本篇主要是介绍:图的一些常用的算法。
文章目录
- 一、图的基本概念
- 二、图的存储结构
- 1、邻接矩阵
- 2、邻接表
- 三、图的遍历
- 1、广度优先遍历
- 2、深度优先遍历
- 四、最小生成树
- 1、Kruskal算法
- 2、Prim算法
- 五、最短路径
- 1、单源最短路径--Dijkstra算法
- 2、单源最短路径--Bellman-Ford算法
- 3、多源最短路径--Floyd-Warshall算法
一、图的基本概念
图是由顶点集合及顶点间的关系组成的一种数据结构:G = (V, E),其中:
顶点集合V = {x|x属于某个数据对象集}是有穷非空集合;
E = {(x,y)|x,y属于V}或者E = {<x, y>|x,y属于V && Path(x, y)}是顶点间关系的有穷集合,也叫
做边的集合。
(x, y)表示x到y的一条双向通路,即(x, y)是无方向的;Path(x, y)表示从x到y的一条单向通路,即
Path(x, y)是有方向的。
顶点和边:图中结点称为顶点,第i个顶点记作vi。两个顶点vi和vj相关联称作顶点vi和顶点vj之间
有一条边,图中的第k条边记作ek,ek = (vi,vj)或<vi,vj>。
有向图和无向图:在有向图中,顶点对<x, y>是有序的,顶点对<x,y>称为顶点x到顶点y的一条
边(弧),<x, y>和<y, x>是两条不同的边,比如下图G3和G4为有向图。在无向图中,顶点对(x, y)
是无序的,顶点对(x,y)称为顶点x和顶点y相关联的一条边,这条边没有特定方向,(x, y)和(y,x)
是同一条边,比如下图G1和G2为无向图。注意:无向边(x, y)等于有向边<x, y>和<y, x>。
完全图:在有n个顶点的无向图中,若有n * (n-1)/2条边,即任意两个顶点之间有且仅有一条边,
则称此图为无向完全图,比如上图G1;在n个顶点的有向图中,若有n * (n-1)条边,即任意两个
顶点之间有且仅有方向相反的边,则称此图为有向完全图,比如上图G4。
邻接顶点:在无向图中G中,若(u, v)是E(G)中的一条边,则称u和v互为邻接顶点,并称边(u,v)依
附于顶点u和v;在有向图G中,若<u, v>是E(G)中的一条边,则称顶点u邻接到v,顶点v邻接自顶
点u,并称边<u, v>与顶点u和顶点v相关联。
顶点的度:顶点v的度是指与它相关联的边的条数,记作deg(v)。在有向图中,顶点的度等于该顶
点的入度与出度之和,其中顶点v的入度是以v为终点的有向边的条数,记作indev(v);顶点v的出度
是以v为起始点的有向边的条数,记作outdev(v)。因此:dev(v) = indev(v) + outdev(v)。
注 意:对于无向图,顶点的度等于该顶点的入度和出度,即dev(v) = indev(v) = outdev(v)。
路径:在图G = (V, E)中,若从顶点vi出发有一组边使其可到达顶点vj,则称顶点vi到顶点vj的顶
点序列为从顶点vi到顶点vj的路径。
路径长度:对于不带权的图,一条路径的路径长度是指该路径上的边的条数;对于带权的图,一
条路
径的路径长度是指该路径上各个边权值的总和。
简单路径与回路:若路径上各顶点v1,v2,v3,…,vm均不重复,则称这样的路径为简单路
径。若路径上第一个顶点v1和最后一个顶点vm重合,则称这样的路径为回路或环。
子图:设图G = {V, E}和图G1 = {V1,E1},若V1属于V且E1属于E,则称G1是G的子图。
连通图:在无向图中,若从顶点v1到顶点v2有路径,则称顶点v1与顶点v2是连通的。如果图中任
意一对顶点都是连通的,则称此图为连通图。
强连通图:在有向图中,若在每一对顶点vi和vj之间都存在一条从vi到vj的路径,也存在一条从vj
到
vi的路径,则称此图是强连通图。
生成树:一个连通图的最小连通子图称作该图的生成树。有n个顶点的连通图的生成树有n个顶点
和n-1条边。
二、图的存储结构
2.1邻接矩阵
邻接矩阵(二维数组)即是:先用一个数组将定点保存,然后采用矩阵来表示节点与节点之间的关系。
注意:1.无向图的邻接矩阵是对称的,第i行(列)元素之和,就是顶点i的度。有向图的邻接矩阵则不一 定是对称的,第i行(列)元素之后就是顶点i 的出(入)度。
2. 如果边带有权值,并且两个节点之间是连通的,上图中的边的关系就用权值代替,如果两个
顶点不通,则使用无穷大代替。
代码如下:
namespace matrix
{
template<class V, class W, W MAX_W = INT_MAX, bool Direction = false>
class Graph
{
typedef Graph<V, W, MAX_W, Direction> Self;
public:
Graph() = default;
Graph(const V* a, size_t n)
{
_vertexs.reserve(n);
for (size_t i = 0; i < n; ++i)
{
_vertexs.push_back(a[i]);
_indexMap[a[i]] = i;
}
_matrix.resize(n);
for (size_t i = 0; i < _matrix.size(); ++i)
{
_matrix[i].resize(n, MAX_W);
}
}
size_t GetVertexIndex(const V& v)
{
auto it = _indexMap.find(v);
