也是为实现保护共享资源而提出一种锁机制。

  • 两者在调度机制上略有不同。对于互斥锁,如果资源已经被占用,资源申请者只能进入睡眠状态。但是自旋锁不会引起调用者睡眠,如果自旋锁已经被别的执行单元占用,线程就会一直循环尝试去申请锁。

在这里插入图片描述

自旋锁使用场景

  • 自旋锁比较适用于锁的使用者在临界区待的时间比较短的情况。
    由于自旋锁申请失败不会被挂起,而且在比较短的时间内能够申请到锁,线程一直循环尝试去申请锁的消耗不大,同时也避免了线程调度的开销。

自旋锁的重要的特性

  1. 被自旋锁保护的临界区代码执行时不能进入休眠。
  2. 被自旋锁保护的临界区代码执行时是不能被被其他中断中断。
  3. 被自旋锁保护的临界区代码执行时,内核不能被抢占。
  4. 在自旋锁忙等期间,因为并没有进入临界区,所以内核抢占还是有效的,因此,等待自旋锁释放的进程有可能被更高优先级的所取代
  5. 自旋锁存在两个问题:死锁和过多占用cpu资源。

从这几个特性可以归纳出一个共性:被自旋锁保护的临界区代码执行时,它不能因为任何原因放弃处理器。

2、自旋锁相关的API函数

使用自旋锁,必须包含头文件,并链接库-lpthread

#include <pthread.h>

初始化函数

int pthread_spin_init(pthread_spinlock_t *lock, int pshared);
  • 功能:初始化自旋锁, 当线程使用该函数初始化一个未初始化或者被destroy过的自旋锁。该函数会为自旋锁申请资源并且初始化自旋锁为unlocked状态。

  • 参数
    pthread_spinlock_t :要初始化自旋锁
    pshared取值:

    • PTHREAD_PROCESS_SHARED:该自旋锁可以在多个进程中的线程之间共享。(可以被其他进程中的线程看到)
    • PTHREAD_PROCESS_PRIVATE: 仅初始化本自旋锁的线程所在的进程内的线程才能够使用该自旋锁。
  • 返回值
    若成功,返回0;否则,返回错误编号

销毁

int pthread_spin_destroy(pthread_spinlock_t *lock);
  • 功能:用来销毁指定的自旋锁并释放所有相关联的资源(所谓的资源指的是由pthread_spin_init自动申请的资源),如果调用该函数时自旋锁正在被使用或者自旋锁未被初始化则结果是未定义的。

  • 参数
    pthread_spinlock_t :要销毁的自旋锁

  • 返回值
    若成功,返回0;否则,返回错误编号

加锁

int pthread_spin_lock(pthread_spinlock_t *lock);
  • 功能:用来获取(锁定)指定的自旋锁. 如果该自旋锁当前没有被其它线程所持有,则调用该函数的线程获得该自旋锁,否则该函数在获得自旋锁之前不会返回。

  • 参数
    pthread_spinlock_t :要加锁的自旋锁

  • 返回值
    若成功,返回0;否则,返回错误编号

解锁

int pthread_spin_unlock(pthread_spinlock_t *lock);
  • 功能:用来解锁指定的自旋锁.。

  • 参数
    pthread_spinlock_t :要加锁的自旋锁

  • 返回值
    若成功,返回0;否则,返回错误编号

二、读者写者问题

在编写多线程的时候,有一种情况是十分常见的。那就是,有些公共数据修改的机会比较少。相比较改写,它们读的机会反而高的多。通常而言,在读的过程中,往往伴随着查找的操作,中间耗时很长。如果给这种代码段加锁,会极大地降低我们程序的效率。

