计算机毕设 基于大数据的抖音短视频数据分析与可视化 - python 大数据 可视化

news2024/11/20 6:28:28

文章目录

  • 0 前言
  • 1 课题背景
  • 2 数据清洗
  • 3 数据可视化
    • 地区-用户
    • 观看时间
    • 分界线
    • 每周观看
    • 观看路径
    • 发布地点
    • 视频时长
    • 整体点赞、完播
  • 4 进阶分析
    • 相关性分析
    • 留存率
  • 5 深度分析
    • 客户价值判断
  • 5 最后


0 前言

🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。

为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的是

🚩 基于大数据的抖音短视频数据分析与可视化

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:3分

1 课题背景

本项目是大数据—基于抖音用户数据集的可视化分析。抖音作为当下非常热门的短视频软件,其背后的数据有极高的探索价值。本项目根据1737312条用户行为数据,利用python工具进行由浅入深的内容分析,目的是挖掘其中各类信息,更好地进行内容优化、产品运营。

2 数据清洗

数据信息查看

简单看一下前5行数据,确定需要进一步预处理的内容:数据去重、删除没有意义的第一列,部分列格式转换、异常值检测。

# 读取数据
df = pd.read_csv('data.csv')
df.head()

在这里插入图片描述

df.info()

在这里插入图片描述

数据去重

无重复数据

print('去重前:',df.shape[0],'行数据')
print('去重后:',df.drop_duplicates().shape[0],'行数据')

缺失值查看

print(np.sum(df.isnull()))

在这里插入图片描述

变量类型转换

real_time 和 date 转为时间变量,id、城市编码转为字符串,并把小数点去掉

df['date'] = df['date'].astype('datetime64[ns]')
df['real_time'] = df['real_time'].astype('datetime64[ns]')
df['uid'] = df['uid'].astype('str')
df['user_city'] = df['user_city'].astype('str')
df['user_city'] = df['user_city'].apply(lambda x:x[:-2])
df['item_id'] = df['item_id'].astype('str')
df['author_id'] = df['author_id'].astype('str')
df['item_city'] = df['item_city'].astype('str')
df['item_city'] = df['item_city'].apply(lambda x:x[:-2])
df['music_id'] = df['music_id'].astype('str')
df['music_id'] = df['music_id'].apply(lambda x:x[:-2])
df.info()

在这里插入图片描述

3 数据可视化

基本信息的可视化,面向用户、创作者以及内容这三个维度进行,构建成分画像,便于更好地针对用户、创作者进行策略投放、内容推广与营销。

地区-用户

user_city_count = user_info.groupby(['user_city']).count().sort_values(by=['uid'],ascending=False)
x1 = list(user_city_count.index)
y1 = user_city_count['uid'].tolist()
len(y1)

不同地区用户数量分布图

#柱形图代码
chart = Bar()
chart.add_xaxis(x1)
chart.add_yaxis('地区使用人数', y1, color='#F6325A',
                     itemstyle_opts={'barBorderRadius':[60, 60, 20, 20]},
                      label_opts=opts.LabelOpts(position='top'))
chart.set_global_opts(datazoom_opts=opts.DataZoomOpts(
    range_start=0,range_end=5,orient='horizontal',type_='slider',is_zoom_lock=False,  pos_left='1%' ),
    visualmap_opts=opts.VisualMapOpts(is_show = False,type_='opacity',range_opacity=[0.2, 1]),
                     title_opts=opts.TitleOpts(title="不同地区用户数量分布图",pos_left='40%'),
                     legend_opts=opts.LegendOpts(pos_right='10%',pos_top='2%'))
chart.render_notebook()

在这里插入图片描述

覆盖到了387个城市,其中编号为99的城市用户比较多超过2000人,6、129、109、31这几个城市的使用人数也超过了1000。

  • 可以关注用户较多城市的特点,对产品受众有进一步的把握。
  • 用户较少的城市可以视作流量洼地,考虑进行地推/用户-用户的推广,增加地区使用人数。

观看时间

h_num = round((df.groupby(['H']).count()['uid']/10000),1).to_list()
h = list(df.groupby(['H']).count().index)