if (it != _indexMap.end())
{
return it->second;
}
else
{
//assert(false);
cout << "不存在顶点" << ":" << v << endl;
throw invalid_argument("顶点不存在");
return -1;
}
}
void _AddEdge(size_t srci, size_t dsti, const W& w)
{
_matrix[srci][dsti] = w;
// 无向图
if (Direction == false)
{
_matrix[dsti][srci] = w;
}
}
void AddEdge(const V& src, const V& dst, const W& w)
{
size_t srci = GetVertexIndex(src);
size_t dsti = GetVertexIndex(dst);
_AddEdge(srci, dsti, w);
}
void Print()
{
// 顶点
for (size_t i = 0; i < _vertexs.size(); ++i)
{
cout << "[" << i << "]" << "->" << _vertexs[i] << endl;
}
cout << endl;
// 矩阵
// 横下标
cout << " ";
for (size_t i = 0; i < _vertexs.size(); ++i)
{
//cout << i << " ";
printf("%4d", i);
}
cout << endl;
for (size_t i = 0; i < _matrix.size(); ++i)
{
cout << i << " "; // 竖下标
for (size_t j = 0; j < _matrix[i].size(); ++j)
{
//cout << _matrix[i][j] << " ";
if (_matrix[i][j] == MAX_W)
{
//cout << "* ";
printf("%4c", '*');
}
else
{
//cout << _matrix[i][j] << " ";
printf("%4d", _matrix[i][j]);
}
}
cout << endl;
}
cout << endl;
for (size_t i = 0; i < _matrix.size(); ++i)
{
for (size_t j = 0; j < _matrix[i].size(); ++j)
{
if (i < j && _matrix[i][j] != MAX_W)
{
cout << _vertexs[i] << "->" << _vertexs[j] << ":" << _matrix[i][j]
<< endl;
}
}
}
}
private:
vector<V> _vertexs; // 顶点集合
map<V, int> _indexMap; // 顶点映射下标
vector<vector<W>> _matrix; // 邻接矩阵
};
}
2.2邻接表
邻接表:使用数组表示顶点的集合,使用链表表示边的关系。
注意:无向图中同一条边在邻接表中出现了两次。如果想知道顶点
vi
的度,只需要知道顶点
vi边链表集合中结点的数目即可。
注意:有向图中每条边在邻接表中只出现一次,与顶点
vi
对应的邻接表所含结点的个数,就
是该顶点的出度,也称出度表,要得到
vi
顶点的入度,必须检测其他所有顶点对应的边链
表,看有多少边顶点的
dst
取值是
i
。
代码如下:
namespace link_table
{
template<class W>
struct Edge
{
//int _srci;
int _dsti; // 目标点的下标
W _w; // 权值
Edge<W>* _next;
Edge(int dsti, const W& w)
:_dsti(dsti)
, _w(w)
, _next(nullptr)
{}
};
template<class V, class W, bool Direction = false>
class Graph
{
typedef Edge<W> Edge;
public:
Graph(const V* a, size_t n)
{
_vertexs.reserve(n);
for (size_t i = 0; i < n; ++i)
{
_vertexs.push_back(a[i]);
_indexMap[a[i]] = i;
}
_tables.resize(n, nullptr);
}
size_t GetVertexIndex(const V& v)
{
auto it = _indexMap.find(v);
if (it != _indexMap.end())
{
return it->second;
}
else
{
//assert(false);
throw invalid_argument("顶点不存在");
return -1;
}
}
void AddEdge(const V& src, const V& dst, const W& w)
{
size_t srci = GetVertexIndex(src);
size_t dsti = GetVertexIndex(dst);
// 1->2
