嵌入式Linux应用开发-基础知识-第十八章系统对中断的处理②

news2024/11/29 11:57:53

嵌入式Linux应用开发-基础知识-第十八章系统对中断的处理②

  • 第十八章 Linux系统对中断的处理 ②
    • 18.3 Linux中断系统中的重要数据结构
      • 18.3.1 irq_desc数组
      • 18.3.2 irqaction结构体
      • 18.3.3 irq_data结构体
      • 18.3.4 irq_domain结构体
      • 18.3.5 irq_chip结构体
    • 18.4 在设备树中指定中断_在代码中获得中断
      • 18.4.1 设备树里中断节点的语法
        • 18.4.1.1 设备树里的中断控制器
        • 18.4.1.2 设备树里使用中断
      • 18.4.2 设备树里中断节点的示例
      • 18.4.3 在代码中获得中断
        • 18.4.3.1 对于 platform_device
        • 18.4.3.2 对于 I2C设备、SPI设备
        • 18.4.3.3 调用 of_irq_get获得中断号
        • 18.4.3.4 对于 GPIO

第十八章 Linux系统对中断的处理 ②

在这里插入图片描述

18.3 Linux中断系统中的重要数据结构

本节内容,可以从 request_irq(include/linux/interrupt.h)函数一路分析得到。 能弄清楚下面这个图,对 Linux中断系统的掌握也基本到位了。
在这里插入图片描述

最核心的结构体是 irq_desc,之前为了易于理解,我们说在 Linux内核中有一个中断数组,对于每一个硬件中断,都有一个数组项,这个数组就是 irq_desc数组。

注意:如果内核配置了 CONFIG_SPARSE_IRQ,那么它就会用基数树(radix tree)来代替 irq_desc数组。SPARSE的意思是“稀疏”,假设大小为 1000的数组中只用到 2个数组项,那不是浪费嘛?所以在中断比较“稀疏”的情况下可以用基数树来代替数组。

18.3.1 irq_desc数组

irq_desc结构体在 include/linux/irqdesc.h中定义,主要内容如下图:
在这里插入图片描述

每一个 irq_desc数组项中都有一个函数:handle_irq,还有一个 action链表。要理解它们,需要先看中断结构图:
在这里插入图片描述

外部设备 1、外部设备 n共享一个 GPIO中断 B,多个 GPIO中断汇聚到 GIC(通用中断控制器)的 A号中断,GIC再去中断 CPU。那么软件处理时就是反过来,先读取 GIC获得中断号 A,再细分出 GPIO中断 B,最后判断是哪一个外部芯片发生了中断。
所以,中断的处理函数来源有三:
① GIC的处理函数:
假设 irq_desc[A].handle_irq是 XXX_gpio_irq_handler(XXX指厂家),这个函数需要读取芯片的 GPIO控制器,细分发生的是哪一个 GPIO中断(假设是 B),再去调用 irq_desc[B]. handle_irq。
注意:irq_desc[A].handle_irq细分出中断后 B,调用对应的 irq_desc[B].handle_irq。
显然中断 A是 CPU感受到的顶层的中断,GIC中断 CPU时,CPU读取 GIC状态得到中断 A。
② 模块的中断处理函数:
比如对于 GPIO模块向 GIC发出的中断 B,它的处理函数是 irq_desc[B].handle_irq。
BSP开发人员会设置对应的处理函数,一般是 handle_level_irq或 handle_edge_irq,从名字上看是用来处理电平触发的中断、边沿触发的中断。
注意:导致 GPIO中断 B发生的原因很多,可能是外部设备 1,可能是外部设备 n,可能只是某一个设备,也可能是多个设备。所以 irq_desc[B].handle_irq会调用某个链表里的函数,这些函数由外部设备提供。这些函数自行判断该中断是否自己产生,若是则处理。
③ 外部设备提供的处理函数:
这里说的“外部设备”可能是芯片,也可能总是简单的按键。它们的处理函数由自己驱动程序提供,这是最熟悉这个设备的“人”:它知道如何判断设备是否发生了中断,如何处理中断。
对于共享中断,比如 GPIO中断 B,它的中断来源可能有多个,每个中断源对应一个中断处理函数。所以 irq_desc[B]中应该有一个链表,存放着多个中断源的处理函数。
一旦程序确定发生了 GPIO中断 B,那么就会从链表里把那些函数取出来,一一执行。
这个链表就是 action链表。
对于我们举的这个例子来说,irq_desc数组如下:
在这里插入图片描述

