(一)探索随机变量及其分布:概率世界的魔法

news2024/11/24 2:45:26

文章目录

  • 🍋引言
  • 🍋什么是随机变量?
    • 🍋离散随机变量
    • 🍋连续随机变量
  • 🍋随机变量的概率分布
    • 🍋离散概率分布
      • 🍋0-1分布(Bernoulli分布)
      • 🍋二项分布(Binomial分布)
      • 🍋泊松分布(Poisson分布)
      • 🍋几何分布(Geometric分布)
    • 🍋连续概率分布
      • 🍋均匀分布(Uniform Distribution)
      • 🍋指数分布(Exponential Distribution)
      • 🍋正态分布(Normal Distribution)

🍋引言

随机变量(Random Variables)是概率论和统计学中的一个重要概念,它们允许我们描述不确定性,并用数学方法来分析各种随机现象。本文将深入探讨随机变量及其分布,以揭开概率世界的神秘面纱。

🍋什么是随机变量?

随机变量是一个数学对象,它代表一个随机实验的结果,这个结果可以是一个数值。随机变量通常用大写字母(如X或Y)表示,而小写字母(如x或y)表示具体的数值。随机变量可以是离散的或连续的。

🍋离散随机变量

当随机变量只能取有限个或可数个数值时,我们称其为离散随机变量。例如,抛硬币的结果(正面或反面)就是一个离散随机变量。

🍋连续随机变量

当随机变量可以取无限个数值,并且通常与实数轴上的某个区间相关时,我们称其为连续随机变量。例如,温度、身高等连续性测量都可以用连续随机变量来描述。

🍋随机变量的概率分布

每个随机变量都有一个与之相关的概率分布,这个分布描述了随机变量可能取到每个数值的概率。以下是两种常见的概率分布类型

🍋离散概率分布

🍋0-1分布(Bernoulli分布)

0-1分布是最简单的离散分布之一,用于描述只有两种可能结果的随机试验,比如抛硬币(正面或反面)、点击广告(点击或不点击)等。其概率质量函数(PMF)如下:
P ( X = x ) = { p 如果  x = 1 q = 1 − p 如果  x = 0 P(X = x) = \begin{cases} p & \text{如果 } x = 1 \\ q=1-p & \text{如果 } x = 0 \end{cases} P(X=x)={pq=1p如果 x=1如果 x=0

其中,p 是事件成功的概率,q 是事件失败的概率。

案例:抛硬币游戏

考虑一个抛硬币的游戏,其中硬币是公平的,成功定义为正面朝上。每次抛硬币,我们用随机变量 X 来表示结果,其中 X=1 表示成功(正面朝上),X=0 表示失败(反面朝上)。成功的概率为 p=0.5,失败的概率为 q=0.5。这就是一个0-1分布的例子。

🍋二项分布(Binomial分布)

二项分布用于描述一系列独立重复的二元试验中成功次数的概率分布。它的概率质量函数如下:
P ( X = k ) = ( n k ) p k ( 1 − p ) n − k P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} P(X=k)=(kn)pk(1p)nk

其中,n 是试验的总次数,k 是成功的次数,p 是每次试验成功的概率,(nk) 表示二项系数,计算方式为
C ( n , k ) = n ! k ! ( n − k ) ! C(n, k) = \frac{n!}{k!(n-k)!} C(n,k)=k!(nk)!n!

案例:硬币投掷次数

假设你要投掷一枚硬币10次,每次试验成功的概率是 p=0.3,即硬币正面朝上的概率为0.3。我们想知道正面朝上的次数 X。这个问题可以用二项分布来建模,其中 n=10(试验次数),p=0.3(每次试验成功的概率)。我们可以使用二项分布的公式来计算不同正面朝上次数的概率。

🍋泊松分布(Poisson分布)

泊松分布用于描述在一段时间或空间内随机事件发生的次数,通常用于描述低概率但高频率的事件,比如电话呼叫、事故发生等。其概率质量函数如下:
P ( X = k ) = e − λ λ k k ! P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!} P(X=k)=k!eλλk
其中,λ 是事件发生的平均次数,k 是我们想要了解的特定次数。