不同时间观看数量分布图

chart = Line()
chart.add_xaxis(h)
chart.add_yaxis('观看数/(万)',h_num, areastyle_opts=opts.AreaStyleOpts(color = '#1AF5EF',opacity=0.3),
                                  itemstyle_opts=opts.ItemStyleOpts(color='black'),
                                  label_opts=opts.LabelOpts(font_size=12))
chart.set_global_opts(legend_opts=opts.LegendOpts(pos_right='10%',pos_top='2%'),
                     title_opts=opts.TitleOpts(title="不时间观看数量分布图",pos_left='40%'),)
chart.render_notebook()

去掉时差后
在这里插入图片描述

根据不同时间的观看视频数量来看,11-18,20-21,尤其是13-16是用户使用的高峰期

  • 在用户高浏览的时段进行广告的投放,曝光量更高
  • 在高峰段进行优质内容的推荐,效果会更好

分界线

点赞/完播率分布图

left = df.groupby(['H']).sum()[['finish','like']]
right = df.groupby(['H']).count()['uid']
per = pd.concat([left,right],axis=1)
per['finish_radio'] = round(per['finish']*100/per['uid'],2)
per['like_radio'] = round(per['like']*100/per['uid'],2)
x = list(df.groupby(['H']).count().index)
y1 = per['finish_radio'].to_list()
y2 = per['like_radio'].to_list()
#建立一个基础的图形
chart1 = Line()
chart1.add_xaxis(x)
chart1.add_yaxis('完播率/%',y1,is_smooth=True,label_opts=opts.LabelOpts(is_show=False),is_symbol_show = False,
                                      linestyle_opts=opts.LineStyleOpts(color='#F6325A',opacity=.7,curve=0,width=2,type_= 'solid' ))
chart1.set_global_opts(yaxis_opts =  opts.AxisOpts(min_=25,max_=45))
chart1.extend_axis(yaxis=opts.AxisOpts(min_=0.4,max_=3))
#叠加折线图
chart2 = Line()   
chart2.add_xaxis(x)
chart2.add_yaxis('点赞率/%',y2,yaxis_index=1,is_smooth=True,label_opts=opts.LabelOpts(is_show=False),is_symbol_show = False,
                                            linestyle_opts=opts.LineStyleOpts(color='#1AF5EF',opacity=.7,curve=0,width=2,type_= 'solid' ))
chart1.overlap(chart2) 
chart1.set_global_opts(legend_opts=opts.LegendOpts(pos_right='10%',pos_top='2%'),
                     title_opts=opts.TitleOpts(title="点赞/完播率分布图",pos_left='40%'),)

chart1.render_notebook()

在这里插入图片描述

关注到点赞率和完播率,这两个与用户粘性、创作者收益有一定关系的指标。可以看到15点是两个指标的小高峰,2、4、20、23完播较高,8、13、18、20点赞率较高。但结合观看数量与时间段的分布图,大致猜测15点深度用户较多。

  • 关注深度用户特点,思考如何增加普通用户的完播、点赞

每周观看

df['weekday'] = df['date'].dt.weekday
week = df.groupby(['weekday']).count()['uid'].to_list()
df_pair = [['周一', week[0]], ['周二', week[1]], ['周三', week[2]], ['周四', week[3]], ['周五', week[4]], ['周六', week[5]], ['周日', week[6]]]
chart = Pie()
chart.add('', df_pair,radius=['40%', '70%'],rosetype='radius',center=['45%', '50%'],label_opts=opts.LabelOpts(is_show=True,formatter = '{b}:{c}次'))
chart.set_global_opts(visualmap_opts=[opts.VisualMapOpts(min_=200000,max_=300000,type_='color', range_color=['#1AF5EF', '#F6325A', '#000000'],is_show=True,pos_top='65%')],
                      legend_opts=opts.LegendOpts(pos_right='10%',pos_top='2%',orient='vertical'),
                     title_opts=opts.TitleOpts(title="一周内播放分布图",pos_left='35%'),)

chart.render_notebook()

在这里插入图片描述

在统计的时间内周一到周三观看人数较多,但总体观看次数基本在20-30w之间。

  • 创作者选择在周一-三这几天分布可能会收获更多的观看数量

观看路径

df.groupby(['channel']).count()['uid']

在这里插入图片描述

观看途径主要以1为主,初步猜测为App。3途径也有部分用户使用,可能为浏览器。

  • 考虑拓宽各个观看渠道,增加总体播放量和产品使用度
  • 非主渠道观看,制定策略提升转化,将流量引入主渠道
  • 针对主要渠道内容进行商业化策略投放,效率更高

