第P9周-YOLOv5Backbone模块

news2025/1/6 20:14:42

CSP Bottleneck块和C3 类的设计使其非常适合目标检测任务,充分考虑了多尺度特征融合、梯度流动和计算效率等因素。C3 类以及CSP(Cross Stage Partial) Bottleneck块作为YOLOv5中的一部分,具有以下优势,相对于传统的普通神经网络:

  1. 特定任务定制:C3 类和CSP Bottleneck块是专门为目标检测任务设计的。它们在特征提取和融合方面进行了特定的优化,有助于提高目标检测性能。传统的神经网络结构通常用于通用的图像分类任务,不一定适用于目标检测。

  2. 多尺度特征融合:CSP Bottleneck块具有特殊的结构,允许多尺度的特征信息进行有效融合。这对于目标检测非常关键,因为目标可能具有不同尺寸和比例,需要在不同尺度下进行检测。

  3. 快捷连接:CSP Bottleneck块允许引入快捷连接,这对于信息流动和梯度传播至关重要。传统的神经网络通常没有这种结构,而YOLOv5中的C3块通过快捷连接促进了梯度的传递,减轻了梯度消失问题,有助于训练的稳定性。

  4. 高效性能:尽管CSP Bottleneck块具有更复杂的结构,但它们经过有效的设计,不会引入过多的计算复杂性。这使得YOLOv5能够在相对较短的时间内完成目标检测任务。

一、前期工作

1.1 导入数据集

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,warnings

warnings.filterwarnings("ignore")             #忽略警告信息

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)

import os,PIL,random,pathlib

data_dir = 'D:/T6star/'
data_dir = pathlib.Path(data_dir)

data_paths  = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[2] for path in data_paths]
print(classeNames)

 1.2  标准化处理

# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    # transforms.RandomHorizontalFlip(), # 随机水平翻转
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

test_transform = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

total_data = datasets.ImageFolder("D:/P8/weather_photos/",transform=train_transforms)
print(total_data)

1.3 划分数据集

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
print(train_dataset, test_dataset)

 

1.4 设置数据加载器

batch_size = 4

train_dl = torch.utils.data.DataLoader(train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True,
                                           num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                          batch_size=batch_size,
                                          shuffle=True,

 二、搭建包含CSP Bottleneck块和C3 类的YOLOv5的主干网络

import torch.nn.functional as F

def autopad(k, p=None):  # kernel, padding
    # Pad to 'same'
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p

class Conv(nn.Module):
    # Standard convolution
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)# 定义卷积层
        self.bn = nn.BatchNorm2d(c2)
        self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())

    def forward(self, x):
        return self.act(self.bn(self.conv(x)))

class Bottleneck(nn.Module):
    # Standard bottleneck
    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_, c2, 3, 1, g=g)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))

class C3(nn.Module):
    # CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # act=FReLU(c2)
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
    
class SPPF(nn.Module):
    # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
    def __init__(self, c1, c2, k=5):  # equivalent to SPP(k=(5, 9, 13))
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * 4, c2, 1, 1)
        self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)

    def forward(self, x):
        x = self.cv1(x)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warning
            y1 = self.m(x)
            y2 = self.m(y1)
            return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))
"""
这个是YOLOv5, 6.0版本的主干网络,这里进行复现
(注:有部分删改,详细讲解将在后续进行展开)
"""
class YOLOv5_backbone(nn.Module):
    def __init__(self):
        super(YOLOv5_backbone, self).__init__()
        
        self.Conv_1 = Conv(3, 64, 3, 2, 2) 
        self.Conv_2 = Conv(64, 128, 3, 2) 
        self.C3_3   = C3(128,128)
        self.Conv_4 = Conv(128, 256, 3, 2) 
        self.C3_5   = C3(256,256)
        self.Conv_6 = Conv(256, 512, 3, 2) 
        self.C3_7   = C3(512,512)
        self.Conv_8 = Conv(512, 1024, 3, 2) 
        self.C3_9   = C3(1024, 1024)
        self.SPPF   = SPPF(1024, 1024, 5)
        
        # 全连接网络层,用于分类
        self.classifier = nn.Sequential(
            nn.Linear(in_features=65536, out_features=100),
            nn.ReLU(),
            nn.Linear(in_features=100, out_features=4)
        )
        
    def forward(self, x):
        x = self.Conv_1(x)
        x = self.Conv_2(x)
        x = self.C3_3(x)
        x = self.Conv_4(x)
        x = self.C3_5(x)
        x = self.Conv_6(x)
        x = self.C3_7(x)
        x = self.Conv_8(x)
        x = self.C3_9(x)
        x = self.SPPF(x)
        
        x = torch.flatten(x, start_dim=1)
        x = self.classifier(x)

        return x

device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
    
model = YOLOv5_backbone().to(device)
print(model)

autopad(k, p) 函数:

  • 这个函数用于计算卷积操作中的自动填充大小。
  • 如果没有提供填充参数 p,则它会根据卷积核大小 k 的情况自动计算填充大小,以实现“same”填充,即输入和输出特征图具有相同的空间维度。

Conv 类:

