抄写Linux源码(Day18:读取硬盘前的准备工作有哪些?)

news2024/11/19 7:48:05

回忆我们需要做的事情:
为了支持 shell 程序的执行,我们需要提供:
1.缺页中断(不理解为什么要这个东西,只是闪客说需要,后边再说)
2.硬盘驱动、文件系统 (shell程序一开始是存放在磁盘里的,所以需要这两个东西)
3.fork,execve, wait 这三个系统调用,也可以说是 进程调度 (否则无法 halt shell 程序并且启动另外的程序)
4.键盘驱动、VGA/console/uart 驱动、中断处理 (支持键盘输入和屏幕显示)
5.内存管理 (shell 启动其它进程时,不能共用内存,而是切换其它进程的页表) — 完成内核内存管理
6.为了写代码方便,我们需要从 MBR 进入到 main 函数,这也是从 汇编 切换到 C 语言 — 已经完成
7.应用程序申请内存的接口

看闪客文章 ”读取硬盘前的准备工作有哪些?“

读取硬盘数据到内存中,是操作系统的一个基础功能。

读取硬盘需要有块设备驱动程序,而以文件的方式来读取则还有要再上面包一层文件系统。

把读出来的数据放到内存,就涉及到内存中缓冲区的管理。

上面说的每一件事,都是一个十分庞大的体系,我们今天的文章一个都不展开讲,哈哈。

我们就讲讲,读取块设备与内存缓冲区之间的桥梁,块设备请求项的初始化工作。

我们以 Linux 0.11 源码为例,发现进入内核的 main 函数后不久,有这样一行代码。

void main(void) {
    ...
    blk_dev_init();
    ...
}

看到这个方法的全部代码后,你可能会会心一笑,也可能一脸懵逼。

void blk_dev_init(void) {
    int i;
    for (i=0; i<32; i++) {
        request[i].dev = -1;
        request[i].next = NULL;
    }
}

这也太简单了吧?

就是给 request 这个数组的前 32 个元素的两个变量 dev 和 next 附上值,看这俩值 -1 和 NULL 也可以大概猜出,这是没有任何作用时的初始化值。

我们看下 request 结构体。

/*
 * Ok, this is an expanded form so that we can use the same
 * request for paging requests when that is implemented. In
 * paging, 'bh' is NULL, and 'waiting' is used to wait for
 * read/write completion.
 */
struct request {
    int dev;        /* -1 if no request */
    int cmd;        /* READ or WRITE */
    int errors;
    unsigned long sector;
    unsigned long nr_sectors;
    char * buffer;
    struct task_struct * waiting;
    struct buffer_head * bh;
    struct request * next;
};

注释也附上了。

哎哟,这就有点头大了,刚刚的函数虽然很短,但看到这个结构体我们知道了,重点在这呢。

这也侧面说明了,学习操作系统,其实把遇到的重要数据结构牢记心中,就已经成功一半了。比如主内存管理结构 mem_map,知道它的数据结构是什么样子,其功能也基本就懂了。

收,继续说这个 request 结构,这个结构就代表了一次读盘请求,其中:

  • dev 表示设备号,-1 就表示空闲。
  • cmd 表示命令,其实就是 READ 还是 WRITE,也就表示本次操作是读还是写。
  • errors 表示操作时产生的错误次数。
  • sector 表示起始扇区。
  • nr_sectors 表示扇区数。
  • buffer 表示数据缓冲区,也就是读盘之后的数据放在内存中的什么位置。
  • waiting 是个 task_struct 结构,这可以表示一个进程,也就表示是哪个进程发起了这个请求。
  • bh 是缓冲区头指针,这个后面讲完缓冲区就懂了,因为这个 request 是需要与缓冲区挂钩的。
  • next 指向了下一个请求项。

这里有的变量看不懂没关系。

不过我们倒是可以基于现有的重点参数猜测一下,比如读请求时,cmd 就是 READ,sector 和 nr_sectors 这俩就定位了所要读取的块设备(可以简单先理解为硬盘)的哪几个扇区,buffer 就定位了这些数据读完之后放在内存的什么位置。

