redis持久化与调优

news2025/1/11 21:37:13

一 、Redis 高可用:

  • 在web服务器中,高可用是指服务器可以正常访问的时间,衡量的标准是在多长时间内可以提供正常服务(99.9%、99.99%、99.999%等等)。
  • 但是在Redis语境中,高可用的含义似乎要宽泛一些,除了保证提供正常服务(如主从分离、快速容灾技术),还需要考虑数据容量的扩展、数据安全不会丢失等。

在Redis中,实现高可用的技术主要包括持久化、主从复制、哨兵和 Cluster集群

 1.持久化:

  持久化是最简单的高可用方法(有时甚至不被归为高可用的手段),主要作用是数据备份,据存储即将数在硬盘,保证数据不会因进程退出而丢失。

 2.主从复制:

  主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障恢复。缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制。

 3.哨兵:

  在主从复制的基础上,哨兵实现了自动化的故障恢复。缺陷:写操作无法负载均衡;存储能力受到单机的限制。

 4. Cluster集群:

   通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。

二、Redis 持久化:

 1.持久化功能:

  Redis是内存数据库,数据都是存储在内存中,为了避免服务器断电等原因导致Redis进程异常退出后数据的永久丢失,需要定期将Redis中的数据以某种形式(数据或命令)从内存保存到硬盘;当下次Redis重启时,利用持久化文件实现数据恢复。除此之外,为了进行灾难备份,可以将持久化文件拷贝到一个远程位置。

 2.Redis的两种持久化:

  2.1 RDB 持久化:

  原理是将 Reids在内存中的数据库记录定时保存到磁盘上。

  2.2 AOF 持久化:

  原理是将 Reids 的操作日志以追加的方式写入文件,类似于MySQL的binlog。

总结:由于AOF持久化的实时性更好,即当进程意外退出时丢失的数据更少,因此AOF是目前主流的持久化方式。

三、RDB 持久化:

  RDB持久化是指在指定的时间间隔内将内存中当前进程中的数据生成快照保存到硬盘(因此也称作快照持久化),用二进制压缩存储,保存的文件后缀是rdb;当Redis重新启动时,可以读取快照文件恢复数据。

 1.触发条件:

  1.1 手动触发:

  save命令和bgsave命令都可以生成RDB文件。

save命令:会阻塞Redis服务器进程,直到RDB文件创建完毕为止,在Redis服务器阻塞期间,服务器不能处理任何命令请求。

bgsave命令:会创建一个子进程,由子进程来负责创建RDB文件,父进程(即Redis主进程)则继续处理请求。

  1.2 自动触发:

在自动触发RDB持久化时,Redis也会选择bgsave而不是save来进行持久化

save m n

  • 自动触发最常见的情况是在配置文件中通过save m n,指定当m秒内发生n次变化时,会触发bgsave。
vim /usr/local/redis/conf/redis.conf
--433行--RDB默认保存策略
# save 3600 1 300 100 60 10000
#表示以下三个save条件满足任意一个时,都会引起bgsave的调用
save 3600 1 :当时间到3600秒时,如果redis数据发生了至少1次变化,则执行bgsave
save 300 10 :当时间到300秒时,如果redis数据发生了至少10次变化,则执行bgsave
save 60 10000 :当时间到60秒时,如果redis数据发生了至少10000次变化,则执行bgsave

--454行--是否开启RDB文件压缩
rdbcompression yes
--481行--指定RDB文件名
dbfilename dump.rdb
--504行--指定RDB文件和AOF文件所在目录
dir /usr/local/redis/data

  1.3 其他自动触发机制:

除了save m n 格式的触发外,还有一些其它情况会触发bgsave备份

  • 在主从复制场景下,如果从节点执行全量复制操作,则主节点会执行bgsave命令,并将rdb文件发送给从节点。

  • 执行shutdown命令时,自动执行rdb持久化。

2. 执行流程:

