【LeetCode题目详解】第九章 动态规划part16 583. 两个字符串的删除操作 ● 72. 编辑距离 ● 编辑距离总结篇 (day56补)

news2024/12/30 2:36:42

本文章代码以c++为例!

本文章转自代码随想录

一、力扣第583题:两个字符串的删除操作

题目:

给定两个单词 word1 和 word2 ,返回使得 word1 和  word2 相同所需的最小步数

每步 可以删除任意一个字符串中的一个字符。

示例 1:

输入: word1 = "sea", word2 = "eat"
输出: 2
解释: 第一步将 "sea" 变为 "ea" ,第二步将 "eat "变为 "ea"

示例  2:

输入:word1 = "leetcode", word2 = "etco"
输出:4

提示:

  • 1 <= word1.length, word2.length <= 500
  • word1 和 word2 只包含小写英文字母

思路

# 动态规划一

本题和动态规划:115.不同的子序列

(opens new window)相比,其实就是两个字符串都可以删除了,情况虽说复杂一些,但整体思路是不变的。

这次是两个字符串可以相互删了,这种题目也知道用动态规划的思路来解,动规五部曲,分析如下:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数。

这里dp数组的定义有点点绕,大家要撸清思路。

  1. 确定递推公式
  • 当word1[i - 1] 与 word2[j - 1]相同的时候
  • 当word1[i - 1] 与 word2[j - 1]不相同的时候

当word1[i - 1] 与 word2[j - 1]相同的时候,dp[i][j] = dp[i - 1][j - 1];

当word1[i - 1] 与 word2[j - 1]不相同的时候,有三种情况:

情况一:删word1[i - 1],最少操作次数为dp[i - 1][j] + 1

情况二:删word2[j - 1],最少操作次数为dp[i][j - 1] + 1

情况三:同时删word1[i - 1]和word2[j - 1],操作的最少次数为dp[i - 1][j - 1] + 2

那最后当然是取最小值,所以当word1[i - 1] 与 word2[j - 1]不相同的时候,递推公式:dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});

因为 dp[i][j - 1] + 1 = dp[i - 1][j - 1] + 2,所以递推公式可简化为:dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);

这里可能不少录友有点迷糊,从字面上理解 就是 当 同时删word1[i - 1]和word2[j - 1],dp[i][j-1] 本来就不考虑 word2[j - 1]了,那么我在删 word1[i - 1],是不是就达到两个元素都删除的效果,即 dp[i][j-1] + 1。

  1. dp数组如何初始化

从递推公式中,可以看出来,dp[i][0] 和 dp[0][j]是一定要初始化的。

dp[i][0]:word2为空字符串,以i-1为结尾的字符串word1要删除多少个元素,才能和word2相同呢,很明显dp[i][0] = i。

dp[0][j]的话同理,所以代码如下:

vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1));
for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;
for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;
  1. 确定遍历顺序

从递推公式 dp[i][j] = min(dp[i - 1][j - 1] + 2, min(dp[i - 1][j], dp[i][j - 1]) + 1); 和dp[i][j] = dp[i - 1][j - 1]可以看出dp[i][j]都是根据左上方、正上方、正左方推出来的。

所以遍历的时候一定是从上到下,从左到右,这样保证dp[i][j]可以根据之前计算出来的数值进行计算。

  1. 举例推导dp数组

以word1:"sea",word2:"eat"为例,推导dp数组状态图如下:

583.两个字符串的删除操作1

以上分析完毕,代码如下:

class Solution {
public:
    int minDistance(string word1, string word2) {
        vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1));
        for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;
        for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;
        for (int i = 1; i <= word1.size(); i++) {
            for (int j = 1; j <= word2.size(); j++) {
                if (word1[i - 1] == word2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1];
                } else {
                    dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);
                }
            }
        }
        return dp[word1.size()][word2.size()];
    }
};

  • 时间复杂度: O(n * m)
  • 空间复杂度: O(n * m)

# 动态规划二

本题和动态规划:1143.最长公共子序列

(opens new window)基本相同,只要求出两个字符串的最长公共子序列长度即可,那么除了最长公共子序列之外的字符都是必须删除的,最后用两个字符串的总长度减去两个最长公共子序列的长度就是删除的最少步数。