发布地点

author_info = df.drop_duplicates(['author_id','item_city'])[['author_id','item_city']]
author_info.info()
author_city_count = author_info.groupby(['item_city']).count().sort_values(by=['author_id'],ascending=False)
x1 = list(author_city_count.index)
y1 = author_city_count['author_id'].tolist()
df.drop_duplicates(['author_id']).shape[0]

不同城市创作者分布图

chart = Bar()
chart.add_xaxis(x1)
chart.add_yaxis('地区创作者人数', y1, color='#F6325A',
                     itemstyle_opts={'barBorderRadius':[60, 60, 20, 20]})
chart.set_global_opts(datazoom_opts=opts.DataZoomOpts(
    range_start=0,range_end=5,orient='horizontal',type_='slider',is_zoom_lock=False,  pos_left='1%' ),
    visualmap_opts=opts.VisualMapOpts(is_show = False,type_='opacity',range_opacity=[0.2, 1]),
                     legend_opts=opts.LegendOpts(pos_right='10%',pos_top='2%'),
                     title_opts=opts.TitleOpts(title="不同城市创作者分布图",pos_left='40%'))
chart.render_notebook()

在这里插入图片描述

观看用户地区分布和创作者分布其实存在不对等的情况。4地区创作者最多,超5k人,33、42、10地区创作者也较多。

  • 创作者与地区的联系也值得关注,尤其是创作内容如果和当地风俗环境人文有关
  • 相邻近地区的优质的创作者之间互动,可以更好的引流

视频时长

time = df.drop_duplicates(['item_id'])[['item_id','duration_time']]
time = time.groupby(['duration_time']).count()
x1 = list(time.index)
y1 = time['item_id'].tolist()

不同时长作品分布图

chart = Bar()
chart.add_xaxis(x1)
chart.add_yaxis('视频时长对应视频数', y1, color='#1AF5EF',
                     itemstyle_opts={'barBorderRadius':[60, 60, 20, 20]},
               label_opts=opts.LabelOpts(font_size=12,  color='black'))
chart.set_global_opts(datazoom_opts=opts.DataZoomOpts(
    range_start=0,range_end=50,orient='horizontal',type_='slider'),
    visualmap_opts=opts.VisualMapOpts(max_=100000,min_=200,is_show = False,type_='opacity',range_opacity=[0.4, 1]),
                     legend_opts=opts.LegendOpts(pos_right='10%',pos_top='2%'),
                     title_opts=opts.TitleOpts(title="不同时长作品分布图",pos_left='40%'))

chart.render_notebook() 

在这里插入图片描述

视频时长主要集中在9-10秒,符合抖音“短”视频的特点。

  • 官方提供9/10秒专用剪视频模板,提高创作效率
  • 创作者关注创意浓缩和内容提炼
  • 视频分布在这两个时间点的爆发也能侧面反映用户刷视频的行为特征

整体点赞、完播

like_per = 100*np.sum(df['like'])/len(df['like'])
finish_per = 100*np.sum(df['finish'])/len(df['finish'])
gauge = Gauge()
gauge.add("",[("视频互动率", like_per),['完播率',finish_per]],detail_label_opts=opts.LabelOpts(is_show=False,font_size=18),
                                  axisline_opts=opts.AxisLineOpts(linestyle_opts=opts.LineStyleOpts(
                                      color=[(0.3, "#1AF5EF"), (0.7, "#F6325A"), (1, "#000000")],width=20)))
gauge.render_notebook()

在这里插入图片描述

内容整体完播率非常接近40%,点赞率在1%左右

  • 用户更多是“刷”视频,挖掘吸引力和作品连贯性,能更好留住用户
  • 点赞功能挖掘不够,可尝试进行ABtest,对点赞按钮增加动画,测试是否会提升点赞率

4 进阶分析

相关性分析

df_cor = df[['finish','like','duration_time','H']] # 只选取部分
cor_table = df_cor.corr(method='spearman')
cor_array = np.array(cor_table)
cor_name = list(cor_table.columns)
value = [[i, j, cor_array[i,j]] for i in [3,2,1,0] for j in [0,1,2,3]] 
heat = HeatMap()
heat.add_xaxis(cor_name)
heat.add_yaxis("",cor_name,value,label_opts=opts.LabelOpts(is_show=True, position="inside"))
heat.set_global_opts(visualmap_opts=opts.VisualMapOpts(is_show=False, max_=0.08, range_color=["#1AF5EF", "#F6325A", "#000000"]))
heat.render_notebook()

