嵌入式Linux应用开发-基础知识-第十八章系统对中断的处理
- 第十八章 Linux 系统对中断的处理①
- 18.1 进程、线程、中断的核心:栈
- 18.1.1 ARM 处理器程序运行的过程
- 18.1.2 程序被中断时,怎么保存现场
- 18.1.3 进程、线程的概念
- 18.2 Linux系统对中断处理的演进
- 18.2.1 Linux对中断的扩展:硬件中断、软件中断
- 18.2.2 中断处理原则1:不能嵌套
- 18.2.3 中断处理原则2:越快越好
- 18.2.4 要处理的事情实在太多,拆分为:上半部、下半部
- 18.2.5 下半部要做的事情耗时不是太长:tasklet
- 18.2.6 下半部要做的事情太多并且很复杂:工作队列
- 18.2.7 新技术:threaded irq
第十八章 Linux 系统对中断的处理①
18.1 进程、线程、中断的核心:栈
中断中断,中断谁?
中断当前正在运行的进程、线程。
进程、线程是什么?内核如何切换进程、线程、中断?
要理解这些概念,必须理解栈的作用。
18.1.1 ARM 处理器程序运行的过程
ARM 芯片属于精简指令集计算机(RISC:Reduced Instruction Set Computing),它所用的指令比较简
单,有如下特点:
① 对内存只有读、写指令
② 对于数据的运算是在 CPU 内部实现
③ 使用 RISC 指令的 CPU 复杂度小一点,易于设计
比如对于 a=a+b 这样的算式,需要经过下面 4 个步骤才可以实现:
细看这几个步骤,有些疑问:
① 读 a,那么 a 的值读出来后保存在 CPU 里面哪里?
② 读 b,那么 b 的值读出来后保存在 CPU 里面哪里?
③ a+b 的结果又保存在哪里?
我们需要深入 ARM 处理器的内部。简单概括如下,我们先忽略各种 CPU 模式(系统模式、用户模式等等)。
注意:如果想入理解 ARM 处理器架构,应该从裸机开始学习。我们即将写好近 30 个裸机程序的文档,估计还 3 月底发布。
注意:为了加快学习速度,建议先不看裸机。
CPU 运行时,先去取得指令,再执行指令:
① 把内存 a 的值读入 CPU 寄存器 R0
② 把内存 b 的值读入 CPU 寄存器 R1
③ 把 R0、R1 累加,存入 R0
④ 把 R0 的值写入内存 a
18.1.2 程序被中断时,怎么保存现场
从上图可知,CPU 内部的寄存器很重要,如果要暂停一个程序,中断一个程序,就需要把这些寄存器的
值保存下来:这就称为保存现场。
保存在哪里?内存,这块内存就称之为栈。
程序要继续执行,就先从栈中恢复那些 CPU 内部寄存器的值。
这个场景并不局限于中断,下图可以概括程序 A、B 的切换过程,其他情况是类似的:
a. 函数调用:
在函数 A 里调用函数 B,实际就是中断函数 A 的执行。
那么需要把函数 A 调用 B 之前瞬间的 CPU 寄存器的值,保存到栈里;
再去执行函数 B;
函数 B 返回之后,就从栈中恢复函数 A 对应的 CPU 寄存器值,继续执行。
b. 中断处理
进程 A 正在执行,这时候发生了中断。
CPU 强制跳到中断异常向量地址去执行,
这时就需要保存进程 A 被中断瞬间的 CPU 寄存器值,
可以保存在进程 A 的内核态栈,也可以保存在进程 A 的内核结构体中。
中断处理完毕,要继续运行进程 A 之前,恢复这些值。
c. 进程切换
在所谓的多任务操作系统中,我们以为多个程序是同时运行的。
如果我们能感知微秒、纳秒级的事件,可以发现操作系统时让这些程序依次执行一小段时间,进程 A 的时间用完了,就切换到进程 B。
怎么切换?