代码如下:

class Solution {
public:
    int minDistance(string word1, string word2) {
        vector<vector<int>> dp(word1.size()+1, vector<int>(word2.size()+1, 0));
        for (int i=1; i<=word1.size(); i++){
            for (int j=1; j<=word2.size(); j++){
                if (word1[i-1] == word2[j-1]) dp[i][j] = dp[i-1][j-1] + 1;
                else dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
            }
        }
        return word1.size()+word2.size()-dp[word1.size()][word2.size()]*2;
    }
};

  • 时间复杂度: O(n * m)
  • 空间复杂度: O(n * m)

二、力扣第72题:编辑距离

题目:

给你两个单词 word1 和 word2请返回将 word1 转换成 word2 所使用的最少操作数  。

你可以对一个单词进行如下三种操作:

  • 插入一个字符
  • 删除一个字符
  • 替换一个字符

示例 1:

输入:word1 = "horse", word2 = "ros"
输出:3
解释:
horse -> rorse (将 'h' 替换为 'r')
rorse -> rose (删除 'r')
rose -> ros (删除 'e')

示例 2:

输入:word1 = "intention", word2 = "execution"
输出:5
解释:
intention -> inention (删除 't')
inention -> enention (将 'i' 替换为 'e')
enention -> exention (将 'n' 替换为 'x')
exention -> exection (将 'n' 替换为 'c')
exection -> execution (插入 'u')

提示:

  • 0 <= word1.length, word2.length <= 500
  • word1word2 由小写英文字母组成

思路

编辑距离终于来了,这道题目如果大家没有了解动态规划的话,会感觉超级复杂。

编辑距离是用动规来解决的经典题目,这道题目看上去好像很复杂,但用动规可以很巧妙的算出最少编辑距离。

接下来我依然使用动规五部曲,对本题做一个详细的分析:

# 1. 确定dp数组(dp table)以及下标的含义

dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]

有同学问了,为啥要表示下标i-1为结尾的字符串呢,为啥不表示下标i为结尾的字符串呢?

为什么这么定义我在 718. 最长重复子数组

(opens new window) 中做了详细的讲解。

其实用i来表示也可以! 用i-1就是为了方便后面dp数组初始化的。

# 2. 确定递推公式

在确定递推公式的时候,首先要考虑清楚编辑的几种操作,整理如下:

if (word1[i - 1] == word2[j - 1])
    不操作
if (word1[i - 1] != word2[j - 1])
    增
    删
    换

也就是如上4种情况。

if (word1[i - 1] == word2[j - 1]) 那么说明不用任何编辑,dp[i][j] 就应该是 dp[i - 1][j - 1],即dp[i][j] = dp[i - 1][j - 1];

此时可能有同学有点不明白,为啥要即dp[i][j] = dp[i - 1][j - 1]呢?

那么就在回顾上面讲过的dp[i][j]的定义,word1[i - 1]word2[j - 1]相等了,那么就不用编辑了,以下标i-2为结尾的字符串word1和以下标j-2为结尾的字符串word2的最近编辑距离dp[i - 1][j - 1]就是 dp[i][j]了。

在下面的讲解中,如果哪里看不懂,就回想一下dp[i][j]的定义,就明白了。

在整个动规的过程中,最为关键就是正确理解dp[i][j]的定义!

if (word1[i - 1] != word2[j - 1]),此时就需要编辑了,如何编辑呢?

  • 操作一:word1删除一个元素,那么就是以下标i - 2为结尾的word1 与 j-1为结尾的word2的最近编辑距离 再加上一个操作。

dp[i][j] = dp[i - 1][j] + 1;

  • 操作二:word2删除一个元素,那么就是以下标i - 1为结尾的word1 与 j-2为结尾的word2的最近编辑距离 再加上一个操作。

dp[i][j] = dp[i][j - 1] + 1;