  1.  Redis父进程首先判断:当前是否在执行save,或bgsave/bgrewriteaof(aof文件重写命令)的子进程,如果在执行则bgsave命令直接返回。 (两个进程同时执行大量的磁盘子进程,可能引起严重的性能问题)
  2. 父进程执行 fork 创建子进程 ,这个过程父进程是阻塞的,Redis进程不能执行来自客户端的任何命令。
  3.  父进程fork创建后,bgsave命令返回“Backgroup saving srarted”信息并不再阻塞父进程,父进程就可以响应其它命令。
  4.  子进程创建RDB文件,根据父进程内存快照生成临时快照文件,完成对原有文件进行原子替换(RDB始终完整)
  5.  子进程发送信号给父进程表示完成,父进程更新统计信息。

3. 启动加载RDB文件:

  RDB文件的载入工作是在服务器启动时自动执行的,并没有专门的命令。但是由于AOF的优先级更高,因此当AOF开启时,Redis会优先载入 AOF文件来恢复数据;只有当AOF关闭时,才会在Redis服务器启动时检测RDB文件,并自动载入。服务器载入RDB文件期间处于阻塞状态,直到载入完成为止。
  Redis载入RDB文件时,会对RDB文件进行校验,如果文件损坏,则日志中会打印错误,Redis启动失败。

四、AOF 持久化:

  RDB持久化是将进程数据写入文件,而AOF持久化,则是将Redis执行的每次写、删除命令记录到单独的日志文件中,查询操作不会记录; 当Redis重启时再次执行AOF文件中的命令来恢复数据。与RDB相比,AOF的实时性更好,因此已成为主流的持久化方案。

 1. 开启AOF:

Redis服务器默认开启RDB, 关闭AOF的, 要开启AOF,需要在 /etc/ redis/6379.conf 配置文件中配置。当开启AOF后,最后恢复数据时,优点从AOF文件中恢复,因为AOF的优先级远高于RDB。

vim /usr/local/redis/conf/redis.conf

--1380行--修改,开启AOF
appendonly yes

--1407行--指定AOF文件名称
appendfilename "appendonly.aof"

--1505行--是否忽略最后一条可能存在问题的指令
aof-load-truncated yes

systemctl restart redis-server.service

 2. 执行流程:

  • 命令追加(append):将Redis的写命令追加到缓冲区aof_buf;
  • 文件写入(write)和文件同步(sync):根据不同的同步策略将aof_buf中的内容同步到硬盘;
  • 文件重写(rewrite):定期重写AOF文件,达到压缩的目的。

  2.1 命令追加(append):

  Redis先将写命令追加到缓冲区,而不是直接写入文件,主要是为了避免每次有写命令都直接写入硬盘,从而导致硬盘IO成为Redis负载的瓶颈。

   命令追加的格式是Redis命令请求的协议格式,它是一种纯文本格式,具有兼容性好、可读性强、容易处理、操作简单避免二次开销等优点。在AOF文件中,除了用于指定数据库的select命令(如select 0为选中0号数据库)是由Redis添加的,其他都是客户端发送来的写命令。

  2.2 文件写入(write)和文件同步(sync):

  为了提高文件写入效率,在现代操作系统中,当用户调用write函数将数据写入文件时,操作系统通常会将数据暂存到一个内存缓冲区里,当缓冲区被填满或超过了指定时限后,才真正将缓冲区的数据写入到硬盘里。

  这样的操作虽然提高了效率,但也带来了安全问题:如果计算机停机,内存缓冲区中的数据会丢失;因此系统同时提供了fsync、fdatasync等同步函数,可以强制操作系统立刻将缓冲区中的数据写入到硬盘里,从而确保数据的安全性。