案例:某网站的访问次数

假设某个网站平均每小时收到 5 次访问请求。我们想知道在某一小时内,该网站接收到 7 次访问请求的概率。这个问题可以用泊松分布来建模,其中 λ=5(平均每小时的访问次数),k=7(我们想要的特定次数)。我们可以使用泊松分布的公式来计算这一概率。

🍋几何分布(Geometric分布)

几何分布用于描述在一系列独立重复的二元试验中首次成功所需的试验次数。其概率质量函数如下:
P ( X = k ) = ( 1 − p ) k − 1 p P(X = k) = (1-p)^{k-1}p P(X=k)=(1p)k1p
其中,k 是首次成功的试验次数,p 是每次试验成功的概率。

案例:射击命中率

假设一名射手连续射击目标,每次射击成功的概率为 p=0.2,直到首次命中目标为止。我们想知道首次命中目标需要多少次射击。这个问题可以用几何分布来建模,其中 p=0.2(每次射击成功的概率)。我们可以使用几何分布的公式来计算首次命中所需的射击次数。

这些案例演示了如何应用0-1分布、二项分布、泊松分布和几何分布来描述不同类型的离散随机事件,并使用相应的概率质量函数来计算概率或期望值。这些分布在实际问题中具有广泛的应用,帮助我们理解和分析随机事件的概率性质。

🍋连续概率分布

🍋均匀分布(Uniform Distribution)

均匀分布表示在一个区间内的所有数值具有相等的概率密度。对于一个区间 [a,b],均匀分布的概率密度函数(PDF)如下: f ( x ) = { 1 b − a 如果  a ≤ x ≤ b 0 其他情况 f(x) = \begin{cases} \frac{1}{b-a} & \text{如果 } a \leq x \leq b \\ 0 & \text{其他情况} \end{cases} f(x)={ba10如果 axb其他情况
其中,a 和 b 是区间的上下界,f(x) 表示在区间内的概率密度。

案例:抽奖游戏

考虑一个抽奖游戏,参与者从一个数字范围 [a,b] 中随机抽取一个数字,其中 a=1,b=10。假设每个数字在范围内是等可能的,那么我们可以使用均匀分布来描述这个情景。在这种情况下,概率密度函数 f(x) 在区间 [1,10] 内的值都相等,为 1 10 \frac{1}{10} 101

🍋指数分布(Exponential Distribution)

指数分布通常用于描述等待时间或事件之间的时间间隔。其概率密度函数如下: f ( x ) = { λ e − λ x 如果  x ≥ 0 0 如果  x < 0 f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{如果 } x \geq 0 \\ 0 & \text{如果 } x < 0 \end{cases} f(x)={λeλx0如果 x0如果 x<0
其中,λ 是事件发生率的倒数,x 是等待时间或时间间隔。

案例:设备故障时间

假设某台机器的故障时间服从指数分布,平均每小时发生一次故障,即 λ=1。我们想知道机器在两小时内不发生故障的概率。我们可以使用指数分布的概率密度函数来计算:

ruby

P ( X > 2 ) = ∫ 2 ∞ λ e − λ x d x P(X > 2) = \int_{2}^{\infty} \lambda e^{-\lambda x} dx P(X>2)=2λeλxdx

这个积分将告诉我们在两小时内不发生故障的概率。

🍋正态分布(Normal Distribution)

正态分布是自然界中许多现象的常见分布,具有钟形曲线形状。其概率密度函数如下: f ( x ) = 1 σ 2 π e − ( x − μ ) 2 2 σ 2 f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} f(x)=σ2π 1e2σ2(xμ)2
其中,μ 是均值(分布的中心点),σ是标准差(分布的扩散程度)

案例:身高分布

假设我们研究一群成年男性的身高,该群体的平均身高为 μ=175 厘米,标准差为 σ=10 厘米。我们想知道身高在 [160,190] 厘米范围内的人口比例。我们可以使用正态分布的概率密度函数来计算:

P ( 160 ≤ X ≤ 190 ) = ∫ 160 190 1 10 2 π e − ( x − 175 ) 2 2 × 1 0 2 d x P(160 \leq X \leq 190) = \int_{160}^{190} \frac{1}{10\sqrt{2\pi}} e^{-\frac{(x-175)^2}{2\times10^2}} dx P(160X190)=160190102π 1e2×102(x175)2dx

这个积分将告诉我们在指定范围内的人口比例。
请添加图片描述

挑战与创造都是很痛苦的,但是很充实。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1005910.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

react频繁使用的js(input防抖请求、节流)

目录 react频繁使用的js(input防抖请求)input的防抖请求节流 提交的节流或者点击按钮等节流节流 code节流 效果 react频繁使用的js(input防抖请求) input的防抖请求 import React, { useState, useEffect, useCallback } from "react"; import { Input } from &quo…

【数据结构】【项目】BitMap?40亿电话号码如何快速去重?