这里有同学发现了,怎么都是删除元素,添加元素去哪了。

word2添加一个元素,相当于word1删除一个元素,例如 word1 = "ad" ,word2 = "a"word1删除元素'd'word2添加一个元素'd',变成word1="a", word2="ad", 最终的操作数是一样! dp数组如下图所示意的:

            a                         a     d
   +-----+-----+             +-----+-----+-----+
   |  0  |  1  |             |  0  |  1  |  2  |
   +-----+-----+   ===>      +-----+-----+-----+
 a |  1  |  0  |           a |  1  |  0  |  1  |
   +-----+-----+             +-----+-----+-----+
 d |  2  |  1  |
   +-----+-----+

操作三:替换元素,word1替换word1[i - 1],使其与word2[j - 1]相同,此时不用增删加元素。

可以回顾一下,if (word1[i - 1] == word2[j - 1])的时候我们的操作 是 dp[i][j] = dp[i - 1][j - 1] 对吧。

那么只需要一次替换的操作,就可以让 word1[i - 1] 和 word2[j - 1] 相同。

所以 dp[i][j] = dp[i - 1][j - 1] + 1;

综上,当 if (word1[i - 1] != word2[j - 1]) 时取最小的,即:dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;

递归公式代码如下:

if (word1[i - 1] == word2[j - 1]) {
    dp[i][j] = dp[i - 1][j - 1];
}
else {
    dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
}

# 3. dp数组如何初始化

再回顾一下dp[i][j]的定义:

dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]

那么dp[i][0] 和 dp[0][j] 表示什么呢?

dp[i][0] :以下标i-1为结尾的字符串word1,和空字符串word2,最近编辑距离为dp[i][0]。

那么dp[i][0]就应该是i,对word1里的元素全部做删除操作,即:dp[i][0] = i;

同理dp[0][j] = j;

所以C++代码如下:

for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;
for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;

# 4. 确定遍历顺序

从如下四个递推公式:

  • dp[i][j] = dp[i - 1][j - 1]
  • dp[i][j] = dp[i - 1][j - 1] + 1
  • dp[i][j] = dp[i][j - 1] + 1
  • dp[i][j] = dp[i - 1][j] + 1

可以看出dp[i][j]是依赖左方,上方和左上方元素的,如图:

72.编辑距离

所以在dp矩阵中一定是从左到右从上到下去遍历。

代码如下:

for (int i = 1; i <= word1.size(); i++) {
    for (int j = 1; j <= word2.size(); j++) {
        if (word1[i - 1] == word2[j - 1]) {
            dp[i][j] = dp[i - 1][j - 1];
        }
        else {
            dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
        }
    }
}

# 5. 举例推导dp数组

以示例1为例,输入:word1 = "horse", word2 = "ros"为例,dp矩阵状态图如下:

72.编辑距离1

以上动规五部分析完毕,C++代码如下:

class Solution {
public:
    int minDistance(string word1, string word2) {
        vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1, 0));
        for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;
        for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;
        for (int i = 1; i <= word1.size(); i++) {
            for (int j = 1; j <= word2.size(); j++) {
                if (word1[i - 1] == word2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1];
                }
                else {
                    dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
                }
            }
        }
        return dp[word1.size()][word2.size()];
    }
};
  • 时间复杂度: O(n * m)
  • 空间复杂度: O(n * m)

动态规划之编辑距离总结篇

本周我们讲了动态规划之终极绝杀:编辑距离,为什么叫做终极绝杀呢?

细心的录友应该知道,我们在前三篇动态规划的文章就一直为 编辑距离 这道题目做铺垫。

判断子序列

动态规划:392.判断子序列

(opens new window) 给定字符串 s 和 t ,判断 s 是否为 t 的子序列。

这道题目 其实是可以用双指针或者贪心的的,但是我在开篇的时候就说了这是编辑距离的入门题目,因为从题意中我们也可以发现,只需要计算删除的情况,不用考虑增加和替换的情况。

  • if (s[i - 1] == t[j - 1])
    • t中找到了一个字符在s中也出现了
  • if (s[i - 1] != t[j - 1])
    • 相当于t要删除元素,继续匹配

状态转移方程:

if (s[i - 1] == t[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;
else dp[i][j] = dp[i][j - 1];