  • 这个类定义了标准的卷积层,包括卷积、批量归一化和激活函数等。
  • 构造函数接受参数 c1(输入通道数)、c2(输出通道数)、k(卷积核大小)、s(步幅)、p(填充)、g(分组卷积)、act(激活函数类型)等。
  • forward 方法执行卷积、批量归一化和激活函数操作,并返回输出。

Bottleneck 类:

  • 这个类定义了标准的瓶颈块,用于深层网络中的特征提取。
  • 构造函数接受参数 c1(输入通道数)、c2(输出通道数)、shortcut(是否包含快捷连接)、g(分组卷积)、e(扩展系数)、groups 卷积操作中的分组参数,通常为1,表示标准卷积。在深度可分离卷积等操作中,该值可能不为1。   bias  设置为False,表示卷积操作不使用偏置项。
  • forward 方法执行一系列卷积操作,包括卷积核为1x1和3x3的卷积,以及可选的快捷连接操作。   

C3 类:

  • 这个类定义了CSP(Cross Stage Partial) Bottleneck块,它包含3个卷积操作。
  • forward 方法执行一系列卷积操作,包括卷积核为1x1的卷积、2个不同的卷积核为1x1的卷积和可选的快捷连接操作。

SPPF 类:

SPPF层是指"Spatial Pyramid Pooling - Fast"层,它是YOLOv5中的一种特殊层,用于多尺度特征融合。SPPF层的作用是对输入特征图进行空间金字塔池化,以捕获不同尺度的特征信息,从而提高目标检测性能。

self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)

nn.MaxPool2d 是PyTorch中的最大池化层,用于进行池化操作。kernel_size 参数设定了池化核的大小,这里使用了k 作为参数,表示池化核的大小为k x kstride 参数设置为1,表示池化操作的滑动步幅为1。padding 参数设置为k // 2,表示对输入特征图进行填充以保持输出特征图的尺寸与输入相同。

nn.MaxPool2d 层被用于执行空间金字塔池化,其中kernel_size 的不同取值对应于不同尺度的池化区域。这有助于在不同尺度上捕获特征信息,从而提高目标检测性能。在这个特定的情况下,k 的取值是5913,相应地表示了3个不同尺度的池化操作,从而构成了空间金字塔池化。

  • 这个类定义了SPPF(Spatial Pyramid Pooling - Fast)层,用于多尺度特征融合。
  • forward 方法执行空间金字塔池化操作,将不同尺度的特征图拼接在一起。

YOLOv5_backbone 类:

  • 定义主干网络的各个层(Conv_1Conv_2C3_3Conv_4C3_5Conv_6C3_7Conv_8C3_9SPPF)用于逐步提取输入图像的特征。。
  • classifier 是一个全连接网络层,用于分类任务。
  • forward 方法定义了整个主干网络的前向传播过程,包括各个层次的卷积和特征融合。

小结:        

在上述代码中,forward 函数在不同类中的作用如下:

  1. forward 函数在 Conv 类中的作用:

    • Conv 类代表标准的卷积层,其 forward 函数用于执行卷积操作。
    • 输入 x 是卷积层的输入特征图。
    • 通过卷积操作、批量归一化(Batch Normalization)、激活函数等一系列操作,将输入特征图 x 转化为经过卷积层处理后的输出。
  2. forward 函数在 Bottleneck 类中的作用:

    • Bottleneck 类代表标准的瓶颈块,其 forward 函数用于执行瓶颈块的前向传播。
    • 输入 x 是瓶颈块的输入特征图。
    • 瓶颈块包括一系列卷积层和残差连接(如果 shortcutTrue),将输入特征图 x 转化为经过瓶颈块处理后的输出。
  3. forward 函数在 C3 类中的作用:

    • C3 类代表一种特殊的 CSP(Cross-Stage-Partial)瓶颈块,包括三个卷积操作。
    • 输入 xC3 瓶颈块的输入特征图。
    • forward 函数首先执行两个不同卷积操作 self.cv1self.cv2,然后将它们的输出与输入 x 进行拼接(Concatenate),并传递给第三个卷积操作 self.cv3
    • 最后,通过一系列堆叠的 Bottleneck 块(self.m 中的循环),将输入特征图 x 通过多次瓶颈块的处理,生成经过 C3 块处理后的输出。
  4. forward 函数在 SPPF 类中的作用:

    • SPPF 类代表空间金字塔池化(Spatial Pyramid Pooling - Fast)层。
    • 输入 x 是SPPF层的输入特征图。
    • forward 函数执行空间金字塔池化操作,将输入特征图 x 通过最大池化操作 self.m 在不同尺度上池化,然后将池化后的结果进行拼接,生成SPPF层的输出特征。
  5. forward 函数在 YOLOv5_backbone 类中的作用:

    • YOLOv5_backbone 类代表整个YOLOv5的主干网络,包括多个卷积层和瓶颈块,以及SPPF层。
    • forward 函数按照网络的顺序将输入特征图 x 通过各个组件,包括卷积层、瓶颈块、SPPF层,然后通过全连接网络层 self.classifier 进行分类。
    • 返回经过主干网络处理后的特征表示,用于目标检测的进一步处理。

 运行结果:

YOLOv5_backbone(
  (Conv_1): Conv(
    (conv): Conv2d(3, 64, kernel_size=(3, 3), stride=(2, 2), padding=(2, 2), bias=False)
    (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (act): SiLU()
  )
  (Conv_2): Conv(
    (conv): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (act): SiLU()
  )
  (C3_3): C3(
    (cv1): Conv(
      (conv): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv2): Conv(
      (conv): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv3): Conv(
      (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (m): Sequential(
      (0): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (cv2): Conv(
          (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
    )
  )
  (Conv_4): Conv(
    (conv): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (act): SiLU()
  )
  (C3_5): C3(
    (cv1): Conv(
      (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv2): Conv(
      (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv3): Conv(
      (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (m): Sequential(
      (0): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (cv2): Conv(
          (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
    )
  )
  (Conv_6): Conv(
    (conv): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (act): SiLU()
  )
  (C3_7): C3(
    (cv1): Conv(
      (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv2): Conv(
      (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv3): Conv(
      (conv): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (m): Sequential(
      (0): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (cv2): Conv(
          (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
    )
  )
  (Conv_8): Conv(
    (conv): Conv2d(512, 1024, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (act): SiLU()
  )
  (C3_9): C3(
    (cv1): Conv(
      (conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv2): Conv(
      (conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv3): Conv(
      (conv): Conv2d(1024, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (m): Sequential(
      (0): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (cv2): Conv(
          (conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
    )
  )
  (SPPF): SPPF(
    (cv1): Conv(
      (conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv2): Conv(
      (conv): Conv2d(2048, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (m): MaxPool2d(kernel_size=5, stride=1, padding=2, dilation=1, ceil_mode=False)
  )
  (classifier): Sequential(
    (0): Linear(in_features=65536, out_features=100, bias=True)
    (1): ReLU()
    (2): Linear(in_features=100, out_features=4, bias=True)
  )
)

 查看模型详情:

# 统计模型参数量以及其他指标
import torchsummary as summary
summary.summary(model, (3, 224, 224))
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 64, 113, 113]           1,728
       BatchNorm2d-2         [-1, 64, 113, 113]             128
              SiLU-3         [-1, 64, 113, 113]               0
              Conv-4         [-1, 64, 113, 113]               0
            Conv2d-5          [-1, 128, 57, 57]          73,728
       BatchNorm2d-6          [-1, 128, 57, 57]             256
              SiLU-7          [-1, 128, 57, 57]               0
              Conv-8          [-1, 128, 57, 57]               0
            Conv2d-9           [-1, 64, 57, 57]           8,192
      BatchNorm2d-10           [-1, 64, 57, 57]             128
             SiLU-11           [-1, 64, 57, 57]               0
             Conv-12           [-1, 64, 57, 57]               0
           Conv2d-13           [-1, 64, 57, 57]           4,096
      BatchNorm2d-14           [-1, 64, 57, 57]             128
             SiLU-15           [-1, 64, 57, 57]               0
             Conv-16           [-1, 64, 57, 57]               0
           Conv2d-17           [-1, 64, 57, 57]          36,864
      BatchNorm2d-18           [-1, 64, 57, 57]             128
             SiLU-19           [-1, 64, 57, 57]               0
             Conv-20           [-1, 64, 57, 57]               0
       Bottleneck-21           [-1, 64, 57, 57]               0
           Conv2d-22           [-1, 64, 57, 57]           8,192
      BatchNorm2d-23           [-1, 64, 57, 57]             128
             SiLU-24           [-1, 64, 57, 57]               0
             Conv-25           [-1, 64, 57, 57]               0
           Conv2d-26          [-1, 128, 57, 57]          16,384
      BatchNorm2d-27          [-1, 128, 57, 57]             256
             SiLU-28          [-1, 128, 57, 57]               0
             Conv-29          [-1, 128, 57, 57]               0
               C3-30          [-1, 128, 57, 57]               0
           Conv2d-31          [-1, 256, 29, 29]         294,912
      BatchNorm2d-32          [-1, 256, 29, 29]             512
             SiLU-33          [-1, 256, 29, 29]               0
             Conv-34          [-1, 256, 29, 29]               0
           Conv2d-35          [-1, 128, 29, 29]          32,768
      BatchNorm2d-36          [-1, 128, 29, 29]             256
             SiLU-37          [-1, 128, 29, 29]               0
             Conv-38          [-1, 128, 29, 29]               0
           Conv2d-39          [-1, 128, 29, 29]          16,384
      BatchNorm2d-40          [-1, 128, 29, 29]             256
             SiLU-41          [-1, 128, 29, 29]               0
             Conv-42          [-1, 128, 29, 29]               0
           Conv2d-43          [-1, 128, 29, 29]         147,456
      BatchNorm2d-44          [-1, 128, 29, 29]             256
             SiLU-45          [-1, 128, 29, 29]               0
             Conv-46          [-1, 128, 29, 29]               0
       Bottleneck-47          [-1, 128, 29, 29]               0
           Conv2d-48          [-1, 128, 29, 29]          32,768
      BatchNorm2d-49          [-1, 128, 29, 29]             256
             SiLU-50          [-1, 128, 29, 29]               0
             Conv-51          [-1, 128, 29, 29]               0
           Conv2d-52          [-1, 256, 29, 29]          65,536
      BatchNorm2d-53          [-1, 256, 29, 29]             512
             SiLU-54          [-1, 256, 29, 29]               0
             Conv-55          [-1, 256, 29, 29]               0
               C3-56          [-1, 256, 29, 29]               0
           Conv2d-57          [-1, 512, 15, 15]       1,179,648
      BatchNorm2d-58          [-1, 512, 15, 15]           1,024
             SiLU-59          [-1, 512, 15, 15]               0
             Conv-60          [-1, 512, 15, 15]               0
           Conv2d-61          [-1, 256, 15, 15]         131,072
      BatchNorm2d-62          [-1, 256, 15, 15]             512
             SiLU-63          [-1, 256, 15, 15]               0
             Conv-64          [-1, 256, 15, 15]               0
           Conv2d-65          [-1, 256, 15, 15]          65,536
      BatchNorm2d-66          [-1, 256, 15, 15]             512
             SiLU-67          [-1, 256, 15, 15]               0
             Conv-68          [-1, 256, 15, 15]               0
           Conv2d-69          [-1, 256, 15, 15]         589,824
      BatchNorm2d-70          [-1, 256, 15, 15]             512
             SiLU-71          [-1, 256, 15, 15]               0
             Conv-72          [-1, 256, 15, 15]               0
       Bottleneck-73          [-1, 256, 15, 15]               0
           Conv2d-74          [-1, 256, 15, 15]         131,072
      BatchNorm2d-75          [-1, 256, 15, 15]             512
             SiLU-76          [-1, 256, 15, 15]               0
             Conv-77          [-1, 256, 15, 15]               0
           Conv2d-78          [-1, 512, 15, 15]         262,144
      BatchNorm2d-79          [-1, 512, 15, 15]           1,024
             SiLU-80          [-1, 512, 15, 15]               0
             Conv-81          [-1, 512, 15, 15]               0
               C3-82          [-1, 512, 15, 15]               0
           Conv2d-83           [-1, 1024, 8, 8]       4,718,592
      BatchNorm2d-84           [-1, 1024, 8, 8]           2,048
             SiLU-85           [-1, 1024, 8, 8]               0
             Conv-86           [-1, 1024, 8, 8]               0
           Conv2d-87            [-1, 512, 8, 8]         524,288
      BatchNorm2d-88            [-1, 512, 8, 8]           1,024
             SiLU-89            [-1, 512, 8, 8]               0
             Conv-90            [-1, 512, 8, 8]               0
           Conv2d-91            [-1, 512, 8, 8]         262,144
      BatchNorm2d-92            [-1, 512, 8, 8]           1,024
             SiLU-93            [-1, 512, 8, 8]               0
             Conv-94            [-1, 512, 8, 8]               0
           Conv2d-95            [-1, 512, 8, 8]       2,359,296
      BatchNorm2d-96            [-1, 512, 8, 8]           1,024
             SiLU-97            [-1, 512, 8, 8]               0
             Conv-98            [-1, 512, 8, 8]               0
       Bottleneck-99            [-1, 512, 8, 8]               0
          Conv2d-100            [-1, 512, 8, 8]         524,288
     BatchNorm2d-101            [-1, 512, 8, 8]           1,024
            SiLU-102            [-1, 512, 8, 8]               0
            Conv-103            [-1, 512, 8, 8]               0
          Conv2d-104           [-1, 1024, 8, 8]       1,048,576
     BatchNorm2d-105           [-1, 1024, 8, 8]           2,048
            SiLU-106           [-1, 1024, 8, 8]               0
            Conv-107           [-1, 1024, 8, 8]               0
              C3-108           [-1, 1024, 8, 8]               0
          Conv2d-109            [-1, 512, 8, 8]         524,288
     BatchNorm2d-110            [-1, 512, 8, 8]           1,024
            SiLU-111            [-1, 512, 8, 8]               0
            Conv-112            [-1, 512, 8, 8]               0
       MaxPool2d-113            [-1, 512, 8, 8]               0
       MaxPool2d-114            [-1, 512, 8, 8]               0
       MaxPool2d-115            [-1, 512, 8, 8]               0
          Conv2d-116           [-1, 1024, 8, 8]       2,097,152
     BatchNorm2d-117           [-1, 1024, 8, 8]           2,048
            SiLU-118           [-1, 1024, 8, 8]               0
            Conv-119           [-1, 1024, 8, 8]               0
            SPPF-120           [-1, 1024, 8, 8]               0
          Linear-121                  [-1, 100]       6,553,700
            ReLU-122                  [-1, 100]               0
          Linear-123                    [-1, 4]             404
================================================================
Total params: 21,729,592
Trainable params: 21,729,592
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 137.59
Params size (MB): 82.89
Estimated Total Size (MB): 221.06
----------------------------------------------------------------
None

三、训练函数

3.1 编写训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小
    num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

3.2 编写测试函数

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小
    num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

3.3 正式训练

import copy

optimizer  = torch.optim.Adam(model.parameters(), lr= 1e-4)
loss_fn    = nn.CrossEntropyLoss() # 创建损失函数

epochs     = 60

train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

best_acc = 0    # 设置一个最佳准确率,作为最佳模型的判别指标

for epoch in range(epochs):
    