在这里插入图片描述

因为变量非连续,采取spearman相关系数,制作相关性热力图。由于数据量比较大的缘故,几个数量性变量之间的相关性都比较小,其中看到finish和点赞之间的相关系数稍微大一些,可以一致反映用户对该视频的偏好。

留存率

pv/uv

temp = df['date'].to_list()
puv = df.groupby(['date']).agg({'uid':'nunique','item_id':'count'})
uv = puv['uid'].to_list()
pv = puv['item_id'].to_list()
time = puv.index.to_list()
chart1 = Line()
chart1.add_xaxis(time)
chart1.add_yaxis('uv',uv,is_smooth=True,label_opts=opts.LabelOpts(is_show=False),is_symbol_show = False,
                linestyle_opts=opts.LineStyleOpts(color='#1AF5EF',opacity=.7,curve=0,width=2,type_= 'solid' ))
chart1.add_yaxis('pv',pv,is_smooth=True,label_opts=opts.LabelOpts(is_show=False),is_symbol_show = False,
                linestyle_opts=opts.LineStyleOpts(color='#F6325A',opacity=.7,curve=0,width=2,type_= 'solid' ))
chart1.render_notebook()

在这里插入图片描述

在2019.10.18进入用户使用高峰阶段,目标用户单人每天浏览多个视频。

  • 关注高峰时间段,是否是当下推荐算法起作用了

7/10 留存率

lc = []
for i in range(len(time)-7):
    bef = set(list(df[df['date']==time[i]]['uid']))
    aft = set(list(df[df['date']==time[i+7]]['uid']))
    stay = bef&aft
    per = round(100*len(stay)/len(bef),2)
    lc.append(per)
    
lc1 = []
for i in range(len(time)-1):
    bef = set(list(df[df['date']==time[i]]['uid']))
    aft = set(list(df[df['date']==time[i+1]]['uid']))
    stay = bef&aft
    per = round(100*len(stay)/len(bef),2)
    lc1.append(per)
x7 = time[0:-7]
chart1 = Line()
chart1.add_xaxis(x7)
chart1.add_yaxis('七日留存率/%',lc,is_smooth=True,label_opts=opts.LabelOpts(is_show=False),is_symbol_show = False,
                linestyle_opts=opts.LineStyleOpts(color='#F6325A',opacity=.7,curve=0,width=2,type_= 'solid' ))
chart1.set_global_opts(legend_opts=opts.LegendOpts(pos_right='10%',pos_top='2%'),
                     title_opts=opts.TitleOpts(title="用户留存率分布图",pos_left='40%'),)

chart1.render_notebook()

在这里插入图片描述

用户留存率保持在40%+,且没有跌破30%,说明获取到的数据中忠实用户较多。

  • 存在一定可能性是因为数据只爬取了特定用户群体的行为数据,结合创作者数量>用户数量可得到验证
  • 但一定程度可以反映软件留存这块做的不错

5 深度分析

客户价值判断

通过已观看数、完播率、点赞率进行用户聚类,价值判断

df1 = df.groupby(['uid']).agg({'item_id':'count','like':'sum','finish':'sum'})
df1['like_per'] = df1['like']/df1['item_id']
df1['finish_per'] = df1['finish']/df1['item_id']
ndf1 = np.array(df1[['item_id','like_per','finish_per']])#.shape
kmeans_per_k = [KMeans(n_clusters=k).fit(ndf1) for k in range(1,8)]
inertias = [model.inertia_ for model in kmeans_per_k]
chart = Line(init_opts=opts.InitOpts(width='560px',height='300px'))
chart.add_xaxis(range(1,8))
chart.add_yaxis("",inertias,label_opts=opts.LabelOpts(is_show=False),
                linestyle_opts=opts.LineStyleOpts(color='#F6325A',opacity=.7,curve=0,width=3,type_= 'solid' ))
chart.render_notebook()

在这里插入图片描述

n_cluster = 4
cluster = KMeans(n_clusters=n_cluster,random_state=0).fit(ndf1)
y_pre = cluster.labels_ # 查看聚好的类
from sklearn.metrics import silhouette_score
from sklearn.metrics import silhouette_samples
silhouette_score(ndf1,y_pre) 
n_cluster = 3
cluster = KMeans(n_clusters=n_cluster,random_state=0).fit(ndf1)
y_pre = cluster.labels_ # 查看聚好的类
from sklearn.metrics import silhouette_score
from sklearn.metrics import silhouette_samples
silhouette_score(ndf1,y_pre)