# 不同的子序列

动态规划:115.不同的子序列

(opens new window) 给定一个字符串 s 和一个字符串 t ,计算在 s 的子序列中 t 出现的个数。

本题虽然也只有删除操作,不用考虑替换增加之类的,但相对于动态规划:392.判断子序列

(opens new window)就有难度了,这道题目双指针法可就做不了。

当s[i - 1] 与 t[j - 1]相等时,dp[i][j]可以有两部分组成。

一部分是用s[i - 1]来匹配,那么个数为dp[i - 1][j - 1]。

一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j]。

这里可能有同学不明白了,为什么还要考虑 不用s[i - 1]来匹配,都相同了指定要匹配啊。

例如: s:bagg 和 t:bag ,s[3] 和 t[2]是相同的,但是字符串s也可以不用s[3]来匹配,即用s[0]s[1]s[2]组成的bag。

当然也可以用s[3]来匹配,即:s[0]s[1]s[3]组成的bag。

所以当s[i - 1] 与 t[j - 1]相等时,dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];

当s[i - 1] 与 t[j - 1]不相等时,dp[i][j]只有一部分组成,不用s[i - 1]来匹配,即:dp[i - 1][j]

所以递推公式为:dp[i][j] = dp[i - 1][j];

状态转移方程:

if (s[i - 1] == t[j - 1]) {
    dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
} else {
    dp[i][j] = dp[i - 1][j];
}

# 两个字符串的删除操作

动态规划:583.两个字符串的删除操作

(opens new window)给定两个单词 word1 和 word2,找到使得 word1 和 word2 相同所需的最小步数,每步可以删除任意一个字符串中的一个字符。

本题和动态规划:115.不同的子序列

(opens new window)相比,其实就是两个字符串可以都可以删除了,情况虽说复杂一些,但整体思路是不变的。

  • 当word1[i - 1] 与 word2[j - 1]相同的时候
  • 当word1[i - 1] 与 word2[j - 1]不相同的时候

当word1[i - 1] 与 word2[j - 1]相同的时候,dp[i][j] = dp[i - 1][j - 1];

当word1[i - 1] 与 word2[j - 1]不相同的时候,有三种情况:

情况一:删word1[i - 1],最少操作次数为dp[i - 1][j] + 1

情况二:删word2[j - 1],最少操作次数为dp[i][j - 1] + 1

情况三:同时删word1[i - 1]和word2[j - 1],操作的最少次数为dp[i - 1][j - 1] + 2

那最后当然是取最小值,所以当word1[i - 1] 与 word2[j - 1]不相同的时候,递推公式:dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});

状态转移方程:

if (word1[i - 1] == word2[j - 1]) {
    dp[i][j] = dp[i - 1][j - 1];
} else {
    dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});
}

# 编辑距离

动态规划:72.编辑距离

(opens new window) 给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。

编辑距离终于来了,有了前面三道题目的铺垫,应该有思路了,本题是两个字符串可以增删改,比 动态规划:判断子序列

(opens new window),动态规划:不同的子序列 (opens new window),动态规划:两个字符串的删除操作

(opens new window)都要复杂的多。

在确定递推公式的时候,首先要考虑清楚编辑的几种操作,整理如下:

  • if (word1[i - 1] == word2[j - 1])
    • 不操作
  • if (word1[i - 1] != word2[j - 1])

也就是如上四种情况。

if (word1[i - 1] == word2[j - 1]) 那么说明不用任何编辑,dp[i][j] 就应该是 dp[i - 1][j - 1],即dp[i][j] = dp[i - 1][j - 1];

此时可能有同学有点不明白,为啥要即dp[i][j] = dp[i - 1][j - 1]呢?

那么就在回顾上面讲过的dp[i][j]的定义,word1[i - 1] 与 word2[j - 1]相等了,那么就不用编辑了,以下标i-2为结尾的字符串word1和以下标j-2为结尾的字符串word2的最近编辑距离dp[i - 1][j - 1] 就是 dp[i][j]了。

在下面的讲解中,如果哪里看不懂,就回想一下dp[i][j]的定义,就明白了。

在整个动规的过程中,最为关键就是正确理解dp[i][j]的定义!

if (word1[i - 1] != word2[j - 1]),此时就需要编辑了,如何编辑呢?