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    # 保存最佳模型到 best_model
    if epoch_test_acc > best_acc:
        best_acc   = epoch_test_acc
        best_model = copy.deepcopy(model)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    # 获取当前的学习率
    lr = optimizer.state_dict()['param_groups'][0]['lr']
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, 
                          epoch_test_acc*100, epoch_test_loss, lr))
    
# 保存最佳模型到文件中
PATH = './best_model.pth'  # 保存的参数文件名
torch.save(best_model.state_dict(), PATH)

print('Done')

运行结果: 

cpu
cpu
Epoch: 1, Train_acc:53.0%, Train_loss:1.110, Test_acc:64.4%, Test_loss:0.690, Lr:1.00E-04
cpu
cpu
Epoch: 2, Train_acc:60.8%, Train_loss:0.851, Test_acc:60.4%, Test_loss:0.783, Lr:1.00E-04
cpu
cpu
Epoch: 3, Train_acc:68.3%, Train_loss:0.723, Test_acc:74.7%, Test_loss:0.628, Lr:1.00E-04
cpu
cpu
Epoch: 4, Train_acc:73.4%, Train_loss:0.634, Test_acc:75.6%, Test_loss:0.455, Lr:1.00E-04
cpu
cpu
Epoch: 5, Train_acc:74.4%, Train_loss:0.598, Test_acc:76.0%, Test_loss:0.554, Lr:1.00E-04
cpu
cpu
Epoch: 6, Train_acc:76.8%, Train_loss:0.578, Test_acc:81.3%, Test_loss:0.403, Lr:1.00E-04
cpu
cpu
Epoch: 7, Train_acc:80.4%, Train_loss:0.480, Test_acc:83.6%, Test_loss:0.359, Lr:1.00E-04
cpu
cpu
Epoch: 8, Train_acc:82.4%, Train_loss:0.450, Test_acc:82.7%, Test_loss:0.423, Lr:1.00E-04
cpu
cpu
Epoch: 9, Train_acc:82.6%, Train_loss:0.403, Test_acc:89.3%, Test_loss:0.275, Lr:1.00E-04
cpu
cpu
Epoch:10, Train_acc:86.8%, Train_loss:0.345, Test_acc:87.6%, Test_loss:0.373, Lr:1.00E-04
cpu
cpu
Epoch:11, Train_acc:87.1%, Train_loss:0.319, Test_acc:91.6%, Test_loss:0.240, Lr:1.00E-04
cpu
cpu
Epoch:12, Train_acc:88.3%, Train_loss:0.296, Test_acc:84.0%, Test_loss:0.408, Lr:1.00E-04
cpu
cpu
Epoch:13, Train_acc:88.6%, Train_loss:0.284, Test_acc:77.8%, Test_loss:0.519, Lr:1.00E-04
cpu
cpu
Epoch:14, Train_acc:91.9%, Train_loss:0.242, Test_acc:89.8%, Test_loss:0.246, Lr:1.00E-04
cpu
cpu
Epoch:15, Train_acc:93.0%, Train_loss:0.193, Test_acc:89.8%, Test_loss:0.316, Lr:1.00E-04
cpu
cpu
Epoch:16, Train_acc:92.2%, Train_loss:0.201, Test_acc:85.3%, Test_loss:0.451, Lr:1.00E-04
cpu
cpu
Epoch:17, Train_acc:90.6%, Train_loss:0.229, Test_acc:86.7%, Test_loss:0.535, Lr:1.00E-04
cpu
cpu
Epoch:18, Train_acc:92.3%, Train_loss:0.198, Test_acc:80.4%, Test_loss:0.586, Lr:1.00E-04
cpu
cpu
Epoch:19, Train_acc:92.6%, Train_loss:0.196, Test_acc:90.2%, Test_loss:0.251, Lr:1.00E-04
cpu
cpu
Epoch:20, Train_acc:94.8%, Train_loss:0.155, Test_acc:90.7%, Test_loss:0.223, Lr:1.00E-04
cpu
cpu
Epoch:21, Train_acc:95.2%, Train_loss:0.132, Test_acc:90.7%, Test_loss:0.282, Lr:1.00E-04
cpu
cpu
Epoch:22, Train_acc:95.9%, Train_loss:0.121, Test_acc:79.6%, Test_loss:0.744, Lr:1.00E-04
cpu
cpu
Epoch:23, Train_acc:96.8%, Train_loss:0.102, Test_acc:92.9%, Test_loss:0.183, Lr:1.00E-04
cpu
cpu
Epoch:24, Train_acc:97.1%, Train_loss:0.083, Test_acc:87.6%, Test_loss:0.380, Lr:1.00E-04
cpu

四、完整代码

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,warnings

warnings.filterwarnings("ignore")             #忽略警告信息

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)

import os,PIL,random,pathlib


def main():
    data_dir = 'D:/P8/weather_photos/'
    data_dir = pathlib.Path(data_dir)

    data_paths  = list(data_dir.glob('*'))
    classeNames = [str(path).split("\\")[2] for path in data_paths]
    print(classeNames)