比较三类、四类的轮廓系数,确定聚为3类

c_ = [[],[],[]]
c_[0] = [87.998,9.1615,39.92]
c_[1] = [13.292,12.077,50.012]
c_[2] = [275.011,8.125,28.751]
bar = Bar(init_opts=opts.InitOpts(theme='macarons',width='1000px',height='400px')) # 添加分类(x轴)的数据
bar.add_xaxis(['播放数','点赞率(千分之)','完播率(百分之)'])
bar.add_yaxis('0', [round(i,2) for i in c_[0]], stack='stack0') 
bar.add_yaxis('1',[round(i,2) for i in c_[1]], stack='stack1') 
bar.add_yaxis('2',[round(i,2) for i in c_[2]], stack='stack2') 
bar.render_notebook()

在这里插入图片描述

可以大致对三类的内容做一个描述。

  1. 紫色 - 观看数量较少,但点赞完播率都非常高的:对内容观看有耐心,愿意产生额外性行为。因此通过观看兴趣内容打散、可以刺激用户观看更多视频。e.g.多推荐有悬念、连续性的短视频
  2. 绿色 - 观看数量适中,点赞率、完播率有所下滑,对这类用户的策略可以中和先后两种。
  3. 蓝色 - 观看数量非常多,点赞、完播率教室,这类用户更多会关注到视频前半段的内容,兴趣点可通过停留时间进行判断,但使用时间相对较长,反映产品依赖性,一定程度上来说算是核心用户。e.g.利用停留时间判断喜好,优化推荐算法,重点推荐前半段内容吸引力大的。

5 最后

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1039214.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

微信小程序的无限瀑布流写法

微信小程序的无限瀑布流实现总算做完了,换了好几种方法,过程中出现了各种BUG。 首先官方有瀑布流的插件(Skyline /grid-view),不是原生的我就不想引入,因为我的方块流页面已经搭好了,引入说不定…

时空智友企业流程化管控系统任意文件上传漏洞复现【附POC】

文章目录 时空智友企业流程化管控系统任意文件上传漏洞复现0x01 前言0x02 漏洞描述0x03 影响平台0x04 漏洞环境0x05 漏洞复现1.访问漏洞环境2.构造POC3.复现4.访问shell地址 0x06 修复建议 时空智友企业流程化管控系统任意文件上传漏洞复现 0x01 前言 免责声明:请…

股票难还是期货难?国内玩期货的人多吗?

股票和期货都是相对较难的金融投资工具。它们都有各自的优点和挑战,而且都需要深入了解市场、制定策略和进行风险管理。 就难度而言,期货和股票的难度主要在于以下方面: 1. 市场风险:股票和期货市场都存在风险,包括价格…

【沐风老师】3DMAX翻转折叠动画插件FoldFx使用方法详解

3DMAX翻转折叠动画插件FoldFx使用方法详解 3DMAX翻转折叠动画插件FoldFx,是3dMax运动图形工具,用于创建多边形折叠动画。用户几乎有无限的可能性,因为动画的每个方面都是可控的。 【适用版本】 适用于3dMax版本:2010及更新版本&a…

QT6.5.2编译PostgreSql驱动

一、环境 1、操作系统:win11 2、qt版本:6.5.2 3、PostgreSql版本:14.9 二、下载qbase源码 1、下载地址:https://github.com/qt/qtbase/tree/6.5.2 将下载的源码文件解压指定的的目录,找到src/plugins/sqldrivers根据自己的实…

基于springboot+vue的校园资产管理系统

博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战 主要内容:毕业设计(Javaweb项目|小程序等)、简历模板、学习资料、面试题库、技术咨询 文末联系获取 项目介绍…

小皮面板配置Xdebug,调试单个php文件

小皮面板配置Xdebug 首先下载phpstrom,和小皮面板 打开小皮面板,选中好要使用的php版本 然后点击【管理】> 【php扩展】> 【xdebug】 然后打开选中好版本的php位置 D:\Program_Files\phpstudy_pro\Extensions\php\php7.4.3nts打开php.ini文件…

[0CTF 2016]piapiapia 代码审计 字符串逃逸 绕过长度限制

第一次直接打包代码 然后查看有没有洞 学习一下 降低速度扫描dirsearch -t 2 超低速 扫描扫到了 /www.zip /profile.php /register.php /upload/ 未加参数 我们直接去看看 我们直接下载备份文件即可 config.php 存在flag变量 class.php 然后我们分析一下class.php &…