在这里插入图片描述

那么有没有一种方法,可以专门处理这种多读少写的情况呢? 有,那就是读写锁。

1、读者与写者的关系

为了解决我们的问题我们先来分析多线程中两个角色的关系:读者,写者。

  • 写者与写者:显然写者与写者之间的关系是互斥的,多个写者之间要用锁来进行保证线程安全。
  • 读者与读者:读者与读者都只是访问数据,而不会修改数据,所以多个读者访问数据没有线程安全,读者之间毫无关系
  • 读者与写者:当读者与写者同时访问数据时,明显有线程安全的问题,只有读者读取完了再让写者写,或者写者写完了再让读者读取才是合理的。所以读者与写者之间存在互斥且同步的关系。

2、读写锁的API函数

使用自旋锁,必须包含头文件,并链接库-lpthread

#include <pthread.h>

初始化/销毁函数

int pthread_rwlock_init(pthread_rwlock_t *restrict rwlock, const pthread_rwlockattr_t *restrict attr);

int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);
  • 功能:初始化/销毁一个读写锁。

  • 参数

    • pthread_rwlock_t : 读写锁的数据结构;
    • pthread_rwlockattr_t : 读写锁属性的数据结构,一般直接设置为空。
  • 返回值
    若成功,返回0;否则,返回错误编号

读者加锁

int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);

当读者要访问数据时要申请先读者锁,拿到读者锁以后才能访问资源。

  • 返回值
    若成功,返回0;否则,返回错误编号

写者加锁

int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);

当写者要访问数据时要申请先写者锁,拿到写者锁以后才能访问资源。

  • 返回值
    若成功,返回0;否则,返回错误编号

解锁

int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);

无论是读者解锁还是写者解锁都要使用此函数。

  • 返回值
    若成功,返回0;否则,返回错误编号

3、用伪代码理解读写锁的原理

我们想要使用正确的使用读写锁就还要简单理解一下读写锁的原理,而读写锁就是要维护好上面的读者与写者的关系。

在这里插入图片描述

下面是一段伪代码,我们可以用此来理解读写锁的原理。

在这里插入图片描述

下面的读者的逻辑:

在这里插入图片描述

下面的写者的逻辑:

在这里插入图片描述

简单分析:

  1. 当读者先加锁,则读者拿到阅览室(临界区)的使用权,不影响后来其他读者,只会拦截写者,直到读者解锁。
  2. 当写者先加锁,后来的写者与读者都不能够进入,直到写者解锁。
  3. 实际中由于读者众多,可能会有读者络绎不绝的进入阅览室(临界区),从而导致写者迟迟无法获得阅览室(临界区)的使用权,进而导致写者饥饿问题(又叫读者优先策略)

在这里插入图片描述

注意:写独占,读共享,读锁优先级高

  1. 写者优先策略的实现方式:当写者加锁没有成功,在写者后面来的读者全部都不能够进入阅览室(临界区),等阅览室已经存在的读者全部离开以后,写者先进入阅览室(临界区)进行修改,然后才能让写者后面来的读者进入阅览室(临界区)。
  2. pthread库里面给我们提供了一个函数可以设置读写优先级,使用man查不到这个函数,但是可以在pthread.h头文件中发现,如果我们不设置默认是读者优先。
int pthread_rwlockattr_setkind_np(pthread_rwlockattr_t *attr, int pref);
/*
pref 共有 3 种选择
PTHREAD_RWLOCK_PREFER_READER_NP (默认设置) 读者优先,可能会导致写者饥饿情况

PTHREAD_RWLOCK_PREFER_WRITER_NP 写者优先,目前有 BUG,导致表现行为
和PTHREAD_RWLOCK_PREFER_READER_NP 一致

PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP 写者优先,但写者不能递归加锁
*/

4、读写锁的演示使用

下面的代码,我们让设置了票数等于100,读者负责查询票数,写者负责减少票数,直到票数为0, 读者与写者都退出。

由于读者优先,这个实验的效果可能不明显,这里我们设置读者为30个,写者为2个。

#include <iostream>
#include <sstream>
#include <string>
#include <vector>
#include <pthread.h>
#include <unistd.h>

using namespace std;

// 线程的属性
struct ThreadAttr
{
    pthread_t _tid;
    string _name;
};