这就够啦,想想看,这四个参数是不是就能完整描述了一个读取硬盘的需求了?而且完全没有歧义,就像下面这样。

在这里插入图片描述
而其他的参数,肯定是为了更好地配合操作系统进行读写块设备操作嘛,为了把多个读写块设备请求很好地组织起来。这个组织不但要有这个数据结构中 hb 和 next 等变量的配合,还要有后面的电梯调度算法的配合,仅此而已,先点到为止。

总之,我们这里就先明白,这个 request 结构可以完整描述一个读盘操作。然后那个 request 数组就是把它们都放在一起,并且它们又通过 next 指针串成链表。

在这里插入图片描述
好,本文讲述的两行代码,其实就完成了上图所示的工作而已。

但讲到这就结束的话,很多同学可能会不太甘心,那我就简单展望一下,后面读盘的全流程中,是怎么用到刚刚初始化的这个 request[32] 结构的。

读操作的系统调用函数是 sys_read,源代码很长,我给简化一下,仅仅保留读取普通文件的分支,就是如下的样子。

int sys_read(unsigned int fd,char * buf,int count) {
    struct file * file = current->filp[fd];
    struct m_inode * inode = file->f_inode;
    // 校验 buf 区域的内存限制
    verify_area(buf,count);
    // 仅关注目录文件或普通文件
    return file_read(inode,file,buf,count);
}

看,入参 fd 是文件描述符,通过它可以找到一个文件的 inode,进而找到这个文件在硬盘中的位置。

在这里插入图片描述
另两个入参 buf 就是要复制到的内存中的位置,count 就是要复制多少个字节,很好理解。

钻到 file_read 函数里继续看。

int file_read(struct m_inode * inode, struct file * filp, char * buf, int count) {
    int left,chars,nr;
    struct buffer_head * bh;
    left = count;
    while (left) {
        if (nr = bmap(inode,(filp->f_pos)/BLOCK_SIZE)) {
            if (!(bh=bread(inode->i_dev,nr)))
                break;
        } else
            bh = NULL;
        nr = filp->f_pos % BLOCK_SIZE;
        chars = MIN( BLOCK_SIZE-nr , left );
        filp->f_pos += chars;
        left -= chars;
        if (bh) {
            char * p = nr + bh->b_data;
            while (chars-->0)
                put_fs_byte(*(p++),buf++);
            brelse(bh);
        } else {
            while (chars-->0)
                put_fs_byte(0,buf++);
        }
    }
    inode->i_atime = CURRENT_TIME;
    return (count-left)?(count-left):-ERROR;
}

整体看,就是一个 while 循环,每次读入一个块的数据,直到入参所要求的大小全部读完为止。

直接看 bread 那一行。

int file_read(struct m_inode * inode, struct file * filp, char * buf, int count) {
    ...
    while (left) {
        ...
        if (!(bh=bread(inode->i_dev,nr)))
    }
}

这个函数就是去读某一个设备的某一个数据块号的内容,展开进去看

struct buffer_head * bread(int dev,int block) {
    struct buffer_head * bh = getblk(dev,block);
    if (bh->b_uptodate)
        return bh;
    ll_rw_block(READ,bh);
    wait_on_buffer(bh);
    if (bh->b_uptodate)
        return bh;
    brelse(bh);
    return NULL;
}

其中 getblk 先申请了一个内存中的缓冲块,然后 ll_rw_block 负责把数据读入这个缓冲块,进去继续看。

void ll_rw_block(int rw, struct buffer_head * bh) {
    ...
    make_request(major,rw,bh);
}

static void make_request(int major,int rw, struct buffer_head * bh) {
    ...
if (rw == READ)
        req = request+NR_REQUEST;
    else
        req = request+((NR_REQUEST*2)/3);
/* find an empty request */
    while (--req >= request)
        if (req->dev<0)
            break;
    ...
/* fill up the request-info, and add it to the queue */
    req->dev = bh->b_dev;
    req->cmd = rw;
    req->errors=0;
    req->sector = bh->b_blocknr<<1;
    req->nr_sectors = 2;
    req->buffer = bh->b_data;
    req->waiting = NULL;
    req->bh = bh;
    req->next = NULL;
    add_request(major+blk_dev,req);
}

看,这里就用到了刚刚说的结构咯。

具体说来,就是该函数会往刚刚的设备的请求项链表 request[32] 中添加一个请求项,只要 request[32] 中有未处理的请求项存在,都会陆续地被处理,直到设备的请求项链表是空为止。