目录 前言实现完整代码 参考资料 前言 40亿电话号码如何快速去重&#xff1f;我们往往会想到bitmap 数据结构中的 Bitmap 是一种位图索引非常高效的数据结构&#xff0c;用于存储处理大规模数据的位信息&#xff0c;其中每个位对应于一个元素&#xff0c;如果位为1&#xff0…

如何实现不同MongoDB实例间的数据复制?

作为一种Schema Free文档数据库&#xff0c;MongoDB因其灵活的数据模型&#xff0c;支撑业务快速迭代研发&#xff0c;广受开发者欢迎并被广泛使用。在企业使用MongoDB承载应用的过程中&#xff0c;会因为业务上云/跨云/下云/跨机房迁移/跨地域迁移、或数据库版本升级、数据库整…

相机HAL

相机HAL 1、概览实现 HAL2、相机 HAL2.1 AIDL 相机 HAL2.2 相机 HAL3 功能2.3 Camera HAL1 概览 相机 HAL 相机 实现 HAL android12-release 1、概览实现 HAL HAL 位于 相机驱动程序 和 更高级别的 Android 框架 之间&#xff0c;它定义您必须实现的接口&#xff0c;以便应用…

Python解析MDX词典数据并保存到Excel

原始数据和处理结果&#xff1a; https://gitcode.net/as604049322/blog_data/-/tree/master/mdx 下载help.mdx词典后&#xff0c;我们无法直接查看&#xff0c;我们可以使用readmdict库来完成对mdx文件的读取。 安装库&#xff1a; pip install readmdict对于Windows平台还…

Vue3路由

文章目录 Vue3路由1. 载入vue-router 库2. 实例2.1 Vue.js vue-router 实现单页应用2.2 router-link创建链接2.3 router-view显示与url对应组件2.4 <router-link> 相关属性 Vue3路由 1. 载入vue-router 库 Vue.js 路由需要载入vue-router 库 安装直接下载地址&#xf…

Android Aidl跨进程通讯(四)--接口回调,服务端向客户端发送数据

学更好的别人&#xff0c; 做更好的自己。 ——《微卡智享》 本文长度为3325字&#xff0c;预计阅读9分钟 前言 前几篇介绍了AIDL通讯的基础&#xff0c;进阶和异常捕获&#xff0c;本篇就来看看服务端怎么向客户端来实现发送消息。 实现服务端往客户端发送消息&#xff0c;主要…

6.2.3 【MySQL】InnoDB的B+树索引的注意事项

6.2.3.1 根页面万年不动窝 B 树的形成过程是这样的&#xff1a; 每当为某个表创建一个 B 树索引&#xff08;聚簇索引不是人为创建的&#xff0c;默认就有&#xff09;的时候&#xff0c;都会为这个索引创建一个 根节点 页面。最开始表中没有数据的时候&#xff0c;每个 B 树…

S/4 FI之FBL3N/FBL3H/FAGLL03/FAGLL03H的区别

SAP 系统中&#xff0c;为了显示财务凭证行项目&#xff0c;由于不同的时间开发的功能&#xff0c;但实际在使用的过程&#xff0c;到底有些什么样区别&#xff1f; 本文档就是想对这一个问题做一个整体上的说明。 FBL3N&#xff0c;就是传统的行项目报表&#xff0c;在最早的…

刷刷刷——双指针算法

双指针算法 这里的双指针&#xff0c;可能并不是真正意义上的指针&#xff0c;而是模拟指针移动的过程。 常见的有两种&#xff1a; 双指针对撞&#xff1a; 即在顺序结构中&#xff0c;指针从两端向中间移动&#xff0c;然后逐渐逼近 终止条件一般是&#xff1a; left ri…