Edge* eg = new Edge(dsti, w);
eg->_next = _tables[srci];
_tables[srci] = eg;
// 2->1
if (Direction == false)
{
Edge* eg = new Edge(srci, w);
eg->_next = _tables[dsti];
_tables[dsti] = eg;
}
}
void Print()
{
// 顶点
for (size_t i = 0; i < _vertexs.size(); ++i)
{
cout << "[" << i << "]" << "->" << _vertexs[i] << endl;
}
cout << endl;
for (size_t i = 0; i < _tables.size(); ++i)
{
cout << _vertexs[i] << "[" << i << "]->";
Edge* cur = _tables[i];
while (cur)
{
cout << "[" << _vertexs[cur->_dsti] << ":" << cur->_dsti << ":" << cur->_w << "]->";
cur = cur->_next;
}
cout << "nullptr" << endl;
}
}
private:
vector<V> _vertexs; // 顶点集合
map<V, int> _indexMap; // 顶点映射下标
vector<Edge*> _tables; // 邻接表
};
}
三、图的遍历
3.1图的广度优先遍历
void BFS(const V& src)
{
size_t srci = GetVertexIndex(src);
// 队列和标记数组
queue<int> q;
vector<bool> visited(_vertexs.size(), false);
q.push(srci);
visited[srci] = true;
int levelSize = 1;
size_t n = _vertexs.size();
while (!q.empty())
{
// 一层一层出
for (int i = 0; i < levelSize; ++i)
{
int front = q.front();
q.pop();
cout << front << ":" << _vertexs[front] << " ";
// 把front顶点的邻接顶点入队列
for (size_t i = 0; i < n; ++i)
{
if (_matrix[front][i] != MAX_W)
{
if (visited[i] == false)
{
q.push(i);
visited[i] = true;
}
}
}
}
cout << endl;
levelSize = q.size();
}
cout << endl;
}
3.2图的深度优先遍历
void _DFS(size_t srci, vector<bool>& visited)
{
cout << srci << ":" << _vertexs[srci] << endl;
visited[srci] = true;
// 找一个srci相邻的没有访问过的点,去往深度遍历
for (size_t i = 0; i < _vertexs.size(); ++i)
{
if (_matrix[srci][i] != MAX_W && visited[i] == false)
{
_DFS(i, visited);
}
}
}
void DFS(const V& src)
{
size_t srci = GetVertexIndex(src);
vector<bool> visited(_vertexs.size(), false);
_DFS(srci, visited);
}
四、最小生成树
连通图中的每一棵生成树,都是原图的一个极大无环子图,即:从其中删去任何一条边,生成树
就不在连通;反之,在其中引入任何一条新边,都会形成一条回路。
若连通图由n
个顶点组成,则其生成树必含
n
个顶点和
n-1
条边。因此构造最小生成树的准则有三
条:
1. 只能使用图中的边来构造最小生成树 。
2. 只能使用恰好
n-1
条边来连接图中的
n个顶点。
3. 选用的
n-1条边不能构成回路 。
构造最小生成树的方法:Kruskal
算法
和
Prim
算法
。这两个算法都采用了
逐步求解的贪心策略。
贪心算法:是指在问题求解时,总是做出当前看起来最好的选择。也就是说贪心算法做出的不是
整体最优的的选择,而是某种意义上的局部最优解。贪心算法不是对所有的问题都能得到整体最优
解。
4.1Kruskal(克鲁斯卡尔算法)
任给一个有
n
个顶点的连通网络
N={V,E}
,首先构造一个由这
n
个顶点组成、不含任何边的图
G={V,NULL}
,其中每个顶点自成一个连通分
量,
其次不断从
E
中取出权值最小的一条边
(
若有多条任取其一
)
,若该边的两个顶点来自不同的连通分
量,则将此边加入到
G
中
。如此重复,直到所有顶点在同一个连通分量上为止。
核心:每次迭代时,选出一条具有最小权值,且两端点不在同一连通分量上的边,加入生成树。
来自算法导论:
W Kruskal(Self& minTree)
{
size_t n = _vertexs.size();
