【C/C++】关于vector迭代器失效问题

news2024/11/27 17:43:37

在这里插入图片描述

​👻内容专栏: C/C++编程
🐨本文概括: vector迭代器失效问题
🐼本文作者: 阿四啊
🐸发布时间:2023.10.8

迭代器的主要作用就是让算法能够不用关心底层数据结构,其底层实际就是一个指针,或者是对指针进行了封装,比如:vector的迭代器就是原生态指针T* 。因此迭代器失效,实际就是迭代器底层对应指针所指向的空间被销毁了,而使用一块已经被释放的空间,造成的后果是程序崩溃(即如果继续使用已经失效的迭代器,程序可能会崩溃)。

对于vector可能会导致其迭代器失效的操作有:
1.会引起其底层空间改变的操作,都有可能是迭代器失效,比如:resizereserveinsertassignpush_back等。

#include <iostream>
using namespace std;
#include <vector>
int main()
{
	vector<int> v{1,2,3,4,5,6};
	auto it = v.begin();
	
	// 将有效元素个数增加到100个,多出的位置使用8填充,操作期间底层会扩容
	// v.resize(100, 8);
	
	// reserve的作用就是改变扩容大小但不改变有效元素个数,操作期间可能会引起底层容量改变
	// v.reserve(100);
	
	// 插入元素期间,可能会引起扩容,而导致原空间被释放
	// v.insert(v.begin(), 0);
	// v.push_back(8);
	
	// 给vector重新赋值,可能会引起底层容量改变
	v.assign(100, 8);
	
	/*
	出错原因:以上操作,都有可能会导致vector扩容,也就是说vector底层原理旧空间被释放掉,
	而在打印时,it还使用的是释放之间的旧空间,在对it迭代器操作时,实际操作的是一块已经被释放的
	空间,而引起代码运行时崩溃。
	解决方式:在以上操作完成之后,如果想要继续通过迭代器操作vector中的元素,只需给it重新
	赋值即可。
	*/
	while(it != v.end())
	{
		cout<< *it << " " ;
		++it;
	}
	cout<<endl;
	
	return 0;
}

2.指定位置元素的删除操作——erase

#include <iostream>
using namespace std;
#include <vector>
int main()
{
	int a[] = { 1, 2, 3, 4 };
	vector<int> v(a, a + sizeof(a) / sizeof(int));
	
	// 使用find查找3所在位置的iterator
	vector<int>::iterator pos = find(v.begin(), v.end(), 3);
	
	// 删除pos位置的数据,导致pos迭代器失效。
	v.erase(pos);
	cout << *pos << endl; // 此处会导致非法访问
	
	return 0;
}

erase删除pos位置元素后,pos位置之后的元素会往前搬移,没有导致底层空间的改变,理论上讲迭代
器不应该会失效,但是:如果pos刚好是最后一个元素,删完之后pos刚好是end的位置,而end位置是
没有元素的,那么pos就失效了。因此删除vector中任意位置上元素时,vs就认为该位置迭代器失效了

3.Linu下,g++编译器对迭代器失效的检测并不是非常严格,处理也没有vs下极端。

// 1. reserve扩容之后,迭代器已经失效了,程序虽然可以运行,但是运行结果已经不对了
int main()
{
	vector<int> v{1,2,3,4,5};
	
	for(size_t i = 0; i < v.size(); ++i)
		cout << v[i] << " ";
	cout << endl;
	
	auto it = v.begin();
	cout << "扩容之前,vector的容量为: " << v.capacity() << endl;
	// 通过reserve将底层空间设置为100,目的是为了让vector的迭代器失效
	v.reserve(100);
	cout << "扩容之后,vector的容量为: " << v.capacity() << endl;
	
	// 经过上述reserve之后,it迭代器肯定会失效,在vs下程序就直接崩溃了,但是linux下不会
	// 虽然可能运行,但是输出的结果是不对的
	while(it != v.end())
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;
	
	return 0;
}
程序输出:
1 2 3 4 5
扩容之前,vector的容量为: 5
扩容之后,vector的容量为: 100
0 2 3 4 5 409 1 2 3 4 5

// 2. erase删除任意位置代码后,linux下迭代器并没有失效
// 因为空间还是原来的空间,后序元素往前搬移了,it的位置还是有效的
#include <vector>
#include <algorithm>

int main()
{
	vector<int> v{1,2,3,4,5};
	vector<int>::iterator it = find(v.begin(), v.end(), 3);
	
	v.erase(it);
	cout << *it << endl;
	
	while(it != v.end())
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;
	
	return 0;
}
程序可以正常运行,并打印:
4 4
5


// 3: erase删除的迭代器如果是最后一个元素,删除之后it已经超过end
// 此时迭代器是无效的,++it导致程序崩溃
int main()
{
	vector<int> v{1,2,3,4,5};
	// vector<int> v{1,2,3,4,5,6};
	auto it = v.begin();
	while(it != v.end())
	{
		if(*it % 2 == 0)
			v.erase(it);
		++it;
	}
	
	for(auto e : v)
		cout << e << " ";
	cout << endl;
	
	return 0;
}
========================================================
// 使用第一组数据时,程序可以运行
[Asi@localhost ~]$  g++ testVector.cpp -std=c++11
[Asi@localhost ~]$  ./a.out
1 3 5
=========================================================
// 使用第二组数据时,程序最终会崩溃
[Asi@localhost ~]$  vim testVector.cpp
[Asi@localhost ~]$  g++ testVector.cpp -std=c++11
[Asi@localhost ~]$  ./a.out
Segmentation fault