  2.2.1 AOF缓存区的同步文件策略存在三种同步方式:
vim /etc/redis/6379.conf
 
---729---
● appendfsync always:(一直触发)
#解释:命令写入aof_ buf后立即调用系统fsync操作同步到AOF文件,fsync完成后线程返回。
     这种情况下,每次有写命令都要同步到AOF文件,硬盘IO成为性能瓶颈,Redis只能支持大约几百TPS写入,
     严重降低了Redis的性能;即便是使用固态硬盘(SSD),每秒大约也只能处理几万个命令,而且会大大降低SSD的寿命。
 
● appendfsync no:(不进行持久化)
#解释:命令写入aof_ buf后调用系统write操作,不对AOF文件做fsync同步;
	 同步由操作系统负责,通常同步周期为30秒。这种情况下,文件同步的时间不可控,
	 且缓冲区中堆积的数据会很多,数据安全性无法保证。
 
● appendfsync everysec:(每一秒触发)
#解释:命令写入aof_ buf后调用系统write操作,write完成后线程返回; 
	 fsync同步文件操作由专门的线程每秒调用一次。
	 everysec是前述两种策略的折中,是性能和数据安全性的平衡,
	 因此是Redis的默认配置,也是我们推荐的配置。
 

  2.3 文件重写(rewrite):

  随着时间流逝,Redis服务器执行的写命令越来越多,AOF文件也会越来越大;过大的AOF文件不仅会影响服务器的正常运行,也会导致数据恢复需要的时间过长。

  文件重写是指定期重写AOF文件,减小AOF文件的体积。需要注意的是,AOF重写是把Redis进程内的数据转化为写命令,同步到新的AOF文件;不会对旧的AOF文件进行任何读取、写入操作!

  关于文件重写需要注意的另一点是:对于AOF持久化来说,文件重写虽然是强烈推荐的,但并不是必须的;即使没有文件重写,数据也可以被持久化并在Redis启动的时候导入;因此在一些现实中,会关闭自动的文件重写,然后通过定时任务在每天的某一时刻定时执行。

 3. 重写详解:

  3.1 文件重写能够压缩AOF文件的原因:

  •  过期的数据不再写入文件
  • 无效的命令不再写入文件:如有些数据被重复设值(set mykey v1, set mykey v2)、有些数据被删除了(set myset v1, del myset)等。
  • 多条命令可以合并为一个:如sadd myset v1, sadd myset v2, sadd myset v3可以合并为sadd myset v1 v2 v3。

通过上述内容可以看出,由于重写后AOF执行的命令减少了,文件重写既可以减少文件占用的空间,也可以加快恢复速度。

  3.2 文件重写的触发:

     文件重写的触发,分为手动触发和自动触发

  • 手动触发:直接调用bgrewriteaof命令,该命令的执行与bgsave有些类似:都是fork子进程进行具体的工作,且都只有在fork时阻塞。
  • 自动触发:通过设置auto-aof-rewrite-min-size选项和auto-aof-rewrite-percentage选项来自动执行BGREWRITEAOF。只有当auto-aof-rewrite-min-size和auto-aof-rewrite-percentage两个选项同时满足时,才会自动触发AOF重写,即bgrewriteaof操作。
     
vim /etc/redis/6379.conf
 
----771----
auto-aof-rewrite-percentage 100
#当前AOF文件大小(即aof_current_size)是上次日志重写时
AOF文件大小(aof_base_size)两倍时,发生BGREWRITEAOF操作
 
auto-aof-rewrite-min-size 64mb
#当前A0F文件执行BGREWRITEAOF命令的最小值,
避免刚开始启动Reids时由于文件尺寸较小导致频繁的BGREWR ITEAOF

  3.3 文件重写的流程:

(1)   Redis父进程首先判断当前是否存在正在执行bgsave/bgrewriteaof的子进程,如果存在则bgrewriteaof命令直接返回,如果存在 bgsave命令则等bgsave执行完成后再执行。 
(2)   父进程执行fork操作创建子进程,这个过程中父进程是阻塞的。
(3.1)父进程fork后,bgrewriteaof命令返回”Background append only file rewrite started”信息并不再阻塞父进程, 并可以响应其他命令。Redis的所有写命令依然写入AOF缓冲区,并根据appendfsync策略同步到硬盘,保证原有AOF机制的正确。
(3.2) 由于fork操作使用写时复制技术,子进程只能共享fork操作时的内存数据。由于父进程依然在响应命令,因此Redis使用AOF重写缓冲区(aof_rewrite_buf)保存这部分数据,防止新AOF文件生成期间丢失这部分数据。也就是说,bgrewriteaof执行期间,Redis的写命令同时追加到aof_buf和aof_rewirte_buf两个缓冲区。
(4)   子进程根据内存快照,按照命令合并规则写入到新的AOF文件。
(5.1)子进程写完新的AOF文件后,向父进程发信号,父进程更新统计信息,具体可以通过info persistence查看。
(5.2)父进程把AOF重写缓冲区的数据写入到新的AOF文件,这样就保证了新AOF文件所保存的数据库状态和服务器当前状态一致。
(5.3)使用新的AOF文件替换老文件,完成AOF重写。 

4. 启动时加载:

  1. 当AOF开启时,Redis启动时会优先载入AOF文件来恢复数据;只有当AOF关闭时,才会载入RDB文件恢复数据。
  2. 当AOF开启,但AOF文件不存在时,即使RDB文件存在也不会加载。
  3. Redis载入AOF文件时,会对AOF文件进行校验,如果文件损坏,则日志中会打印错误,Redis启动失败。但如果是AOF文件结尾不完整(机器突然宕机等容易导致文件尾部不完整),且aof-load-truncated参数开启,则日志中会输出警告,Redis忽略掉AOF文件的尾部,启动成功。aof-load-truncated参数默认是开启的。

概述:redis默认是开启RDB文件,当AOF开启后,Redis将会优先对AOF操作,恢复时会先加载AOF文件数据,只要开启AOF,即使AOF文件不存在,也不会基于RDB文件恢复。恢复完后会对AOF文件校验,如果文件损坏,打印错误日志,报redis启动失败,如果是文件结尾不完整,且默认设置了删除不完整数据,则会进行警告。redis启动成功。
 

五、RDB和AOF的优缺点:

 1.RDB持久化:

 优点:

  1. RDB文件紧凑,体积小,网络传输快,适合全量复制;
  2. 恢复速度比AOF快很多。当然,与AOF相比,RDB最重要的优点之一是对性能的影响相对较小。

 缺点:

  1.   RDB文件的致命缺点在于其数据快照的持久化方式决定了必然做不到实时持久化,而在数据越来越重要的今天,数据的大量丢失很多时候是无法接受的,因此AOF持久化成为主流。
  2. 此外,RDB文件需要满足特定格式,兼容性差(如老版本的Redis不兼容新版本的RDB文件)。
  3. 对于RDB持久化,一方面是bgsave在进行fork操作时Redis主进程会阻塞,另一方面,子进程向硬盘写数据也会带来IO压力。

 2. AOF持久化:

 优点:

  • AOF的数据完整性比RDB高
  • 有重写功能,会读无效数据进行删除,节省AOF文件占用的磁盘空间。

 缺点:

  • 执行语句一致的情况下,AOF备份的内容更大(RDB备份的是结果,AOF备份的是语句)
  • AOF消耗的性能更大,占用磁盘空间越来越大。

六、Redis 性能管理:

 1.查看Redis内存使用:

192.168.88.100:6379> info memory

 2.内存碎片率:

  1. mem_fragmentation_ratio:内存碎片率。mem_fragmentation_ratio = used_memory_rss / used_memory
  2. used_memory_rss:是Redis向操作系统申请的内存。
  3. used_memory:是Redis中的数据占用的内存。
  4. used_memory_peak:redis内存使用的峰值。
  • 内存碎片率在1到1.5之间是正常的,这个值表示内存碎片率比较低,也说明 Redis 没有发生内存交换。
  • 内存碎片率超过1.5,说明Redis消耗了实际需要物理内存的150%,其中50%是内存碎片率。
  • 内存碎片率低于1的,说明Redis内存分配超出了物理内存,操作系统正在进行内存交换。需要增加可用物理内存或减少 Redis内存占用。