Visual Studio 2019 C# winform CefSharp 中播放视频及全屏播放

VS C# winform CefSharp 浏览器控件,默认不支持视频播放,好在有大佬魔改了dll,支持流媒体视频播放。虽然找了很久,好歹还是找到了一个版本100.0.230的dll(资源放在文末) 首先创建一个项目 第二、引入CefSha…

VMware安装debian11虚拟机详细步骤

VMware安装debian11虚拟机详细步骤,超详细,一次搞定。 目录 1,新建虚拟机 2,开始安装 3,磁盘分区(手动) 分区设置 配置LVM卷 4,软件包管理器、网络镜像等 5,完成安…

UOS 序列号激活指令及方法

前言:本方案主要介绍了6种不同的激活方式,包括 1、在线激活; 2、离线激活; 3、激活文件激活; 4、终端命令激活; 5、试用期激活; 6、测试激活码激活。 附:激活码正版验证网页&#xf…

Fedora Linux 39 Beta 预估 10 月底发布正式版

Fedora 39 Beta 镜像于今天发布,用户可以根据自己的使用偏好,下载 KDE Plasma,Xfce 和 Cinnamon 等不同桌面环境版本,正式版预估将于 10 月底发布 Fedora 39 Beta 版本主要更新了 DNF 软件包管理器,并优化了 Anaconda …

kotlin的集合使用maxBy函数报NoSuchElementException

kotlin设定函数 fun test() {listOf<Int>().maxBy { it } } 查看java实现

Vue+iview 组件中通过v-for循环动态生成form表单进行表单校验

在做项目时&#xff0c;需要根据需要动态添加或新增表单&#xff0c;同时还需要对表单做校验。详情如下图&#xff1a; 刚开始做表单验证的时候&#xff0c;对于这个动态的表单验证有点难搞&#xff0c;试了好几种方法都没有搞定。最后按照下面这种方法实现了&#xff0c;以此…

Express 基础操作和详解

Express 基础操作和详解 Express.js 是一个基于 Node.js 平台的 Web 应用程序框架&#xff0c;它旨在帮助开发者轻松构建和管理 Web 服务和应用程序。Express 提供了许多强大的功能&#xff0c;使得创建可扩展、灵活且高性能的 Web 应用变得相对容易。以下是 Express 的主要特点…

Github 开启 2FA-无需下载软件实现

Github 开启 2FA 验证了&#xff0c;如果不配置&#xff0c;后续会限制登录Github, 用代码实现配置 获取密钥 setup key 点击 setup key 链接&#xff0c;获取密钥 引入相关算法的 jar <dependency><groupId>com.amdelamar</groupId><artifactId>jot…

华为存储培训

01 存储前沿技术和发展趋势 狭义的存储定义 CD、DVD、ZIP、磁带、硬盘等 广义的存储定义 存储硬件系统&#xff08;磁盘阵列&#xff0c;控制器&#xff0c;磁盘柜&#xff0c;磁带库等&#xff09; 存储软件&#xff08;备份软件&#xff1b;管理软件&#xff0c;快照&…

Eclipse初步学习使用

1.配置自动填充 window->preference 2.自动判断错误&#xff0c;并给出解决方法 3.创建可执行文件&#xff1a; 新建package&#xff0c; 包内新建 javaclass&#xff0c;选择psvm&#xff0c; 4.编写程序&#xff0c;进行执行 右键&#xff0c;选择 run as applic…

第二证券:持股还是持币?多家券商:四季度行情有望回归

上星期初&#xff0c;海外商场持续调整&#xff0c;中美利差继续探底&#xff0c;一度压制A股体现。然而上星期五方针预期提振、AI权重股开释利好、外资大幅回流&#xff0c;共同引领A股走出一波触底反弹的独立行情。展望本周&#xff0c;A股将迎来中秋国庆长假前的最终一个买卖…

深度强化学习(一)常识性普及

文章目录 机器学习、强化学习、深度学习的侧重点强化学习的简介强化学习的主要特征强化学习和机器学习的关系强化学习的发展历史 深度强化学习 一些参考的资料&#xff1a; 蘑菇书&#xff1a;https://datawhalechina.github.io/easy-rl/#/chapter1/chapter1 源代码&#xff1a…