// 票数
volatile int ticket = 100;
// 读写锁
pthread_rwlock_t rwlock;

函数相关的逻辑:

// 读写锁属性初始化
void rwattr_init(pthread_rwlockattr_t* pattr, int flag)
{
    pthread_rwlockattr_init(pattr);
    // flag为0表示读者优先,其他表示写着优先
    if (flag == 0)
    {
        pthread_rwlockattr_setkind_np(pattr, PTHREAD_RWLOCK_PREFER_READER_NP);
    }
    else
    {
        pthread_rwlockattr_setkind_np(pattr, PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP);
    }
}

// 读写锁属性的销毁
void rwattr_destroy(pthread_rwlockattr_t* prwlock)
{
    pthread_rwlockattr_destroy(prwlock);
}

// 锁的初始化
void rwlock_init(pthread_rwlock_t* prwlock, int flag = 0)
{
    pthread_rwlockattr_t rwattr;
    rwattr_init(&rwattr, flag);
    pthread_rwlock_init(prwlock, &rwattr);
    rwattr_destroy(&rwattr);
}

// 创建name
const string create_writer_name(size_t i)
{
    stringstream ssm("thread writer : ", ios::in | ios::out | ios::ate);
    ssm << i;
    return ssm.str();
}

const string create_reader_name(size_t i)
{
    stringstream ssm("thread reader : ", ios::in | ios::out | ios::ate);
    ssm << i;
    return ssm.str();
}

// 读者历程
void* readerRoutine(void* args)
{
    string* ps = static_cast<string*>(args);
    // 进行查票
    while (true)
    {
        pthread_rwlock_rdlock(&rwlock);
        if (ticket != 0)
        {
            cout << *ps << "  ticket number : " << ticket << endl;
        }
        else
        {
            cout << *ps << "  done!!!!!" << endl;
            // 防止死锁
            pthread_rwlock_unlock(&rwlock);
            break;
        }
        pthread_rwlock_unlock(&rwlock);

        // 休眠0.1ms
        usleep(100);
    }
}

// 写者历程
void* writerRoutine(void* args)
{
    string* ps = static_cast<string*>(args);
    // 进行改票
    while (true)
    {
        pthread_rwlock_wrlock(&rwlock);
        if (ticket != 0)
        {
            cout << *ps << "  ticket number : " << --ticket << endl;
        }
        else
        {
            cout << *ps << "  done!!!!!" << endl;
            // 防止死锁
            pthread_rwlock_unlock(&rwlock);
            break;
        }
        pthread_rwlock_unlock(&rwlock);
        // 休眠0.1ms
        usleep(100);
    }
}

void reader_init(vector<ThreadAttr>& readers)
{
    int i = 1;
    for (auto& e : readers)
    {
        e._name = create_reader_name(i++);
        pthread_create(&e._tid, nullptr, readerRoutine, &e._name);
    }
}

void writer_init(vector<ThreadAttr>& writers)
{
    int i = 1;
    for (auto& e : writers)
    {
        e._name = create_writer_name(i++);
        pthread_create(&e._tid, nullptr, writerRoutine, &e._name);
    }
}

void reader_join(const vector<ThreadAttr>& readers)
{
    for (auto& e : readers)
    {
        pthread_join(e._tid, nullptr);
    }
}

void writer_join(const vector<ThreadAttr>& writers)
{
    for (auto& e : writers)
    {
        pthread_join(e._tid, nullptr);
    }
}

主函数逻辑:

int main()
{
    // 初始化锁,并设置读写者优先属性
    rwlock_init(&rwlock, 0);

    const int reader_count = 30;
    const int writer_count = 2;

    vector<ThreadAttr> readers(reader_count);
    vector<ThreadAttr> writers(writer_count);

    reader_init(readers);
    writer_init(writers);

    reader_join(readers);
    writer_join(writers);
    return 0;
}

在读者优先的情况下运行:

在这里插入图片描述

在写者优先的情况下运行:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1093263.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Docker 构建Python镜像时,pip使用国内地址的dockerfile模版

一、问题现象 构建镜像时&#xff0c;使用pip命令打包报错&#xff1a; 二、问题根因 因国内无法访问pip的配置文件中的仓库地址 三、解决办法 这个办法同样适用于&#xff1a;物理机&#xff0c;这个地址是阿里云的 pip config set global.index-url http://mirrors.aliy…

<C++> IO流

C语言的输入与输出 在C语言当中&#xff0c;我们使用最频繁的输入输出方式就是scanf与printf&#xff1a; scanf&#xff1a; 从标准输入设备&#xff08;键盘&#xff09;读取数据&#xff0c;并将读取到的值存放到某一指定变量当中。printf&#xff1a; 将指定的数据输出到…

idea自动封装方法

例如 package com.utils;import java.lang.reflect.Field; import java.sql.*; import java.util.ArrayList; import java.util.List; import java.util.ResourceBundle;/*** author hrui* date 2023/10/13 13:49*/ public class DBUtils {private static ResourceBundle bund…

【网络编程】Linux网络编程基础与实战第二弹——Socket编程

Socket编程套接字概念套接字通讯原理 网络编程接口网络字节序sockaddr数据结构socket函数bind函数listen函数accept函数connect函数 ) Socket编程 套接字概念 Socket本身有“插座”的意思&#xff0c;在Linux环境下&#xff0c;用于表示进程间网络通信的特殊文件类型。本质为…

多机器人三角形编队的实现

文章目录 前言一、机器人编队前的准备二、配置仿真环境2.编写机器人编队.cpp文件 三、三角形编队测试 前言 前阵子一直想要实现多机器人编队&#xff0c;找到了很多开源的编队代码&#xff0c;经过好几天的思索&#xff0c;终于实现了在gazebo环境中的TB3三角形机器人编队。 一…

prostate数据集下载

1. prostatex 下载地址&#xff1a;https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId23691656 比赛&#xff1a;https://prostatex.grand-challenge.org/ 这个下载的是一个tcia文件&#xff0c;参考这篇文章打开该文件 2. promise12 地址&#xff1a;…

阿里健康大药房七周年峰会:两大变革叠加 风往何处吹

10月11日&#xff0c;2023数字医药产业论坛暨阿里健康大药房7周年活动在杭州举行。 作为一年一度的医药圈峰会&#xff0c;大会现场集聚了数百家全球知名医药健康企业、经济学者、学术智库等各界领袖、专家&#xff0c;针对健康行业新趋势、新技术、新场景分享产业见解和经验&…

Redis HyperLogLog的使用

Redis HyperLogLog知识总结 一、简介二、使用 一、简介 Redis HyperLogLog是一种数据结构&#xff0c;用于高效地计算基数&#xff08;集合中唯一元素的数量&#xff09;。它的主要作用是用于在内存中高效地存储和计算大量数据的基数&#xff0c;而无需完全存储所有的数据。Hy…

XMind思维导图软件forMac/win:让你的大脑更高效地运转

XMind 是一款非常实用的思维导图软件&#xff0c;它可以帮助用户更好地组织思维、提高工作效率。 您是否曾经遇到过这样的问题&#xff1a;在工作中需要处理大量的信息、任务和项目&#xff0c;但却又不知道该如何下手&#xff1f;这种情况很常见&#xff0c;但是&#xff0c;…

简单好用的解压缩软件:keka 中文 for mac

Keka是一款功能全面、易于使用的文件压缩和解压缩软件&#xff0c;为Mac用户提供了便捷的文件管理工具。它支持多种压缩格式&#xff0c;具有快速解压和强大的压缩功能&#xff0c;让您能够轻松地处理各种文件压缩需求。 隐私非常重要 安全共享只需设置密码并创建高度加密的文…