minTree._vertexs = _vertexs;
minTree._indexMap = _indexMap;
minTree._matrix.resize(n);
for (size_t i = 0; i < n; ++i)
{
minTree._matrix[i].resize(n, MAX_W);
}
priority_queue<Edge, vector<Edge>, greater<Edge>> minque;
for (size_t i = 0; i < n; ++i)
{
for (size_t j = 0; j < n; ++j)
{
if (i < j && _matrix[i][j] != MAX_W)
{
minque.push(Edge(i, j, _matrix[i][j]));
}
}
}
// 选出n-1条边
int size = 0;
W totalW = W();
UnionFindSet ufs(n);
while (!minque.empty())
{
Edge min = minque.top();
minque.pop();
if (!ufs.InSet(min._srci, min._dsti))
{
//cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] <<":"<<min._w << endl;
minTree._AddEdge(min._srci, min._dsti, min._w);
ufs.Union(min._srci, min._dsti);
++size;
totalW += min._w;
}
else
{
//cout << "构成环:";
//cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << endl;
}
}
if (size == n - 1)
{
return totalW;
}
else
{
return W();
}
}
4.1Prim(普里姆算法)
来自算法导论:
W Prim(Self& minTree, const W& src)
{
size_t srci = GetVertexIndex(src);
size_t n = _vertexs.size();
minTree._vertexs = _vertexs;
minTree._indexMap = _indexMap;
minTree._matrix.resize(n);
for (size_t i = 0; i < n; ++i)
{
minTree._matrix[i].resize(n, MAX_W);
}
vector<bool> X(n, false);
vector<bool> Y(n, true);
X[srci] = true;
Y[srci] = false;
// 从X->Y集合中连接的边里面选出最小的边
priority_queue<Edge, vector<Edge>, greater<Edge>> minq;
// 先把srci连接的边添加到队列中
for (size_t i = 0; i < n; ++i)
{
if (_matrix[srci][i] != MAX_W)
{
minq.push(Edge(srci, i, _matrix[srci][i]));
}
}
cout << "Prim开始选边" << endl;
size_t size = 0;
W totalW = W();
while (!minq.empty())
{
Edge min = minq.top();
minq.pop();
// 最小边的目标点也在X集合,则构成环
if (X[min._dsti])
{
//cout << "构成环:";
//cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << endl;
}
else
{
minTree._AddEdge(min._srci, min._dsti, min._w);
//cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << endl;
X[min._dsti] = true;
Y[min._dsti] = false;
++size;
totalW += min._w;
if (size == n - 1)
break;
for (size_t i = 0; i < n; ++i)
{
if (_matrix[min._dsti][i] != MAX_W && Y[i])
{
minq.push(Edge(min._dsti, i, _matrix[min._dsti][i]));
}
}
}
}
if (size == n - 1)
{
return totalW;
}
else
{
return W();
}
}
五、最短路径
最短路径问题:从在带权有向图
G
中的某一顶点出发,找出一条通往另一顶点的最短路径,最短也就是沿路径各边的权值总和达到最小。
5.1Dijkstra(迪杰斯特拉算法)
单源最短路径问题:给定一个图G = ( V , E ) G=(V,E)G=(V,E),求源结点s ∈ V s∈Vs∈V到图
中每个结点v ∈ V v∈Vv∈V的最短路径。Dijkstra算法就适用于解决带权重的有向图上的单源最短
路径问题,同时算法要求图中所有边的权重非负。一般在求解最短路径的时候都是已知一个起点
