一、鱼鹰优化算法
鱼鹰优化算法(Osprey optimization algorithm,OOA)由Mohammad Dehghani 和 Pavel Trojovský于2023年提出,其模拟鱼鹰的捕食行为。
Python:鱼鹰优化算法(Osprey optimization algorithm,OOA)求解23组基本测试函数_IT猿手的博客-CSDN博客
二、基于非支配排序的鱼鹰优化算法
非支配排序的鱼鹰优化算法(Non-Dominated Sorting Osprey optimization algorithm,NSOOA)由OOA融合非支配排序策略而成,为了验证所提的NSOOA的有效性,将其在46个多目标测试函数(ZDT1、ZDT2、ZDT3、ZDT4、ZDT6、DTLZ1-DTLZ7、WFG1-WFG10、UF1-UF10、CF1-CF10、Kursawe、Poloni、Viennet2、Viennet3)以及1个工程应用(盘式制动器设计)上实验,并采IGD,GD,HV,SP四种评价指标进行评价。
(1)部分代码
close all; clear ; clc; %% % TestProblem测试问题说明: %一共46个多目标测试函数,详情如下: %1-5:ZDT1、ZDT2、ZDT3、ZDT4、ZDT6 %6-12:DZDT1-DZDT7 %13-22:wfg1-wfg10 %23-32:uf1-uf10 %33-42:cf1-cf10 %43-46:Kursawe、Poloni、Viennet2、Viennet3 %47 盘式制动器设计 温泽宇,谢珺,谢刚,续欣莹.基于新型拥挤度距离的多目标麻雀搜索算法[J].计算机工程与应用,2021,57(22):102-109. %% TestProblem=1;%1-47 MultiObj = GetFunInfo(TestProblem); MultiObjFnc=MultiObj.name;%问题名 % Parameters params.Np = 100; % Population size params.Nr = 200; % Repository size params.maxgen=200; % Maximum number of generations numOfObj=MultiObj.numOfObj;%目标函数个数 D=MultiObj.nVar;%维度 f = NSOOA(params,MultiObj); X=f(:,1:D);%PS Obtained_Pareto=f(:,D+1:D+numOfObj);%PF if(isfield(MultiObj,'truePF'))%判断是否有参考的PF True_Pareto=MultiObj.truePF; %% Metric Value % ResultData的值分别是IGD、GD、HV、Spacing (HV越大越好,其他指标越小越好) ResultData=[IGD(Obtained_Pareto,True_Pareto),GD(Obtained_Pareto,True_Pareto),HV(Obtained_Pareto,True_Pareto),Spacing(Obtained_Pareto)]; else %计算每个算法的Spacing,Spacing越小说明解集分布越均匀 ResultData=Spacing(Obtained_Pareto);%计算的Spacing end %% disp('Repository fitness values are stored in Obtained_Pareto'); disp('Repository particles positions are store in X');
(2)部分结果