从上述三个例子中可以看到:SGI STL中,迭代器失效后,代码并不一定会崩溃,但是运行结果肯定不
对,如果it不在begin和end范围内,肯定会崩溃的。

4.与vector类似,string在插入+扩容操作+erase之后,迭代器也会失效

#include<string>
void teststirng()
{
	string s("hello");
	auto it = s.begin();
	
	// 放开之后代码会崩溃,因为resize到20会string会进行扩容
	// 扩容之后,it指向之前旧空间已经被释放了,该迭代器就失效了
	// 后序打印时,再访问it指向的空间程序就会崩溃
	//s.resize(20, '!');
	while (it != s.end())
	{
		cout << *it;
		++it;
	}
	cout << endl;
	
	it = s.begin();
	while (it != s.end())
	{
		it = s.erase(it);
		// 按照下面方式写,运行时程序会崩溃,因为erase(it)之后
		// it位置的迭代器就失效了
		// s.erase(it);
		++it;
	}
}

迭代器失效解决办法:在使用前,对迭代器重新赋值即可。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1070248.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C++变量默认初始化

初始化不是赋值&#xff0c;初始化是指创建变量时赋予一个初始值&#xff0c;赋值是指将变量的当前值擦除&#xff0c;赋予新值。 如果定义变量时没有初始化&#xff0c;则变量会被系统默认初始化。“默认值”取决于变量的&#xff1a;类型位置 startmindmap * C变量默认初始…

邮件群发工具哪个好

邮件群发是一种通过电子邮件向多个收件人发送邮件的方式。同时&#xff0c;邮件群发也是一种低成本、高回报的营销手段。因此邮件群发被广泛应用于各种营销活动中&#xff0c;例如活动邀请、新品上线、产品促销等等。而群发邮件最有效的方式就是借助邮件群发工具&#xff0c;而…

常用排序算法详解

1.冒泡排序原理示例代码实现 2.快速排序原理示例代码实现 3.插入排序原理示例代码实现 4.希尔排序原理示例代码实现 5.选择排序原理示例代码实现 6.堆排序原理示例代码实现 7.归并排序原理示例代码实现 本文讲述了常见的排序算法的执行过程&#xff0c;有详细实现过程举例 1.冒…

arm 点灯实验代码以及现象

.text .global _start _start: 1.设置GPIOE寄存器的时钟使能 RCC_MP_AHB4ENSETR[4]->1 0x50000a28 LDR R0,0x50000A28 LDR R1,[R0] ORR R1,R1,#(0x1<<4) 第4位置1 STR R1,[R0] 1.设置GPIOF寄存器的时钟使能 RCC_MP_AHB4ENSETR[4]->1 0x50000a28 LDR R…

自动定时删除磁盘文件的脚本(从文件日期最早的开始删)

#!/bin/bash# 指定的挂载点 MOUNTPOINT"/media/vm/MyDisk512GB"# 设置磁盘大小的限制 (例如&#xff1a;800G) LIMIT$((800 * 1024 * 1024)) # 单位是KB# 获取挂载点的已使用空间 USED_SPACE$(df -kP "$MOUNTPOINT" | tail -1 | awk {print $3})echo &quo…

强化学习------Qlearning算法

简介 Q learning 算法是一种value-based的强化学习算法&#xff0c;Q是quality的缩写&#xff0c;Q函数 Q(state&#xff0c;action)表示在状态state下执行动作action的quality&#xff0c; 也就是能获得的Q value是多少。算法的目标是最大化Q值&#xff0c;通过在状态state下…

day58:ARMday5,GPIO流水灯实验

汇编指令&#xff1a; .text .global _start _start: 1.设置GPIOE GPIOF寄存器的时钟使能 RCC_MP_AHB4ENSETR[5:4]->1 0x50000a28 LDR R0,0x50000a28 LDR R1,[R0] ORR R1,R1,#(0x3<<4) STR R1,[R0]2.设置PE10、PF10、PE8管脚为输出模式&#xff0c;GPIOE_MODER[21…

【gcc】RtpTransportControllerSend学习笔记 1

本文是woder大神 的文章的学习笔记。主要是大神文章: webrtc源码分析(8)-拥塞控制(上)-码率预估 的学习笔记。大神的webrtc源码分析(8)-拥塞控制(上)-码率预估 详尽而具体,堪称神作。因为直接看大神的文章,自己啥也没记住,所以同时跟着看代码。跟着大神走一遍,不求甚解,…