18.3.2 irqaction结构体

irqaction结构体在 include/linux/interrupt.h中定义,主要内容如下图:
在这里插入图片描述

当调用 request_irq、request_threaded_irq注册中断处理函数时,内核就会构造一个 irqaction结构体。在里面保存 name、dev_id等,最重要的是 handler、thread_fn、thread。
handler是中断处理的上半部函数,用来处理紧急的事情。
thread_fn对应一个内核线程 thread,当 handler执行完毕,Linux内核会唤醒对应的内核线程。在内核线程里,会调用 thread_fn函数。
可以提供 handler而不提供 thread_fn,就退化为一般的 request_irq函数。
可以不提供 handler只提供 thread_fn,完全由内核线程来处理中断。
也可以既提供 handler也提供 thread_fn,这就是中断上半部、下半部。
里面还有一个名为 sedondary的 irqaction结构体,它的作用以后再分析。
在 reqeust_irq时可以传入 dev_id,为何需要 dev_id?作用有 2:
① 中断处理函数执行时,可以使用 dev_id
② 卸载中断时要传入 dev_id,这样才能在 action链表中根据 dev_id找到对应项 所以在共享中断中必须提供 dev_id,非共享中断可以不提供。

18.3.3 irq_data结构体

irq_data结构体在 include/linux/irq.h中定义,主要内容如下图:
在这里插入图片描述

它就是个中转站,里面有 irq_chip指针 irq_domain指针,都是指向别的结构体。
比较有意思的是 irq、hwirq,irq是软件中断号,hwirq是硬件中断号。比如上面我们举的例子,在 GPIO中断 B是软件中断号,可以找到 irq_desc[B]这个数组项;GPIO里的第 x号中断,这就是 hwirq。
谁来建立 irq、hwirq之间的联系呢?由 irq_domain来建立。irq_domain会把本地的 hwirq映射为全局的 irq,什么意思?比如 GPIO控制器里有第 1号中断,UART模块里也有第 1号中断,这两个“第 1号中断”是不一样的,它们属于不同的“域”──irq_domain。

18.3.4 irq_domain结构体

irq_domain结构体在 include/linux/irqdomain.h中定义,主要内容如下图:
在这里插入图片描述

当我们后面从设备树讲起,如何在设备树中指定中断,设备树的中断如何被转换为 irq时,irq_domain将会起到极大的作为。
这里基于入门的解度简单讲讲,在设备树中你会看到这样的属性:

interrupt-parent = <&gpio1>; 
interrupts = <5 IRQ_TYPE_EDGE_RISING>; 

它表示要使用 gpio1里的第 5号中断,hwirq就是 5。
但是我们在驱动中会使用 request_irq(irq, handler)这样的函数来注册中断,irq是什么?它是软件中断号,它应该从“gpio1的第 5号中断”转换得来。
谁把 hwirq转换为 irq?由 gpio1的相关数据结构,就是 gpio1对应的 irq_domain结构体。
irq_domain结构体中有一个 irq_domain_ops结构体,里面有各种操作函数,主要是:
① xlate
用来解析设备树的中断属性,提取出 hwirq、type等信息。
② map
把 hwirq转换为 irq。

18.3.5 irq_chip结构体

irq_chip结构体在 include/linux/irq.h中定义,主要内容如下图:
在这里插入图片描述

这个结构体跟“chip”即芯片相关,里面各成员的作用在头文件中也列得很清楚,摘录部分如下:

* @irq_startup: start up the interrupt (defaults to ->enable if NULL) 
* @irq_shutdown: shut down the interrupt (defaults to ->disable if NULL) 
* @irq_enable:  enable the interrupt (defaults to chip->unmask if NULL) 
* @irq_disable: disable the interrupt 
* @irq_ack:  start of a new interrupt 
* @irq_mask:  mask an interrupt source 
* @irq_mask_ack: ack and mask an interrupt source 
* @irq_unmask:  unmask an interrupt source 
* @irq_eoi:  end of interrupt 

我们在 request_irq后,并不需要手工去使能中断,原因就是系统调用对应的 irq_chip里的函数帮我们使能了中断。
我们提供的中断处理函数中,也不需要执行主芯片相关的清中断操作,也是系统帮我们调用 irq_chip中的相关函数。
但是对于外部设备相关的清中断操作,还是需要我们自己做的。
就像上面图里的“外部设备 1“、“外部设备 n”,外设备千变万化,内核里可没有对应的清除中断操作。

18.4 在设备树中指定中断_在代码中获得中断

18.4.1 设备树里中断节点的语法

参考文档:
内核 Documentation\devicetree\bindings\interrupt-controller\interrupts.txt

18.4.1.1 设备树里的中断控制器

中断的硬件框图如下:
在这里插入图片描述

在硬件上,“中断控制器”只有 GIC这一个,但是我们在软件上也可以把上图中的“GPIO”称为“中断控制器”。很多芯片有多个 GPIO模块,比如 GPIO1、GPIO2等等。所以软件上的“中断控制器”就有很多个:GIC、GPIO1、GPIO2等等。
GPIO1连接到 GIC,GPIO2连接到 GIC,所以 GPIO1的父亲是 GIC,GPIO2的父亲是 GIC。
假设 GPIO1有 32个中断源,但是它把其中的 16个汇聚起来向 GIC发出一个中断,把另外 16个汇聚起来向 GIC发出另一个中断。这就意味着 GPIO1会用到 GIC的两个中断,会涉及 GIC里的 2个 hwirq。
这些层级关系、中断号(hwirq),都会在设备树中有所体现。

在设备树中,中断控制器节点中必须有一个属性:interrupt-controller,表明它是“中断控制器”。 还必须有一个属性:#interrupt-cells,表明引用这个中断控制器的话需要多少个 cell。
#interrupt-cells的值一般有如下取值:
① #interrupt-cells=<1>
别的节点要使用这个中断控制器时,只需要一个 cell来表明使用“哪一个中断”。
② #interrupt-cells=<2>
别的节点要使用这个中断控制器时,需要一个 cell来表明使用“哪一个中断”;
还需要另一个 cell来描述中断,一般是表明触发类型:
第 2个 cell的 bits[3:0] 用来表示中断触发类型(trigger type and level flags):

1 = low-to-high edge triggered,上升沿触发 
2 = high-to-low edge triggered,下降沿触发 
4 = active high level-sensitive,高电平触发 
8 = active low level-sensitive,低电平触发 

示例如下:

vic: intc@10140000 { 
 compatible = "arm,versatile-vic"; 
 interrupt-controller; 
 #interrupt-cells = <1>; 
 reg = <0x10140000 0x1000>; 
}; 

如果中断控制器有级联关系,下级的中断控制器还需要表明它的“interrupt-parent”是谁,用了interrupt-parent”中的哪一个“interrupts”,请看下一小节。

18.4.1.2 设备树里使用中断

一个外设,它的中断信号接到哪个“中断控制器”的哪个“中断引脚”,这个中断的触发方式是怎样的? 这 3个问题,在设备树里使用中断时,都要有所体现。
① interrupt-parent=<&XXXX>
你要用哪一个中断控制器里的中断?
② interrupts
你要用哪一个中断?
Interrupts里要用几个 cell,由 interrupt-parent对应的中断控制器决定。在中断控制器里有
“#interrupt-cells”属性,它指明了要用几个 cell来描述中断。
比如:

i2c@7000c000 { 
gpioext: gpio-adnp@41 { 
 compatible = "ad,gpio-adnp"; 
interrupt-parent = <&gpio>; interrupts = <160 1>; 
gpio-controller; 
#gpio-cells = <1>; 
 
 
  