虚幻引擎:如何实现骨骼重定向

前言&#xff1a; 为什么需要做骨骼重定向&#xff0c;因为当前角色素材没有对应的动画&#xff0c;这时候我们可以找个身高体型差不多的带有动画素材的另一个角色来做重定向&#xff0c;这样我们就可以得到我们需要的动画素材了。 1.首先创建两个骨骼的IK绑定 2.然后给两个骨骼…

Java Kids-百倍提速【Mac IOS】

引言&#xff1a;当今社会&#xff0c;创新和提升效率已经成为了大家普遍的追求。无论是个人生活还是企业经营&#xff0c;我们都希望能够以更高的效率完成任务&#xff0c;节省时间和资源。因此&#xff0c;提速成为了一种时代的要求&#xff0c;而"Java Kids 百倍提速&q…

Hadoop3教程(四):HDFS的读写流程及节点距离计算

文章目录 &#xff08;55&#xff09;HDFS 写数据流程&#xff08;56&#xff09; 节点距离计算&#xff08;57&#xff09;机架感知&#xff08;副本存储节点选择&#xff09;&#xff08;58&#xff09;HDFS 读数据流程参考文献 &#xff08;55&#xff09;HDFS 写数据流程 …

SpringBoot+原生HTML+MySQL开发的电子病历系统源码

电子病历系统源码 电子病历编辑器源码 云端SaaS服务 电子病历系统&#xff0c;采用 “所见即所得、一体化方式”&#xff0c;协助医生和护士准确、标准、快捷实现病历书写、修改、审阅、打印、体温单浏览、医嘱管理等&#xff0c;是提供病历快速简洁化完成的一系列综合型医生病…

MyCat分片水平拆分

场景 在业务系统中 , 有一张表 ( 日志表 ), 业务系统每天都会产生大量的日志数据 , 单台服务器的数据存 储及处理能力是有限的 , 可以对数据库表进行拆分。 准备 准备三台服务器&#xff0c;具体的结构如下&#xff1a; 并且&#xff0c;在三台数据库服务器中分表创建一…

启山智软/JAVA商城

一、项目介绍 启山网上商城采用目前流行的JAVA spring cloud架构开发&#xff0c;前端使用的是目前最流行的TypeScript、VUE3、uniapp、element-plus、pinia技术&#xff0c;后端采用的是JAVA、SpringBoot、spring cloud技术&#xff0c;数据库采用的是MSQ&#xff0c;采用前后…

C语言----程序环境

目录 前言: 1.翻译环境 1.1预编译(预处理) 1.2编译 1.3汇编 1.4链接 2.运行环境 前言: 我们在用vs或一些其他的编译器写代码的时候,当我们运行代码的时候,很自然而然的就出结果了,但是它究竟是如何是如何实现的呢?因为这部分的内容是涉及到"编译原理"的,所以本章…

读书笔记——C++高性能编程(六)

第六章.并发和性能 阿姆达尔定律 介绍了阿姆达尔定律&#xff08;Amdahls Law&#xff09;&#xff0c;这个定律的意义是“系统中对某一部件采用更快执行方式所能获得的系统性能改进程度&#xff0c;取决于这种执行方式被使用的频率”。具体的公式如下&#xff1a; 其中s0是程…

基于CodeFormer使用C++实现图片模糊变清晰,去除马赛克等效果

前言 CodeFormer是一种基于AI技术深度学习的人脸复原模型&#xff0c;由南洋理工大学和商汤科技联合研究中心联合开发。该模型通过结合了VQGAN和Transformer等技术&#xff0c;可以通过提供模糊或马赛克图像来生成清晰的原始图像。可以实现老照片修复、照片马赛克修复、黑白照…

深入浅出ThreadPoolExecutor(一)

文章目录 线程池简诉ThreadPoolExecutor详解ThreadPoolExecutor参数详解创建线程池的工具类Executors 线程池简诉 针对各种池子,比如 连接池:用于管理和重复使用数据库连接&#xff0c;避免频繁创建和销毁数据库连接带来的性能开销。对象池&#xff1a;用于管理和重复使用对象…