具体怎么读盘,就是与硬盘 IO 端口进行交互的过程了,可以继续往里跟,直到看到一个 hd_out 函数为止,本讲不展开了。

具体读盘操作,后面会有详细的章节展开讲解,本讲你只需要知道,我们在 main 函数的 init 系列函数中,通过 blk_dev_init 为后面的块设备访问,提前建立了一个数据结构,作为访问块设备和内存缓冲区之间的桥梁,就可以了。

完成观看闪客文章 ”读取硬盘前的准备工作有哪些?“

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1064864.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

[论文精读]U-Net: Convolutional Networks for BiomedicalImage Segmentation

论文原文&#xff1a;U-Net: Convolutional Networks for Biomedical Image Segmentation (arxiv.org) 英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&#xff0c;若有发现欢迎评论指正&#xff01;文章偏向于笔…

[笔记] Windows内核课程:保护模式《二》段寄存器介绍

文章目录 前言1、什么是段寄存器? 有哪些 ?2. 段寄存器的结构 前言 段寄存器&#xff0c;页寄存器 1、什么是段寄存器? 有哪些 ? 当我们用汇编读写某一个地址时: mov dword ptr ds:[0x123456],eax我们真正读写的地址是: ds.base 0x123456ES、CS、SS、DS、FS、GS、LDTR…

Linux和Hadoop的学习

目录 1. Linux的常用快捷键2. Hadoop集群部署问题汇总 1. Linux的常用快捷键 复制&#xff1a;CtrlshiftC 粘贴&#xff1a;CtrlshiftV TAB&#xff1a;补全命令 编写输入&#xff1a;i 退出编写&#xff1a;esc 保存并退出&#xff1a;shift&#xff1a; 2. Hadoop集群部署问…

网络安全(黑客)从零开始的自学指南(第一章)

第一章&#xff1a;网络安全概述 1.1 什么是网络安全 网络安全是指保护计算机网络系统和网络中的数据免受未经授权的访问、使用、破坏、篡改或泄露的一系列措施和技术。随着互联网的普及和信息化的发展&#xff0c;网络安全问题日益突出&#xff0c;对个人、组织和国家的安全…

电影大师杂记

假期集中刷了好多书&#xff0c;游戏和电影&#xff0c;在虚拟世界里猛烈的各种闲逛&#xff0c;cyberpunk 2077到blade runner&#xff0c;到异形&#xff0c;到终结者&#xff0c;到星球大战&环太平洋&#xff0c;到工业光魔&#xff0c;还有各种编程的书。。。 hmmm&…

Kali镜像

镜像地址 Index of /kali-images/http://old.kali.org/kali-images/

C++设计模式-装饰器(Decorator)

目录 C设计模式-装饰器&#xff08;Decorator&#xff09; 一、意图 二、适用性 三、结构 四、参与者 五、代码 C设计模式-装饰器&#xff08;Decorator&#xff09; 一、意图 动态地给一个对象添加一些额外的职责。就增加功能来说&#xff0c;Decorator模式相比生成子…

【推荐系统】wss课程-重排序

MMR marginal 边缘的&#xff1b; i已选中&#xff0c;j 未选中。注意&#xff01;j 是很多物品。 每一轮的 S 都会发生变化&#xff0c;所以每轮的 MRi都要重新计算。 - 每轮都从未选中的物品中与已选中的物品计算 MR&#xff0c;把分数最高的 i 从 R 中移出来。 目标&am…

Uvc Usb Camera 调节亮度无效问题,搞定

Uvc Usb Camera无法正常调节亮度的问题&#xff0c;搁置了也有好长一段时间了。假期期间&#xff0c;下定决心要排查下&#xff0c;搞定才行。 然后折腾了下&#xff0c;跟踪了下代码流程&#xff0c;添加了些日志,debug了下。 最后发现在下图位置&#xff0c;有个判断条件&…

基于SpringBoot的民宿在线预定平台

目录 前言 一、技术栈 二、系统功能介绍 用户信息管理 民宿信息管理 民宿资讯管理 民宿分类管理 用户注册 民宿信息 我的订单 三、核心代码 1、登录模块 2、文件上传模块 3、代码封装 前言 随着信息技术在管理上越来越深入而广泛的应用&#xff0c;管理信息系统的实…