 }; ...... }; 
interrupt-controller; 
#interrupt-cells = <2>; 

③ 新写法:interrupts-extended
一个“interrupts-extended”属性就可以既指定“interrupt-parent”,也指定“interrupts”,比如: interrupts-extended = <&intc1 5 1>, <&intc2 1 0>;

18.4.2 设备树里中断节点的示例

以 xxxxxx_IMX6ULL开发板为例,在 arch/arm/boot/dts目录下可以看到 2个文件:imx6ull.dtsi、xxxxxx_imx6ull-14x14.dts,把里面有关中断的部分内容抽取出来。
在这里插入图片描述

从设备树反推 IMX6ULL的中断体系,如下,比之前的框图多了一个“GPC INTC”:
在这里插入图片描述

GPC INTC的英文是:General Power Controller, Interrupt Controller。它提供中断屏蔽、中断状态查询功能,实际上这些功能在 GIC里也实现了,个人觉得有点多余。除此之外,它还提供唤醒功能,这才是保留它的原因。

18.4.3 在代码中获得中断

之前我们提到过,设备树中的节点有些能被转换为内核里的 platform_device,有些不能,回顾如下: A. 根节点下含有 compatile属性的子节点,会转换为 platform_device
B. 含有特定 compatile属性的节点的子节点,会转换为 platform_device
如果一个节点的 compatile属性,它的值是这 4者之一: “simple-bus”,“simple-mfd”,“isa”,“arm,amba-bus”,
那么它的子结点(需含 compatile属性)也可以转换为 platform_device。
C. 总线 I2C、SPI节点下的子节点:不转换为 platform_device
某个总线下到子节点,应该交给对应的总线驱动程序来处理, 它们不应该被转换为 platform_device。

18.4.3.1 对于 platform_device

一个节点能被转换为 platform_device,如果它的设备树里指定了中断属性,那么可以从
platform_device中获得“中断资源”,函数如下,可以使用下列函数获得 IORESOURCE_IRQ资源,即中断号:

/** 
 * platform_get_resource - get a resource for a device 
 * @dev: platform device 
 * @type: resource type   // 取哪类资源?IORESOURCE_MEM、IORESOURCE_REG 
*                      // IORESOURCE_IRQ等 
 * @num: resource index  // 这类资源中的哪一个? 
 */ 
struct resource *platform_get_resource(struct platform_device *dev, 
           unsigned int type, unsigned int num); 
18.4.3.2 对于 I2C设备、SPI设备

对于 I2C设备节点,I2C总线驱动在处理设备树里的 I2C子节点时,也会处理其中的中断信息。一个I2C设备会被转换为一个 i2c_client结构体,中断号会保存在 i2c_client的 irq成员里,代码如下(drivers/i2c/i2c-core.c):
在这里插入图片描述
对于 SPI设备节点,SPI总线驱动在处理设备树里的 SPI子节点时,也会处理其中的中断信息。一个SPI设备会被转换为一个 spi_device结构体,中断号会保存在 spi_device的 irq成员里,代码如下(drivers/spi/spi.c):
在这里插入图片描述

18.4.3.3 调用 of_irq_get获得中断号

如果你的设备节点既不能转换为 platform_device,它也不是 I2C设备,不是 SPI设备,那么在驱动程序中可以自行调用 of_irq_get函数去解析设备树,得到中断号。

18.4.3.4 对于 GPIO

参考:drivers/input/keyboard/gpio_keys.c
可以使用 gpio_to_irq或 gpiod_to_irq获得中断号。 举例,假设在设备树中有如下节点:

gpio-keys { 
  compatible = "gpio-keys"; 
  pinctrl-names = "default"; 
 
 user { 
    label = "User Button"; 
    gpios = <&gpio5 1 GPIO_ACTIVE_HIGH>;     gpio-key,wakeup; 
    linux,code = <KEY_1>; 
  }; 
}; 

那么可以使用下面的函数获得引脚和 flag:

button->gpio = of_get_gpio_flags(pp, 0, &flags); 
bdata->gpiod = gpio_to_desc(button->gpio); 