切换过程是发生在内核态里的,跟中断的处理类似。
进程 A 的被切换瞬间的 CPU 寄存器值保存在某个地方;
恢复进程 B 之前保存的 CPU 寄存器值,这样就可以运行进程 B 了。
所以,在中断处理的过程中,伴存着进程的保存现场、恢复现场。
进程的调度也是使用栈来保存、恢复现场:
18.1.3 进程、线程的概念
假设我们写一个音乐播放器,在播放音乐的同时会根据按键选择下一首歌。把事情简化为 2 件事:发送音频数据、读取按键。那可以这样写程序:
int main(int argc, char **argv)
{
int key;
while (1)
{
key = read_key();
if (key != -1)
{
switch (key)
{
case NEXT:
select_next_music(); // 在 GUI 选中下一首歌
break;
}
}
else
{
send_music();
}
}
return 0;
}
这个程序只有一条主线,读按键、播放音乐都是顺序执行。
无论按键是否被按下,read_key 函数必须马上返回,否则会使得后续的 send_music 受到阻滞导致音乐播放不流畅。
读取按键、播放音乐能否分为两个程序进行?可以,但是开销太大:读按键的程序,要把按键通知播放音乐的程序,进程间通信的效率没那么高。
这时可以用多线程之编程,读取按键是一个线程,播放音乐是另一个线程,它们之间可以通过全局变量传递数据,示意代码如下:
int g_key;
void key_thread_fn()
{
while (1)
{
g_key = read_key();
if (g_key != -1)
{
switch (g_key)
{
case NEXT:
select_next_music(); // 在 GUI选中下一首歌 break;
}
}
}
}
void music_fn()
{
while (1)
{
if (g_key == STOP)
stop_music();
else
{
send_music();
}
}
}
int main(int argc, char **argv)
{
int key;
create_thread(key_thread_fn); create_thread(music_fn);
while (1)
{
sleep(10);
}
return 0;
}
这样,按键的读取及 GUI显示、音乐的播放,可以分开来,不必混杂在一起。
按键线程可以使用阻塞方式读取按键,无按键时是休眠的,这可以节省 CPU资源。 音乐线程专注于音乐的播放和控制,不用理会按键的具体读取工作。
并且这 2个线程通过全局变量 g_key传递数据,高效而简单。
在 Linux中:资源分配的单位是进程,调度的单位是线程。
也就是说,在一个进程里,可能有多个线程,这些线程共用打开的文件句柄、全局变量等等。
而这些线程,之间是互相独立的,“同时运行”,也就是说:每一个线程,都有自己的栈。如下图示:
18.2 Linux系统对中断处理的演进
从 2005年我接触Linux到现在15年了,Linux中断系统的变化并不大。比较重要的就是引入了 threaded irq:使用内核线程来处理中断。
Linux系统中有硬件中断,也有软件中断。
对硬件中断的处理有 2个原则:不能嵌套,越快越好。
18.2.1 Linux对中断的扩展:硬件中断、软件中断
Linux系统把中断的意义扩展了,对于按键中断等硬件产生的中断,称之为“硬件中断”(hard irq)。每个硬件中断都有对应的处理函数,比如按键中断、网卡中断的处理函数肯定不一样。
为方便理解,你可以先认为对硬件中断的处理是用数组来实现的,数组里存放的是函数指针:
注意:上图是简化的,Linux中这个数组复杂多了。
当发生 A中断时,对应的 irq_function_A函数被调用。硬件导致该函数被调用。
相对的,还可以人为地制造中断:软件中断(soft irq),如下图所示:
注意:上图是简化的,Linux中这个数组复杂多了。
问题来了:
a. 软件中断何时生产?
由软件决定,对于 X号软件中断,只需要把它的 flag设置为 1就表示发生了该中断。
b. 软件中断何时处理?
软件中断嘛,并不是那么十万火急,有空再处理它好了。
什么时候有空?不能让它一直等吧?
Linux系统中,各种硬件中断频繁发生,至少定时器中断每 10ms发生一次,那取个巧? 在处理完硬件中断后,再去处理软件中断?就这么办!
有哪些软件中断?