 3. 内存碎片如何产生的:

  1. Redis内部有自己的内存管理器,为了提高内存使用的效率,来对内存的申请和释放进行管理。
  2. Redis中的值删除的时候,并没有把内存直接释放,交还给操作系统,而是交给了Redis内部有内存管理器。
  3. Redis中申请内存的时候,也是先看自己的内存管理器中是否有足够的内存可用。
  4. Redis的这种机制,提高了内存的使用率,但是会使Redis中有部分自己没在用,却不释放的内存,导致了内存碎片的发生。

 4.解决碎片率大的问题:

如果Redis版本是4.0以下的,需要在 redis-cli 工具上输入 shutdown save 命令,让 Redis 数据库执行保存操作并关闭 Redis 服务,再重启服务器。Redis服务器重启后,Redis会将没用的内存归还给操作系统,碎片率会降下来。

Redis4.0版本开始,可以在不重启的情况下,线上整理内存碎片。

config set activedefrag yes     #自动碎片清理,内存就会自动清理了。
memory purge                    #手动碎片清理

5. 内存使用率:

redis实例的内存使用率超过可用最大内存,操作系统将开始进行内存与swap空间交换。

 5.1避免内存交换发生的方法:

  • 针对缓存数据大小选择安装 Redis 实例
  • 尽可能的使用Hash数据结构存储
  • 设置key的过期时间

 6. 内回收key的策略:

内存数据淘汰策略,保证合理分配redis有限的内存资源。

当达到设置的最大阀值时,需选择一种key的回收策略,默认情况下回收策略是禁止删除。

配置文件中修改 maxmemory-policy 属性值:
vim /usr/local/redis/conf/redis.conf
--1149--
maxmemory-policy noenviction
●volatile-lru:使用LRU算法从已设置过期时间的数据集合中淘汰数据(移除最近最少使用的key,针对设置了TTL的key)
●volatile-ttl:从已设置过期时间的数据集合中挑选即将过期的数据淘汰(移除最近过期的key)
●volatile-random:从已设置过期时间的数据集合中随机挑选数据淘汰(在设置了TTL的key里随机移除)
●allkeys-lru:使用LRU算法从所有数据集合中淘汰数据(移除最少使用的key,针对所有的key)
●allkeys-random:从数据集合中任意选择数据淘汰(随机移除key)
●noenviction:禁止淘汰数据(不删除直到写满时报错)

七、其他设置:

●maxclients
设置redis同时可以与多少个客户端进行连接。
默认情况下为10000个客户端。
如果达到了此限制,redis则会拒绝新的连接请求,并且向这些连接请求方发出“max number of clients reached”以作回应。

●maxmemory
建议设置,否则,将内存占满,造成服务器宕机。
设置redis可以使用的内存量。一旦到达内存使用上限,redis将会试图移除内部数据,移除规则可以通过maxmemory-policy来指定。
如果redis无法根据移除规则来移除内存中的数据,或者设置了“不允许移除”,那么redis则会针对那些需要申请内存的指令返回错误信息,比如SET、LPUSH等。
但是对于无内存申请的指令,仍然会正常响应,比如GET等。如果你的redis是主redis(说明redis集群有主从),那么在设置内存使用上限时,需要在系统中留出一些内存空间给同步队列缓存,只有在你设置的是“不移除”的情况下,才不用考虑这个因素。

●maxmemory-samples
设置样本数量,LRU算法和最小TTL算法都并非是精确的算法,而是估算值,所以你可以设置样本的大小,redis默认会检查这么多个key并选择其中LRU的那个。
一般设置3到7的数字,数值越小样本越不准确,但性能消耗越小。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1062194.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