再去使用 gpiod_to_irq获得中断号:

irq = gpiod_to_irq(bdata->gpiod); 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1055247.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Python】返回指定时间对应的时间戳

使用模块datetime&#xff0c;附赠一个没啥用的“时间推算”功能(获取n天后对应的时间 代码&#xff1a; import datetimedef GetTimestamp(year,month,day,hour,minute,second,*,relativeNone,timezoneNone):#返回指定时间戳。指定relative时进行时间推算"""根…

前端开发网站推荐

每个人都会遇见那么一个人&#xff0c;永远无法忘却&#xff0c;也永远不能拥有。 以下是一些可以用来查找和比较前端框架的推荐网站&#xff1a; JavaScript框架比较&#xff1a; 这些网站提供了对不同JavaScript框架和库的详细比较和评估。 JavaScripting: 提供了大量的JavaS…

深入了解 Linux 中的 AWK 命令:文本处理的瑞士军刀

简介 在Linux和Unix操作系统中&#xff0c;文本处理是一个常见的任务。AWK命令是一个强大的文本处理工具&#xff0c;专门进行文本截取和分析&#xff0c;它允许你在文本文件中查找、过滤、处理和格式化数据。本文将深入介绍Linux中的AWK命令&#xff0c;让你了解其基本用法和…

Cesium实现动态旋转四棱锥(2023.9.11)

Cesium实现动态悬浮旋转四棱锥效果 2023.9.11 1、引言2、两种实现思路介绍2.1 思路一&#xff1a;添加已有的四棱锥&#xff08;金字塔&#xff09;模型实现&#xff08;简单但受限&#xff09;2.2 思路二&#xff1a;自定义四棱锥几何模型实现&#xff08;复杂且灵活&#xff…

双指针算法——复写零

双指针算法——复写零&#x1f60e; 前言&#x1f64c;复写零板书分析&#xff1a;解题代码&#xff1a;B站视频讲解 总结撒花&#x1f49e; &#x1f60e;博客昵称&#xff1a;博客小梦 &#x1f60a;最喜欢的座右铭&#xff1a;全神贯注的上吧&#xff01;&#xff01;&#…

VUE3照本宣科——认识VUE3

VUE3照本宣科——认识VUE3 前言一、命令创建项目1.中文官网2.菜鸟教程 二、VUE3项目目录结构1.public2.src&#xff08;1&#xff09;assets&#xff08;2&#xff09;components 3. .eslintrc.cjs4. .gitignore5. .prettierrc.json6.index.html7.package.json8.README.md9.vit…

芒果叶病害数据集(用于图像分类,每类500张照片)

1.数据集介绍 数据类型&#xff1a;240x320 像素的芒果叶图像。数据格式&#xff1a;JPG。图像数量&#xff1a;共有4000张图像。其中约有1800张是不同的叶子图像&#xff0c;其余的是通过缩放和旋转进行制备的。考虑的病害&#xff1a;包括七种病害&#xff0c;分别是炭疽病、…

大型项目开发设计文档规范

目录 一、 需求文档分析 二、 需求分析 1.交互层分析 2.功能需求分析 3.数据分析 4.兼容性分析 5.非功能性分析 三、 系统现状分析 1. 判断要开发的功能属于哪个模块&#xff0c;需要与哪几个模块联动&#xff1f; 2. 要开发的功能属于新接口开发&#xff0c;还是既有…

下载安装 VMware 虚拟机

文章目录 基本介绍下载并安装 VMware Workstation创建虚拟机iso镜像下载地址开始系统安装配置选择语言ip和代理盘符和用户及密码远程github软件安装开始安装重启使用 安装 VMware Tools 基本介绍 VMware 是什么&#xff1f;虚拟机是什么&#xff1f;二者有什么关系&#xff1f;…

SEO搜索引擎

利用搜索引擎的规则提高网站在有关搜索引擎内的自然排名&#xff0c;吸引更多的用户访问网站&#xff0c;提高网站的访问量&#xff0c;提高网站的销售能力和宣传能力&#xff0c;从而提升网站的品牌效应 搜索引擎优化的技术手段 黑帽SEO 通过欺骗技术和滥用搜索算法来推销毫不…