    # 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
    train_transforms = transforms.Compose([
        transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
        # transforms.RandomHorizontalFlip(), # 随机水平翻转
        transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
        transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
            mean=[0.485, 0.456, 0.406], 
            std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
    ])

    test_transform = transforms.Compose([
        transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
        transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
        transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
            mean=[0.485, 0.456, 0.406], 
            std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
    ])

    total_data = datasets.ImageFolder("D:/P8/weather_photos/",transform=train_transforms)
    print(total_data)

    train_size = int(0.8 * len(total_data))
    test_size  = len(total_data) - train_size
    train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
    print(train_dataset, test_dataset)

    batch_size = 4

    train_dl = torch.utils.data.DataLoader(train_dataset,
                                            batch_size=batch_size,
                                            shuffle=True,
                                            num_workers=1)
    test_dl = torch.utils.data.DataLoader(test_dataset,
                                            batch_size=batch_size,
                                            shuffle=True,
                                            num_workers=1)

    import torch.nn.functional as F

    def autopad(k, p=None):  # kernel, padding
        # Pad to 'same'
        if p is None:
            p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
        return p

    class Conv(nn.Module):
        # Standard convolution
        def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
            super().__init__()
            self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)# 定义卷积层
            self.bn = nn.BatchNorm2d(c2)
            self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())

        def forward(self, x):
            return self.act(self.bn(self.conv(x)))

    class Bottleneck(nn.Module):
        # Standard bottleneck
        def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansion
            super().__init__()
            c_ = int(c2 * e)  # hidden channels
            self.cv1 = Conv(c1, c_, 1, 1)
            self.cv2 = Conv(c_, c2, 3, 1, g=g)
            self.add = shortcut and c1 == c2

        def forward(self, x):
            return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))

    class C3(nn.Module):
        # CSP Bottleneck with 3 convolutions
        def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
            super().__init__()
            c_ = int(c2 * e)  # hidden channels
            self.cv1 = Conv(c1, c_, 1, 1)
            self.cv2 = Conv(c1, c_, 1, 1)
            self.cv3 = Conv(2 * c_, c2, 1)  # act=FReLU(c2)
            self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

        def forward(self, x):
            return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
        
    class SPPF(nn.Module):
        # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
        def __init__(self, c1, c2, k=5):  # equivalent to SPP(k=(5, 9, 13))
            super().__init__()
            c_ = c1 // 2  # hidden channels
            self.cv1 = Conv(c1, c_, 1, 1)
            self.cv2 = Conv(c_ * 4, c2, 1, 1)
            self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)

        def forward(self, x):
            x = self.cv1(x)
            with warnings.catch_warnings():
                warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warning
                y1 = self.m(x)
                y2 = self.m(y1)
                return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))
    """
    这个是YOLOv5, 6.0版本的主干网络,这里进行复现
    (注:有部分删改,详细讲解将在后续进行展开)
    """
    class YOLOv5_backbone(nn.Module):
        def __init__(self):
            super(YOLOv5_backbone, self).__init__()
            
            self.Conv_1 = Conv(3, 64, 3, 2, 2) 
            self.Conv_2 = Conv(64, 128, 3, 2) 
            self.C3_3   = C3(128,128)
            self.Conv_4 = Conv(128, 256, 3, 2) 
            self.C3_5   = C3(256,256)
            self.Conv_6 = Conv(256, 512, 3, 2) 
            self.C3_7   = C3(512,512)
            self.Conv_8 = Conv(512, 1024, 3, 2) 
            self.C3_9   = C3(1024, 1024)
            self.SPPF   = SPPF(1024, 1024, 5)
            
            # 全连接网络层,用于分类
            self.classifier = nn.Sequential(
                nn.Linear(in_features=65536, out_features=100),
                nn.ReLU(),
                nn.Linear(in_features=100, out_features=4)
            )
            
        def forward(self, x):
            x = self.Conv_1(x)
            x = self.Conv_2(x)
            x = self.C3_3(x)
            x = self.Conv_4(x)
            x = self.C3_5(x)
            x = self.Conv_6(x)
            x = self.C3_7(x)
            x = self.Conv_8(x)
            x = self.C3_9(x)
            x = self.SPPF(x)
            
            x = torch.flatten(x, start_dim=1)
            x = self.classifier(x)

            return x

    device = "cuda" if torch.cuda.is_available() else "cpu"
    print("Using {} device".format(device))
        
    model = YOLOv5_backbone().to(device)
    print(model)

    # 统计模型参数量以及其他指标
    import torchsummary as summary
    print(summary.summary(model, (3, 224, 224)))

    # 训练循环
    def train(dataloader, model, loss_fn, optimizer):
        size = len(dataloader.dataset)  # 训练集的大小
        num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)

        train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
        
        for X, y in dataloader:  # 获取图片及其标签
            X, y = X.to(device), y.to(device)
            
            # 计算预测误差
            pred = model(X)          # 网络输出
            loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
            
            # 反向传播
            optimizer.zero_grad()  # grad属性归零
            loss.backward()        # 反向传播
            optimizer.step()       # 每一步自动更新
            
            # 记录acc与loss
            train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
            train_loss += loss.item()
                
        train_acc  /= size
        train_loss /= num_batches

        return train_acc, train_loss

    def test (dataloader, model, loss_fn):
        size        = len(dataloader.dataset)  # 测试集的大小
        num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)
        test_loss, test_acc = 0, 0
        