查内核源码 include/linux/interrupt.h
怎么触发软件中断?最核心的函数是 raise_softirq,简单地理解就是设置 softirq_veq[nr]的标记位:
extern void raise softirq(unsigned int nr);
怎么设置软件中断的处理函数:
后面讲到的中断下半部 tasklet就是使用软件中断实现的。
18.2.2 中断处理原则1:不能嵌套
官方资料:中断处理不能嵌套
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=e58aa3d2d0cc
中断处理函数需要调用 C函数,这就需要用到栈。
中断 A正在处理的过程中,假设又发生了中断 B,那么在栈里要保存 A的现场,然后处理 B。
在处理 B的过程中又发生了中断 C,那么在栈里要保存 B的现场,然后处理 C。
如果中断嵌套突然暴发,那么栈将越来越大,栈终将耗尽。
所以,为了防止这种情况发生,也是为了简单化中断的处理,在 Linux系统上中断无法嵌套:即当前中断 A没处理完之前,不会响应另一个中断 B(即使它的优先级更高)。
18.2.3 中断处理原则2:越快越好
妈妈在家中照顾小孩时,门铃响起,她开门取快递:这就是中断的处理。她取个快递敢花上半天吗?不怕小孩出意外吗?
同理,在 Linux系统中,中断的处理也是越快越好。
在单芯片系统中,假设中断处理很慢,那应用程序在这段时间内就无法执行:系统显得很迟顿。
在 SMP系统中,假设中断处理很慢,那么正在处理这个中断的 CPU上的其他线程也无法执行。
在中断的处理过程中,该 CPU是不能进行进程调度的,所以中断的处理要越快越好,尽早让其他中断能被处理──进程调度靠定时器中断来实现。
在 Linux系统中使用中断是挺简单的,为某个中断 irq注册中断处理函数 handler,可以使用request_irq函数:
在 handler函数中,代码尽可能高效。
但是,处理某个中断要做的事情就是很多,没办法加快。比如对于按键中断,我们需要等待几十毫秒消除机械抖动。难道要在 handler中等待吗?对于计算机来说,这可是一个段很长的时间。
怎么办?
18.2.4 要处理的事情实在太多,拆分为:上半部、下半部
当一个中断要耗费很多时间来处理时,它的坏处是:在这段时间内,其他中断无法被处理。换句话说,在这段时间内,系统是关中断的。
如果某个中断就是要做那么多事,我们能不能把它拆分成两部分:紧急的、不紧急的?
在 handler函数里只做紧急的事,然后就重新开中断,让系统得以正常运行;那些不紧急的事,以后再处理,处理时是开中断的。
中断下半部的实现有很多种方法,讲 2种主要的:tasklet(小任务)、work queue(工作队列)。
18.2.5 下半部要做的事情耗时不是太长:tasklet
假设我们把中断分为上半部、下半部。发生中断时,上半部下半部的代码何时、如何被调用?
当下半部比较耗时但是能忍受,并且它的处理比较简单时,可以用 tasklet来处理下半部。tasklet是使用软件中断来实现。
写字太多,不如贴代码,代码一目了然:
使用流程图简化一下:
假设硬件中断 A的上半部函数为 irq_top_half_A,下半部为 irq_bottom_half_A。 使用情景化的分析,才能理解上述代码的精华。
a. 硬件中断 A处理过程中,没有其他中断发生:
一开始,preempt_count = 0;
上述流程图①~⑨依次执行,上半部、下半部的代码各执行一次。
b. 硬件中断 A处理过程中,又再次发生了中断 A:
一开始,preempt_count = 0;
执行到第⑥时,一开中断后,中断 A又再次使得 CPU跳到中断向量表。
注意:这时 preempt_count等于 1,并且中断下半部的代码并未执行。
CPU又从①开始再次执行中断 A的上半部代码:
在第①步 preempt_count等于 2;
在第③步 preempt_count等于 1;
在第④步发现 preempt_count等于 1,所以直接结束当前第 2次中断的处理;
注意:重点来了,第 2次中断发生后,打断了第一次中断的第⑦步处理。当第 2次中断处理完毕,CPU会继续去执行第⑦步。
可以看到,发生 2次硬件中断 A时,它的上半部代码执行了 2次,但是下半部代码只执行了一次。 所以,同一个中断的上半部、下半部,在执行时是多对一的关系。