SpringCloud学习笔记-注册微服务到Eureka注册中心

目录 1.在该Module的pom文件中引入eureka依赖2.在该module的src/main/resources/application.yml配置文件3.启动对应的微服务4.查看微服务是否启动成功 假如我有一个微服务名字叫user-service,我需要把它注册到Eureka注册中心,则具体步骤如下: 1.在该Module的pom文件中引入eure…

MQ - 38 Serverless : 基于Serverless架构实现流式数据处理

文章目录 导图Pre概述典型的数据流场景什么是 ServerlessServerless 的定义Serverless Function如何基于 Serverless 实现数据处理数据处理流程底层架构和技术原理两种方案的优劣势对比业务案例和场景分析日志清洗场景事件流处理其他case总结导图

geecg-uniapp 源码下载运行 修改端口号 修改tabBar 修改展示数据

APP体验&#xff1a; http://jeecg.com/appIndex技术官网&#xff1a; http://www.jeecg.com安装文档&#xff1a; 快速开始 JeecgBoot 开发文档 看云视频教程&#xff1a; 零基础入门视频官方支持&#xff1a; http://jeecg.com/doc/help 一&#xff0c;下载安装 源码下载…

【力扣面试题】URL化

&#x1f451;专栏内容&#xff1a;力扣刷题⛪个人主页&#xff1a;子夜的星的主页&#x1f495;座右铭&#xff1a;前路未远&#xff0c;步履不停 目录 一、题目描述二、题目分析1、使用String内部方法2、使用StringBuilder 一、题目描述 题目链接&#xff1a;URL化 编写一种…

【软考】5.2 传输介质/通信方式/IP地址/子网划分

《传输介质》 双绞线&#xff1a;网线&#xff1b;传输距离在100m以内 无屏蔽双绞线&#xff1a;UTP&#xff1b;可靠性相对较低屏蔽双绞线&#xff1a;STP&#xff1b;屏蔽怕干扰&#xff1b;可靠性相对较高&#xff1b;一般用于对传输可靠性要求很高的场合 网线&#xff1a…

【Java 进阶篇】HTML块级元素详解

HTML&#xff08;Hypertext Markup Language&#xff09;是用于创建网页的标记语言。在HTML中&#xff0c;元素被分为块级元素和内联元素两种主要类型。块级元素通常用于构建网页的结构&#xff0c;而内联元素则嵌套在块级元素内&#xff0c;用于添加文本和其他内容。本文将重点…

卷积层与池化层输出的尺寸的计算公式详解

用文字简单表述如下 卷积后尺寸计算公式&#xff1a; (图像尺寸-卷积核尺寸 2*填充值)/步长1 池化后尺寸计算公式&#xff1a; (图像尺寸-池化窗尺寸 2*填充值)/步长1 一、卷积中的相关函数的参数定义如下&#xff1a; in_channels(int) – 输入信号的通道 out_channels(int)…

ubuntu2204配置仓库为阿里源

官网上支持到2004&#xff0c;2204需要手动更改一下 deb https://mirrors.aliyun.com/ubuntu/ jammy main restricted universe multiverse deb-src https://mirrors.aliyun.com/ubuntu/ jammy main restricted universe multiversedeb https://mirrors.aliyun.com/ubuntu/ jam…

【数组】二分查找(减不减一,看初始化!)

一、力扣习题链接 704. 二分查找 - 力扣&#xff08;LeetCode&#xff09; 二、思路 这道题目的前提是数组为有序数组&#xff0c;同时题目还强调数组中无重复元素&#xff0c;因为一旦有重复元素&#xff0c;使用二分查找法返回的元素下标可能不是唯一的&#xff0c;这些都是…

四、二叉树-下(Binary tree)

文章目录 一、算法核心二、经典例题1.[226. 翻转二叉树](https://leetcode.cn/problems/invert-binary-tree/description/)&#xff08;1&#xff09;思想&#xff08;2&#xff09;代码&#xff08;3&#xff09;复杂度分析 2.[101. 对称二叉树](https://leetcode.cn/problems…

【JavaSE】Synchronized实现原理

我们通常来使用synchronized来保证原子性&#xff0c;保证线程的安全。 但其实synchronized的底层是由一对monitorenter/monitorexit指令实现&#xff0c;每一个对象都有一个监视器&#xff08;monitor&#xff09;&#xff0c;而synchronized是通过对象内部叫监听器&#xff…

11.3 读图举例

一、低频功率放大电路 图11.3.1所示为实用低频功率放大电路&#xff0c;最大输出功率为 7 W 7\,\textrm W 7W。其中 A \textrm A A 的型号为 LF356N&#xff0c; T 1 T_1 T1​ 和 T 3 T_3 T3​ 的型号为 2SC1815&#xff0c; T 4 T_4 T4​ 的型号为 2SD525&#xff0c; T 2…