和一个终点,所以使用Dijkstra算法求解过后也就得到了所需起点到终点的最短路径。针对一个带权有向图G,将所有结点分为两组S和Q,S是已经确定最短路径的结点集合,在初始时
为空(初始时就可以将源节点s放入,毕竟源节点到自己的代价是0),Q 为其余未确定最短路径
的结点集合,每次从Q 中找出一个起点到该结点代价最小的结点u ,将u 从Q 中移出,并放入S 中,对u 的每一个相邻结点v 进行松弛操作。松弛即对每一个相邻结点v ,判断源节点s到结点u
的代价与u 到v 的代价之和是否比原来s 到v 的代价更小,若代价比原来小则要将s 到v 的代价更新
为s 到u 与u 到v 的代价之和,否则维持原样。如此一直循环直至集合Q 为空,即所有节点都已经
查找过一遍并确定了最短路径,至于一些起点到达不了的结点在算法循环后其代价仍为初始设定
的值,不发生变化。Dijkstra算法每次都是选择V-S中最小的路径节点来进行更新,并加入S中,所
以该算法使用的是贪心策略。
Dijkstra算法存在的问题是不支持图中带负权路径,如果带有负权路径,则可能会找不到一些路
径的最短路径。
// 顶点个数是N -> 时间复杂度:O(N^2)空间复杂度:O(N)
void Dijkstra(const V& src, vector<W>& dist, vector<int>& pPath)
{
size_t srci = GetVertexIndex(src);
size_t n = _vertexs.size();
dist.resize(n, MAX_W);
pPath.resize(n, -1);
dist[srci] = 0;
pPath[srci] = srci;
// 已经确定最短路径的顶点集合
vector<bool> S(n, false);
for (size_t j = 0; j < n; ++j)
{
// 选最短路径顶点且不在S更新其他路径
int u = 0;
W min = MAX_W;
for (size_t i = 0; i < n; ++i)
{
if (S[i] == false && dist[i] < min)
{
u = i;
min = dist[i];
}
}
S[u] = true;
// 松弛更新u连接顶点v srci->u + u->v < srci->v 更新
for (size_t v = 0; v < n; ++v)
{
if (S[v] == false && _matrix[u][v] != MAX_W
&& dist[u] + _matrix[u][v] < dist[v])
{
dist[v] = dist[u] + _matrix[u][v];
pPath[v] = u;
}
}
}
}
5.2Bellman-Ford(贝尔曼-福特算法)
Dijkstra算法只能用来解决正权图的单源最短路径问题,但有些题目会出现负权图。这时这个算法
就不能帮助我们解决问题了,而bellman—ford
算法可以解决负权图的单源最短路径问题。它的
优点是可以解决有负权边的单源最短路径问题,而且可以用来判断是否有负权回路。它也有明显
的缺点,它的时间复杂度 O(N*E) (N
是点数,
E
是边数
)
普遍是要高于
Dijkstra
算法
O(N²)的。像这里
如果我们使用邻接矩阵实现,那么遍历所有边的数量的时间复杂度就是O(N^3),这里也可以看出
来Bellman-Ford就是一种暴力求解更新。
// 时间复杂度:O(N^3) 空间复杂度:O(N)
bool BellmanFord(const V& src, vector<W>& dist, vector<int>& pPath)
{
size_t n = _vertexs.size();
size_t srci = GetVertexIndex(src);
// vector<W> dist,记录srci-其他顶点最短路径权值数组
dist.resize(n, MAX_W);
// vector<int> pPath 记录srci-其他顶点最短路径父顶点数组
pPath.resize(n, -1);
// 先更新srci->srci为缺省值
dist[srci] = W();
//cout << "更新边:i->j" << endl;
// 总体最多更新n轮
for (size_t k = 0; k < n; ++k)
{
// i->j 更新松弛
bool update = false;
cout << "更新第:" << k << "轮" << endl;
for (size_t i = 0; i < n; ++i)
{
for (size_t j = 0; j < n; ++j)
{
// srci -> i + i ->j
if (_matrix[i][j] != MAX_W && dist[i] + _matrix[i][j] < dist[j])
{
update = true;
cout << _vertexs[i] << "->" << _vertexs[j] << ":" << _matrix[i][j] << endl;
dist[j] = dist[i] + _matrix[i][j];
pPath[j] = i;
}
}
}
// 如果这个轮次中没有更新出更短路径,那么后续轮次就不需要再走了
if (update == false)
{
break;
}
}
// 还能更新就是带负权回路