使用VBA实现快速模糊查询数据

实例需求&#xff1a;基础数据保存在Database工作表中&#xff0c;如下图所示。 基础数据有37个字段&#xff0c;上图仅展示部分字段内容&#xff0c;下图中黄色字段为需要提取的数据字段。 在Search工作表B1单元格输入查询关键字Title和Genre字段中搜索关键字&#xff0c;包…

nginx-proxy反向代理流程

1.浏览器发送请求数据到nginx。 2.nginx先处理请求头&#xff0c;后处理请求体。 client_header_buffer_size #ginx可设置客户端上传header缓冲区大小 client_body_buffer_size #nginx可设置客户端上传数据缓冲区大小 client_body_t…

Android 10.0 Launcher3定制化之folder文件夹文件居中显示的功能实现

1.概述 在10.0的系统产品开发中,在对Launcher3的定制开发中的功能,在最近的产品项目中,有需求要求带默认文件夹功能,所以需要对文件夹的ui做定制化功能的修改在文件夹全屏以后,需要对子文件部分做居中处理,在居中显示比较美观,接下来就来处理居中显示的部分. 如图: 2.…

UX设计VSUI设计

UX设计在近年来国内蓬勃发展,许多人对其产生了浓厚的兴趣。那么我们应该如何通过自学来系统地学习UX设计呢?话不多说&#xff0c;上干货&#xff01; 1、 深入了解UX设计行业 在开始学习之前,需要深入了解UX设计师的工作内容和行业发展前景。确定这是自己想要从事的职业后,再…

Armv8/Armv9 Cache知识大纲分享--思维导图

关键词&#xff1a;cache学习、mmu学习、cache资料、mmu资料、arm资料、armv8资料、armv9资料、 trustzone视频、tee视频、ATF视频、secureboot视频、安全启动视频、selinux视频&#xff0c;cache视频、mmu视频&#xff0c;armv8视频、armv9视频、FF-A视频、密码学视频、RME/CC…

Arm Cache学习资料大汇总

关键词&#xff1a;cache学习、mmu学习、cache资料、mmu资料、arm资料、armv8资料、armv9资料、 trustzone视频、tee视频、ATF视频、secureboot视频、安全启动视频、selinux视频&#xff0c;cache视频、mmu视频&#xff0c;armv8视频、armv9视频、FF-A视频、密码学视频、RME/CC…

【Java接口性能优化】skywalking使用

skywalking使用 提示&#xff1a;微服务中-skywalking使用 文章目录 skywalking使用一、进入skywalking主页二、进入具体服务1.查看接口 一、进入skywalking主页 二、进入具体服务 可以点击列表或搜索后&#xff0c;点击进入具体服务 依次选择日期、小时、分钟 1.查看接口 依次…

Kubernetes(K8s):容器编排的未来是什么?

文章目录 Kubernetes的核心概念和工作原理1. 节点&#xff08;Nodes&#xff09;2. 容器3. Pod4. 控制器5. 服务 Kubernetes为什么成为容器编排的首选工具&#xff1f;1. 自动化和可扩展性2. 多云支持3. 生态系统和社区4. 云原生开发 未来趋势&#xff1a;K8s如何继续发展和演进…

Moleculer微服务02

1.安装 Moleculer cli npm i moleculer-cli -g 2.创建微服务项目 moleculer init project micro-moleculer2.1 使用开发工具打开项目&#xff0c;执行命令npm run dev&#xff0c;在您的浏览器中打开 http://localhost:3000/ 如果您喜欢作者的话&#xff0c;帮忙点下关注&am…

Leetcode 69.x的平方根

给你一个非负整数 x &#xff0c;计算并返回 x 的 算术平方根 。 由于返回类型是整数&#xff0c;结果只保留 整数部分 &#xff0c;小数部分将被 舍去 。 注意&#xff1a;不允许使用任何内置指数函数和算符&#xff0c;例如 pow(x, 0.5) 或者 x ** 0.5 。 示例 1&#xff1…