c. 硬件中断 A处理过程中,又再次发生了中断 B:
一开始,preempt_count = 0;
执行到第⑥时,一开中断后,中断 B又再次使得 CPU跳到中断向量表。
注意:这时 preempt_count等于 1,并且中断 A下半部的代码并未执行。
CPU又从①开始再次执行中断 B的上半部代码:
在第①步 preempt_count等于 2;
在第③步 preempt_count等于 1;
在第④步发现 preempt_count等于 1,所以直接结束当前第 2次中断的处理;
注意:重点来了,第 2次中断发生后,打断了第一次中断 A的第⑦步处理。当第 2次中断 B处理完毕,CPU会继续去执行第⑦步。
在第⑦步里,它会去执行中断 A的下半部,也会去执行中断 B的下半部。
所以,多个中断的下半部,是汇集在一起处理的。
总结:
a. 中断的处理可以分为上半部,下半部
b. 中断上半部,用来处理紧急的事,它是在关中断的状态下执行的
c. 中断下半部,用来处理耗时的、不那么紧急的事,它是在开中断的状态下执行的
d. 中断下半部执行时,有可能会被多次打断,有可能会再次发生同一个中断
e. 中断上半部执行完后,触发中断下半部的处理
f. 中断上半部、下半部的执行过程中,不能休眠:中断休眠的话,以后谁来调度进程啊?
18.2.6 下半部要做的事情太多并且很复杂:工作队列
在中断下半部的执行过程中,虽然是开中断的,期间可以处理各类中断。但是毕竟整个中断的处理还没走完,这期间 APP是无法执行的。
假设下半部要执行 1、2分钟,在这 1、2分钟里 APP都是无法响应的。
这谁受得了?
所以,如果中断要做的事情实在太耗时,那就不能用软件中断来做,而应该用内核线程来做:在中断上半部唤醒内核线程。内核线程和 APP都一样竞争执行,APP有机会执行,系统不会卡顿。
这个内核线程是系统帮我们创建的,一般是 kworker线程,内核中有很多这样的线程:
kworker线程要去“工作队列”(work queue)上取出一个一个“工作”(work),来执行它里面的函数。
那我们怎么使用 work、work queue呢?
a. 创建 work:
你得先写出一个函数,然后用这个函数填充一个 work结构体。比如:
static DECLARE WORK(aer_recover_work, aer_recover_work_func)
b. 要执行这个函数时,把 work提交给 work queue就可以了:
schedule work(&aer rver work)
上述函数会把 work提供给系统默认的 work queue:system_wq,它是一个队列。
c. 谁来执行 work中的函数?
不用我们管,schedule_work函数不仅仅是把 work放入队列,还会把 kworker线程唤醒。此线程抢到时间运行时,它就会从队列中取出 work,执行里面的函数。
d. 谁把 work提交给 work queue?
在中断场景中,可以在中断上半部调用 schedule_work函数。
总结:
a. 很耗时的中断处理,应该放到线程里去
b. 可以使用 work、work queue
c. 在中断上半部调用 schedule_work函数,触发 work的处理 d. 既然是在线程中运行,那对应的函数可以休眠。
18.2.7 新技术:threaded irq
使用线程来处理中断,并不是什么新鲜事。使用 work就可以实现,但是需要定义 work、调用schedule_work,好麻烦啊。
太懒了太懒了,就这 2步你们都不愿意做。
好,内核是为懒人服务的,再杀出一个函数:
你可以只提供 thread_fn,系统会为这个函数创建一个内核线程。发生中断时,内核线程就会执行这个函数。
说你懒是开玩笑,内核开发者也不会那么在乎懒人。
以前用 work来线程化地处理中断,一个 worker线程只能由一个 CPU执行,多个中断的 work都由同一个 worker线程来处理,在单 CPU系统中也只能忍着了。但是在 SMP系统中,明明有那么多 CPU空着,你偏偏让多个中断挤在这个 CPU上?
新技术 threaded irq,为每一个中断都创建一个内核线程;多个中断的内核线程可以分配到多个 CPU上执行,这提高了效率。