联想M7216NWA一体机连接WiFi及手机添加打印机方法

联想M7216NWA一体机连接WiFi方法: 1、首先按打印机操作面板上的“功能键”;【用“”(上翻页)“-”(下翻页)来选择菜单的内容】 2、下翻页键找到并选择“网络”,然后“确认键”; 3…

javaee ssm框架整合例子 ssm例子,需要哪些依赖,配置文件如何配置

项目结构 步骤一&#xff0c;创建springmybatis项目 参考上一篇博客 步骤二&#xff0c;融入SpringMVC 添加依赖 <?xml version"1.0" encoding"UTF-8"?><project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http:…

ArcGIS Engine:视图菜单的创建和鹰眼图的实现

目录 01 创建项目 1.1 通过ArcGIS-ExtendingArcObjects创建窗体应用 1.2 通过C#-Windows窗体应用创建窗体应用 1.2.1 创建基础项目 1.2.2 搭建界面 02 创建视图菜单 03 鹰眼图的实现 3.1 OnMapReplaced事件的触发 3.2 OnExtentUpdated事件的触发 04 稍作演示 01 创建项目…

Centos7 安装mysql 8.0.34并设置不区分大小写

索引 Centos7 安装mysql 8.0.34准备工作安装教程安装并配置配置MySQL配置远程访问重新启动MySQL服务 为已安装的MySQL8设置不区分大小写背景操作步骤 Centos7 安装mysql 8.0.34 准备工作 centos7 服务器 xshell 安装教程 安装并配置 在安装MySQL之前&#xff0c;我们应该…

CSS 实现:常见布局

1 设备与视口 设备屏幕尺寸是指屏幕的对角线长度。像素是计算机屏幕能显示一种特定颜色的最小区域&#xff0c;分为设备像素和逻辑像素。 在 Apple 的视网膜屏&#xff08;Retina&#xff09;中&#xff0c;默认每 4 个设备像素为一组&#xff0c;渲染出普通屏幕中一个像素显示…

Eyeshot Fem 2023.3 Crack Eyeshot Ultimate

添加新的 PrintSimulationMesh 和 MultiFastMesh 实体并改进 NURBS 曲面三角测量。 2023 年 10 月 4 日 - 11:09新版本 特征 PrintSimulationMesh 实体预览。MultiFastMesh 实体预览。FEM 模态分析预览。有限元分析结果的动画。assemblySelectionType.Leaf 模式下的几何选择。编…

python修改unittestreport中的用例条数

背景: 自动化框架中使用yaml文件作为数据配置&#xff0c;使用ddt作为数据驱动来运行测试用例&#xff0c;由于测试用例都是基于场景去编写&#xff0c;目前都是一个测试类算是一条测试用例&#xff0c;但基于测试报告里面一个类运行的测试方法有多个&#xff0c;因此统计的测试…

华为云云耀云服务器L实例评测|部署项目管理工具 Focalboard

华为云云耀云服务器L实例评测&#xff5c;部署项目管理工具 Focalboard 一、云耀云服务器L实例介绍1.1 云服务器介绍1.2 产品优势1.3 产品规格1.4 应用场景 二、云耀云服务器L实例配置2.1 重置密码2.2 服务器连接2.3 安全组配置 三、部署 Focalboard3.1 Focalboard 介绍3.2 Doc…

websocket学习笔记1

1. 知识模块一 1.1. websocket与http对比 1.1.1. http协议 主要关注&#xff1a;客户端->服务器&#xff08;获取资源&#xff09; 特点&#xff1a; 无状态协议&#xff0c;每个请求都是独立的&#xff0c;请求应答模式&#xff0c;服务端无法主动给客户端推送消息&am…

linux下的永久保存行号

linux下的永久保存行号 1.首先 这里是引用 输入命令&#xff1a;vi ~/.vimrc 其次 这里是引用 输入命令 set number

一款超实用的AI漫画生成器,支持9种漫画风格,无限免费使用

HI&#xff0c;同学们&#xff0c;我是赤辰&#xff0c;本期是赤辰第12篇AI工具类教程&#xff0c;文章底部准备了粉丝福利&#xff0c;看完可以领取&#xff01;今天给大家介绍一款AI漫画生成器——AI Comic Factory&#xff0c;只需输入提示词&#xff0c;即可瞬间创造出一幅…