C# 图解教程 第5版 —— 第1章 C# 和 .NET 框架

文章目录 1.1 在 .NET 之前1.2 .NET 时代1.2.1 .NET 框架的组成1.2.2 大大改进的编程环境 1.3 编译成 CIL1.4 编译成本机代码并执行1.5 CLR1.6 CLI1.7 各种缩写1.8 C# 的演化1.9 C# 和 Windows 的演化&#xff08;*&#xff09; 1.1 在 .NET 之前 MFC&#xff08;Microsoft Fou…

Golang网络编程:即时通讯系统Instance Messaging System

系统基本架构 版本迭代 项目改造 无人机是client&#xff0c;我们是server&#xff0c;提供注册登入&#xff0c;场景选择等。信道模拟器是server&#xff0c;我们是client&#xff0c;我们向信道模拟器发送数据&#xff0c;等待信道模拟器计算结果&#xff0c;返回给无人机。…

算法-动态规划-最长递增子序列

算法-动态规划-最长递增子序列 1 题目概述 1.1 题目出处 https://leetcode.cn/problems/longest-increasing-subsequence/ 1.2 题目描述 2 动态规划 2.1 思路 思考如果以dp[i]表示i位置的字符的最长递增子序列长度&#xff0c;那么很难找到dp[i]和dp[i-1]的关系&#xff…

【redis学习笔记】缓存

redis主要的三个应用场景 存储数据缓存消息队列&#xff08;redis本来是设计用来作为消息队列的&#xff09; redis常用作mysql的缓存 因为MySQL等数据库&#xff0c;效率比较低&#xff0c;所以承担的并发量就有限。一旦请求数量多了&#xff0c;数据库的压力就会很大&#…

Ubuntu 20.04源码安装sysbench 1.0.20,源码安装sysstat v12.7.2

源码安装sysbench 1.0.20 参考的博客&#xff1a;《压测数据库1&#xff1a; Ubuntu 20 安装sysbench1.0.20》 sudo apt install -y automake libtool pkg-config下载依赖包&#xff0c;需要注意的是我这台计算机已经安装过mysql&#xff0c;所以我没有安装libmysqlclient-de…

GitLab平台安装中经典安装语句含义解析

yum -y install policycoreutils openssh-server openssh-clients postfix 这是一个Linux命令&#xff0c;用于使用YUM包管理器安装指定的软件包。下面是对这个命令各部分的解释&#xff1a; yum&#xff1a;这是一个Linux命令行工具&#xff0c;用于管理RPM&#xff08;Red …

代码随想录第36天 | 1049. 最后一块石头的重量 II ● 494. 目标和 ● 474.一和零

1049. 最后一块石头的重量 第一想法 /*** param {number[]} stones* return {number}*/ var lastStoneWeightII function (nums) {// 和分割两个和相等的子数组一样//dp[j]表示 背包总容量&#xff08;所能装的总重量&#xff09;是j&#xff0c;放进物品后&#xff0c;背的…

JetBrains ToolBox修改应用安装位置

TooBox修改应用安装位置 1.关闭ToolBox 2.修改配置文件 找到配置文件所在位置 C:\Users\用户名\AppData\Local\JetBrains\Toolbox\.settings.json增加install_location字段 "install_location": "E:\\DevTool\\IDE",E:\DevTool\IDE可以改成自己想要的…

为什么MySQL索引选择B+树而不使用B树?

为什么mysql索引选择B树而不使用B树&#xff1f; 1. 关于mysql查询效率&#xff1a; 2. 关于分块读取&#xff1a; 3. 关于数据格式存储&#xff1a; 4. 关于合适的数据结构&#xff1a;哈希表&#xff0c;树 哈希表: 分析&#xff1a; 哈希表是散列表&#xff0c;存储在其中的…

基于腾讯云的OTA远程升级

一、OTA OTA即over the air,是一种远程固件升级技术&#xff0c;它允许在设备已经部署在现场运行时通过网络远程更新其固件或软件。OTA技术有许多优点&#xff0c;比如我们手机系统有个地方做了优化&#xff0c;使用OTA技术我们就不用召回每部手机&#xff0c;直接通过云端就可…