for (size_t i = 0; i < n; ++i)
{
for (size_t j = 0; j < n; ++j)
{
// srci -> i + i ->j
if (_matrix[i][j] != MAX_W && dist[i] + _matrix[i][j] < dist[j])
{
return false;
}
}
}
return true;
}
5.3 多源最短路径--Floyd-Warshall(弗洛伊德算法)
Floyd-Warshall
算法是解决任意两点间的最短路径的一种算法。
Floyd
算法考虑的是一条最短路径的中间节点,即简单路径
p={v1,v2,…,vn}
上除
v1
和
vn
的任意节
点。
设
k
是
p
的一个中间节点,那么从
i
到
j
的最短路径
p
就被分成
i
到
k
和
k
到
j
的两段最短路径
p1
,
p2
。
p1
是从
i
到
k
且中间节点属于
{1
,
2
,
…
,
k-1}
取得的一条最短路径。
p2
是从
k
到
j
且中间节点属于
{1
,
2
,
…
,
k-1}
取得的一条最短路径。
void FloydWarshall(vector<vector<W>>& vvDist, vector<vector<int>>& vvpPath)
{
size_t n = _vertexs.size();
vvDist.resize(n);
vvpPath.resize(n);
// 初始化权值和路径矩阵
for (size_t i = 0; i < n; ++i)
{
vvDist[i].resize(n, MAX_W);
vvpPath[i].resize(n, -1);
}
// 直接相连的边更新一下
for (size_t i = 0; i < n; ++i)
{
for (size_t j = 0; j < n; ++j)
{
if (_matrix[i][j] != MAX_W)
{
vvDist[i][j] = _matrix[i][j];
vvpPath[i][j] = i;
}
if (i == j)
{
vvDist[i][j] = W();
}
}
}
// abcdef a {} f || b {} c
// 最短路径的更新i-> {其他顶点} ->j
for (size_t k = 0; k < n; ++k)
{
for (size_t i = 0; i < n; ++i)
{
for (size_t j = 0; j < n; ++j)
{
// k 作为的中间点尝试去更新i->j的路径
if (vvDist[i][k] != MAX_W && vvDist[k][j] != MAX_W
&& vvDist[i][k] + vvDist[k][j] < vvDist[i][j])
{
vvDist[i][j] = vvDist[i][k] + vvDist[k][j];
// 找跟j相连的上一个邻接顶点
// 如果k->j 直接相连,上一个点就k,vvpPath[k][j]存就是k
// 如果k->j 没有直接相连,k->...->x->j,vvpPath[k][j]存就是x
vvpPath[i][j] = vvpPath[k][j];
}
}
}
// 打印权值和路径矩阵观察数据
for (size_t i = 0; i < n; ++i)
{
for (size_t j = 0; j < n; ++j)
{
if (vvDist[i][j] == MAX_W)
{
//cout << "*" << " ";
printf("%3c", '*');
}
else
{
//cout << vvDist[i][j] << " ";
printf("%3d", vvDist[i][j]);
}
}
cout << endl;
}
cout << endl;
for (size_t i = 0; i < n; ++i)
{
for (size_t j = 0; j < n; ++j)
{
//cout << vvParentPath[i][j] << " ";
printf("%3d", vvpPath[i][j]);
}
cout << endl;
}
cout << "=================================" << endl;
}
}
补充:关于打印最短路径的代码:
void PrintShortPath(const V& src, const vector<W>& dist, const vector<int>& pPath)
{
size_t srci = GetVertexIndex(src);
size_t n = _vertexs.size();
for (size_t i = 0; i < n; ++i)
{
if (i != srci)
{
// 找出i顶点的路径
vector<int> path;
size_t parenti = i;
while (parenti != srci)
{
path.push_back(parenti);
parenti = pPath[parenti];
}
path.push_back(srci);
reverse(path.begin(), path.end());
for (auto index : path)
{
cout << _vertexs[index] << "->";
}
cout << "权值和:" << dist[i] << endl;
}
}
}