【torch】parameters与named_parameters的区别

【torch】parameters与named_parameters的区别 前言 为了详细的查看网络的结构参数等&#xff0c;因此本文研究一下 parameters()与 named_parameters 的区别。 此示例属于从 nn.Module 中继承的成员函数。函数位于&#xff1a;[python环境路径]/lib/python3.8/site-packages…

角谱计算时的fftshift及其原理

做一个fft运算&#xff0c;第一个事先用fftshift对待变换的E0进行操作&#xff0c;第二个没有用fftshift&#xff0c;第三个没有用fftshift但是进行了相位手动修正&#xff1a; %%用fft进行角谱传输计算 %对比fft运算与傅里叶变换&#xff08;黎曼和&#xff09;的区别以及修正…

Nature Machine Intelligence | “化学元素知识+功能提示”双驱动,探索分子预测新方法

论文题目&#xff1a;Knowledge graph-enhanced molecular contrastive learning with functional prompt 论文链接&#xff1a;https://doi.org/10.1038/s42256-023-00654-0 项目地址&#xff1a;GitHub - HICAI-ZJU/KANO: Code and data for the Nature Machine Intelligence…

光纤掺杂浓度之间的转换计算方法

掺杂浓度表示形式 掺杂浓度是光纤光学中无源或有源掺杂光纤中最重要的参数之一。在文献中可以找到许多不同的方法来表示基于原子或摩尔的掺杂浓度。 化学元素基于原子或离子的定义是非常明确的。例如原子百分比&#xff08;atomic percentage&#xff0c;at.%&#xff09;、原…

爬虫为什么需要 HTTP 代理 IP?

前言 爬虫在互联网数据采集、分析和挖掘中扮演着至关重要的角色&#xff0c;但是对于目标网站而言&#xff0c;频繁的爬虫请求可能会对其服务器产生不小的负担&#xff0c;严重的情况甚至会导致网站崩溃或者访问受限。为了避免这种情况的发生&#xff0c;同时也为了保护客户端…

如何安全驾驭物联网视频革命

相机即将连接到您附近的连接设备。来自旧手机的廉价图像传感器正在涌入市场&#xff0c;并将视频带入物联网 (IoT)。 吸尘器、喂鸟器、联网汽车甚至智能烤箱现在都配备了摄像头&#xff0c;可以识别菜肴并建议剩余的烹饪时间。这是联网设备功能的重大转变&#xff0c;目前全球…

EasyXnote5关于批量绘图

专栏&#xff1a;EasyX图形化编程 文章目录 问题引入 绘制画面批量绘图解释批量绘图使用 问题引入 之前的讲解中&#xff0c;我们可以发现创建的窗体在进行动画的显示时会出现闪烁现象&#xff0c;本节课将会一步一步探讨如何解决&#xff0c;可以使以后学习中的动画效果更加流…

二项分布以及实现

文章目录 前言所谓二项分布就是只会产生两种结果的概率 1.概念 前言 所谓二项分布就是只会产生两种结果的概率 1.概念 下面是一个二项分布的的theano实现 import numpy as np import theano import theano.tensor as T from theano.tensor.nnet import conv from theano.ten…

【数据结构--八大排序】之快速排序

&#x1f490; &#x1f338; &#x1f337; &#x1f340; &#x1f339; &#x1f33b; &#x1f33a; &#x1f341; &#x1f343; &#x1f342; &#x1f33f; &#x1f344;&#x1f35d; &#x1f35b; &#x1f364; &#x1f4c3;个人主页 &#xff1a;阿然成长日记 …