        # 当不进行训练时,停止梯度更新,节省计算内存消耗
        with torch.no_grad():
            for imgs, target in dataloader:
                imgs, target = imgs.to(device), target.to(device)
                
                # 计算loss
                target_pred = model(imgs)
                loss        = loss_fn(target_pred, target)
                
                test_loss += loss.item()
                test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

        test_acc  /= size
        test_loss /= num_batches

        return test_acc, test_loss

    import copy

    optimizer  = torch.optim.Adam(model.parameters(), lr= 1e-4)
    loss_fn    = nn.CrossEntropyLoss() # 创建损失函数

    epochs     = 60

    train_loss = []
    train_acc  = []
    test_loss  = []
    test_acc   = []

    best_acc = 0    # 设置一个最佳准确率,作为最佳模型的判别指标

    for epoch in range(epochs):
        
        model.train()
        epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
        
        model.eval()
        epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
        
        # 保存最佳模型到 best_model
        if epoch_test_acc > best_acc:
            best_acc   = epoch_test_acc
            best_model = copy.deepcopy(model)
        
        train_acc.append(epoch_train_acc)
        train_loss.append(epoch_train_loss)
        test_acc.append(epoch_test_acc)
        test_loss.append(epoch_test_loss)
        
        # 获取当前的学习率
        lr = optimizer.state_dict()['param_groups'][0]['lr']
        
        template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
        print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, 
                            epoch_test_acc*100, epoch_test_loss, lr))
        
    # 保存最佳模型到文件中
    PATH = './best_model.pth'  # 保存的参数文件名
    torch.save(best_model.state_dict(), PATH)

    print('Done')

if __name__ == '__main__':
    main()

torch.save(model.state_dict(), PATH)torch.save(model, PATH) 之间有很大的区别:

  1. torch.save(model.state_dict(), PATH) 保存的是模型的参数字典(state_dict),而不是整个模型对象。这意味着只有模型的权重和偏置等参数会被保存,而模型的结构、图层和其他属性不会被保存。这种方式通常用于保存和加载模型的参数,而不包括模型的结构。

  2. torch.save(model, PATH) 保存的是整个模型对象,包括模型的结构、图层、参数和其他属性。这意味着整个模型的状态都会被保存,包括模型的结构和权重。这种方式通常用于保存和加载完整的模型,包括模型的结构和参数。

copy.deepcopy(model) 

copy.deepcopy(model): 这部分代码使用 Python 的 copy.deepcopy 函数创建了模型的深度拷贝。这意味着它会复制整个模型对象,包括模型的架构、权重、参数等。通常情况下,这用于创建一个独立的模型副本,以便进一步的处理或修改,而不会影响原始模型或其他引用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1084164.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

京东商品品牌数据采集接口,京东商品详情数据接口,京东API接口

采集京东商品品牌数据的方法如下: 打开网页。在首页【输入框】中输入目标网址批量输入多个关键词并搜索。创建【循环列表】,采集所有商品列表中的数据。编辑字段。创建【循环翻页】,采集多页数据。设置滚动和修改【循环翻页】XPath。启动采集…

日常开发中的图片处理系列工具

一键保存谷歌浏览器当前网页的图片和视频等的插件。 视频图片音乐下载助手_3.1.3_chrome扩展插件下载_极简插件 可高效实现下载管理,网页图片,视频,音频等内容的嗅探和下载,同时扩展集成多个网站的智能脚本,快速提取你…

1600*C. Hamburgers(二分贪心)

Problem - 371C - Codeforces 解析: 二分答案,每次check当前能做的蛋糕数量,判断剩余材料和金钱能否做出来。 注意check中的乘积可能会爆long long,所以二分右边界需要设置1e14以内(因为可能会乘一个10000)…

element-plus el-cascader 级联组件清空所选数据方法

话不多说直接上代码 import {ref, Ref, reactive} from vue; const cascaderOrg:Ref ref<any>(null) //获取级联组件的ref ref名称即cascaderOrg cascaderOrg.value.cascaderPanelRef.clearCheckedNodes(); //清空所选数据借用官方文档展示该方法 相关细节描述及全…

3.简单场景构建

在新建的项目中&#xff0c;默认存在 Main Camera 和 Directional Light两个对象。若是缺失&#xff0c;可通过选择菜单中的 Game Object->Camera 和 Geme Object->Light->Directional Light进行创建。 1.添加地形及底图 通过在Cesium面板中选择 Cesium World Terrai…

redis如何实现缓存预热

在业务系统中&#xff0c;我们需要在程序启动的时候加载一些常用的数据到内存数据库中&#xff0c;从而减少业务数据库的压力。这就是我们常提到的缓存预热。官方一点的解释是这样的&#xff1a; 缓存预热是一种在程序启动或缓存失效之后&#xff0c;主动将热点数据加载到缓存中…

使用注解新开事务 @Transactional

使用注解新开事务 Transactional(propagation Propagation.REQUIRES_NEW)

QSS样式表的使用

QSS样式表的使用 Chapter1 【Qt】样式表的使用——设置样式的方法一、简述二、开始总结1、先谈谈我们设置样式有几种方法2、再谈谈这几种设置样式方法的优缺点 个人建议 Chapter2 Qt样式表总结Chapter3 【QT】史上最全最详细的QSS样式表用法及用例说明Chapter4 Qt样式表使用总结…