MATLAB中ischange函数用法

目录 语法 说明 示例 均值的变化 线性区的变化 矩阵数据 ischange函数的功能是查找数据中的突然变化。 语法 TF ischange(A) TF ischange(A,method) TF ischange(___,dim) TF ischange(___,Name,Value) [TF,S1] ischange(___) [TF,S1,S2] ischange(___) 说明 ​…

Python实现机器学习(下)— 数据预处理、模型训练和模型评估

前言&#xff1a;Hello大家好&#xff0c;我是小哥谈。本门课程将介绍人工智能相关概念&#xff0c;重点讲解机器学习原理机器基本算法&#xff08;监督学习及非监督学习&#xff09;。使用python&#xff0c;结合sklearn、Pycharm进行编程&#xff0c;介绍iris&#xff08;鸢尾…

windows10搭建RocketMq

windows10搭建RocketMq 文章目录 windows10搭建RocketMq1.下载二进制RocketMq2.配置环境变量3.启动4.RocketMq控制台安装 1.下载二进制RocketMq 下载链接 2.配置环境变量 变量名:ROCKETMQ_HOME变量值:MQ解压路径 修改runbroker.cmd和runserver.cmd文件 把%CLASSPATH%用引…

SpringBoot + Prometheus + Grafana 打造可视化监控

SpringBoot Prometheus Grafana 打造可视化监控 文章目录 SpringBoot Prometheus Grafana 打造可视化监控常见的监控组件搭配安装Prometheus安装Grafana搭建SpringBoot项目引入依赖示例:监控SpringBoot内置Tomcat线程池的情况grafana创建监控看板 后台SpringBoot服务添加自…

【深度学习】 Python 和 NumPy 系列教程(十):NumPy详解:2、数组操作(索引和切片、形状操作、转置操作、拼接操作)

目录 一、前言 二、实验环境 三、NumPy 0、多维数组对象&#xff08;ndarray&#xff09; 1. 多维数组的属性 1、创建数组 2、数组操作 1. 索引和切片 a. 索引 b. 切片 2. 形状操作 a. 获取数组形状 b. 改变数组形状 c. 展平数组 3. 转置操作 a. 使用.T属性 b…

Redis模块四:常见的数据类型和使用

目录 Redis 的 5 大基础数据类型 ①字符串类型(String) ②字典类型(Hash) ③列表类型(List) ④集合类型(Set) ⑤有序集合类型(ZSet) Redis 的 5 大基础数据类型 String——字符串类型 Hash——字典类型 List——列表类型 Set——集合类型 ZSet——有序集合类型 …

后发而先至的腾讯混元大模型,到底有哪些技术亮点?

2023年的夏天已经结束了&#xff0c;但是&#xff0c;围绕AIGC大模型的关注热度&#xff0c;却丝毫没有衰退的意思。 在过去的大半年里&#xff0c;我们亲眼见证了大模型浪潮的崛起&#xff0c;甚至可以说是疯狂。截止7月&#xff0c;国内的大模型数量&#xff0c;已经超过130个…

MySQL与ES数据同步之异步调用

文章目录 简述SpringBoot项目引入依赖配置文件项目结构实体类配置类RabbitMQ交换机队列声明&#xff0c;绑定配置类回调接口配置类 Mapper接口UserMapper接口UserEsMapper Controller类Service接口Service实现类监听类/消费者 简述 上一篇是同步调用&#xff0c;我们在中间加上…

【海思SS626 | 开发环境】VMware17安装Ubuntu 18.04.6

目录 一、下载 Ubuntu 18.04.6 LTS二、VMware17创建虚拟机三、安装Ubuntu18.04LTS四、安装其他软件五、总结 一、下载 Ubuntu 18.04.6 LTS 问题&#xff1a;为什么要下载 Ubuntu18.04.6 LTS 而不是使用最新的&#xff0c;或者其他Linux发行版&#xff1f; 答&#xff1a;在ss6…

Python 图形化界面基础篇:使用框架( Frame )组织界面

Python 图形化界面基础篇&#xff1a;使用框架&#xff08; Frame &#xff09;组织界面 引言什么是 Tkinter 框架&#xff08; Frame &#xff09;&#xff1f;步骤1&#xff1a;导入 Tkinter 模块步骤2&#xff1a;创建 Tkinter 窗口步骤3&#xff1a;创建框架&#xff08; F…