计算机的计算单位

文章目录 前言一、容量单位二、速度单位1.网络速度2.CPU频率 总结 前言 今天给大家介绍计算机的计算单位&#xff0c;分为两个板块&#xff1a;容量单位、速度单位。 一、容量单位 对于容量单位&#xff0c;大家在日常生活中应该都有所了解&#xff0c;比如说 768M 的光盘、4…

内网穿透的应用-使用eXtplorer本地搭建免费在线文件管理器并实现远程登录

文章目录 1. 前言2. eXtplorer网站搭建2.1 eXtplorer下载和安装2.2 eXtplorer网页测试2.3 cpolar的安装和注册 3.本地网页发布3.1.Cpolar云端设置3.2.Cpolar本地设置 4.公网访问测试5.结语 1. 前言 通过互联网传输文件&#xff0c;是互联网最重要的应用之一&#xff0c;无论是…

PMP考试知识点(干货码住)

一、需要记忆的公式 1. 三点估算是指通过期望值、标准差和方差来进行估算的方法&#xff1b; 2. 关键路径计算包括ES、EF、LS、LF、总浮动时间和自由浮动时间等指标&#xff1b; 3. 挣值计算是一种常用的项目管理方法&#xff0c;包括CPI、SPI、ETC、EAC和TCPI等指标&#x…

为什么MyBatis是Java数据库持久层的明智选择

在Java应用程序的开发中&#xff0c;选择合适的数据库持久层框架至关重要。一个明智的选择可以帮助开发人员更好地管理数据库交互、提高性能和简化开发工作。 &#xff08;一&#xff09;为什么要选MyBatis JDBCHibernate / JPAMyBatis简单直接ORM轻量动态SQL关联查询开发效率…

VAE模型(详细推导+实例代码)

文章目录 EM算法思路E步M步直观感觉 GMM模型VAEVAE思想从GMM到VAE公式推导重参数VAE神经网络另一个视角的VAE思想为什么引入encoder为什么要重参数噪声与重建 Discrete VAE 本文会从EM算法&#xff0c;GMM模型一步一步的的推导&#xff0c;在过渡到VAE模型&#xff0c;如果有熟…

博华网龙设备命令执行漏洞复现 [附POC]

文章目录 博华网龙设备命令执行漏洞复现 [附POC]0x01 前言0x02 漏洞描述0x03 影响版本0x04 漏洞环境0x05 漏洞复现1.访问漏洞环境2.构造POC3.复现 0x06 修复建议 博华网龙设备命令执行漏洞复现 [附POC] 0x01 前言 免责声明&#xff1a;请勿利用文章内的相关技术从事非法测试&…

【Vue】之Vuex的入门使用,取值,修改值,同异步请求处理---保姆级别教学

一&#xff0c;Vuex入门 1.1 什么是Vuex Vuex是一个专门为Vue.js应用程序开发的状态管理库。它用于管理应用程序中的共享状态&#xff0c;它采用集中式存储管理应用的所有组件的状态&#xff0c;使得状态的管理变得简单和可预测 官方解释&#xff1a;Vuex 是一个专为 Vue.js 应…

Python数据分析实战-实现Kruskal-Wallis H检验(附源码和实现效果)

实现功能 当需要比较多个&#xff08;大于两个&#xff09;独立样本之间的差异时&#xff0c;可以使用非参数的Kruskal-Wallis H检验。Kruskal-Wallis H检验是一种非参数的方差分析方法&#xff0c;用于检验多个独立样本是否来自于相同的总体分布。 在Python中&#xff0c;你…

英国生物技术公司【AstronauTx】完成4800万英镑A轮融资

来源&#xff1a;猛兽财经 作者&#xff1a;猛兽财经 猛兽财经获悉&#xff0c;总部位于英国伦敦的生物技术公司【AstronauTx】今日宣布已完成4800万英镑A轮融资 。 本轮融资由诺华风险基金领投&#xff0c;布兰登资本&#xff08;Brandon Capital&#xff09;、MPM Capital、…

产品经理视角 | API接口知识小结

应用程序接口API&#xff08;Application Programming Interface&#xff09;&#xff0c;是提供特定业务输出能力、连接不同系统的一种约定。这里包括外部系统与提供服务的系统&#xff08;中后台系统&#xff09;或后台不同系统之间的交互点。包括外部接口、内部接口&#xf…

下一代Docker来了,会让部署更加丝滑吗?

下一代Docker来了&#xff0c;会让部署更加丝滑吗&#xff1f; 目录 一、Docker是什么&#xff1f; 二、Docker 的几个名词概念 2.1、镜像&#xff08;Image&#xff09; 2.2、容器 (Container) 2.3、仓库 (Repository) 三、容器和虚拟机比较 四、Docker 运行环境 五、…

因子分析(SPSS和Python)

一、源数据 二、SPSS因子分析 2.1.导入数据 2.2.标准化处理 由于指标的量纲不同&#xff08;单位不一致&#xff09;&#xff0c;因此&#xff0c;需要对数据进行标准化处理 2.3.因子分析 点击“确定”后&#xff0c;再回到“总方差解释”表格&#xff0c;以“旋转载荷平方和…