操作一:word1增加一个元素,使其word1[i - 1]与word2[j - 1]相同,那么就是以下标i-2为结尾的word1 与 i-1为结尾的word2的最近编辑距离 加上一个增加元素的操作。

即 dp[i][j] = dp[i - 1][j] + 1;

操作二:word2添加一个元素,使其word1[i - 1]与word2[j - 1]相同,那么就是以下标i-1为结尾的word1 与 j-2为结尾的word2的最近编辑距离 加上一个增加元素的操作。

即 dp[i][j] = dp[i][j - 1] + 1;

这里有同学发现了,怎么都是添加元素,删除元素去哪了。

word2添加一个元素,相当于word1删除一个元素,例如 word1 = "ad" ,word2 = "a",word2添加一个元素d,也就是相当于word1删除一个元素d,操作数是一样!

操作三:替换元素,word1替换word1[i - 1],使其与word2[j - 1]相同,此时不用增加元素,那么以下标i-2为结尾的word1 与 j-2为结尾的word2的最近编辑距离 加上一个替换元素的操作。

即 dp[i][j] = dp[i - 1][j - 1] + 1;

综上,当 if (word1[i - 1] != word2[j - 1]) 时取最小的,即:dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;

递归公式代码如下:

if (word1[i - 1] == word2[j - 1]) {
    dp[i][j] = dp[i - 1][j - 1];
}
else {
    dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
}

# 总结

心思的录友应该会发现我用了三道题做铺垫,才最后引出了动态规划:72.编辑距离

(opens new window) ,Carl的良苦用心呀,你们体会到了嘛!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1005704.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

[Qt]窗口

文章摘于 爱编程的大丙 文章目录 1. 基础窗口类1.1 QWidget1.1.1 设置父对象1.1.2 窗口位置1.1.3 窗口尺寸1.1.4 窗口标题和图标1.1.5 信号1.1.6 槽函数 1.2 QDialog1.2.1 常用API1.2.2 常用使用方法 1.3 QDialog的子类1.3.1 QMessageBox1.3.1.1 API - 静态函数1.3.1.2 测试代码…

第10章_freeRTOS入门与工程实践之同步互斥与通信

本教程基于韦东山百问网出的 DShanMCU-F103开发板 进行编写&#xff0c;需要的同学可以在这里获取&#xff1a; https://item.taobao.com/item.htm?id724601559592 配套资料获取&#xff1a;https://rtos.100ask.net/zh/freeRTOS/DShanMCU-F103 freeRTOS系列教程之freeRTOS入…

HBASE知识点

HBASE是什么&#xff1f; 高可靠、高性能、面向列、可伸缩、实时读写的分布式数据库。利用HDFS作为其文件存储系统&#xff0c;利用MapReduce来处理HBase中的海量数据。利用Zookeeper作为其分布式协同服务。用于存储非结构化和半结构化的松散数据。 HBase数据模型 RowKey: 唯…

makefile的编写:由浅入深

文章目录 准备文件Makefile版本一Makefile版本二Makefile版本三Makefile版本四Makefile版本五 准备文件 // fun1.c #include <stdio.h> void fun1() {printf("this is fun1\n"); }// fun2.c #include <stdio.h> void fun2() {printf("this is fun2…

Java面试常用函数

1. charAt() 方法用于返回字符串指定索引处的字符。索引范围为从 0 到 length() - 1。 map.getOrDefault(num, 0) :如果map存在num这个key&#xff0c;则返回num对应的value&#xff0c;否则返回0. Arrays.sort(nums); 数组排序 Arrays.asList("a","b",&q…

SpringMVC中的JSR303与拦截器的使用

一&#xff0c;JSR303的概念 JSR303是Java中的一个标准&#xff0c;用于验证和校验JavaBean对象的属性的合法性。它提供了一组用于定义验证规则的注解&#xff0c;如NotNull、Min、Max等。在Spring MVC中&#xff0c;可以使用JSR303注解对请求参数进行校验。 1.2 为什么要使用J…

2023年墨西哥 SP/BMV IPC 研究报告

第一章 指数概况 1.1 指数基本情况 墨西哥 S&P/BMV IPC 指数衡量在墨西哥证券交易所 (Bolsa Mexicana de Valores, BMV)上市&#xff0c;规模最大、流动性最高的股票表现。提供一个覆盖墨西哥股市的广泛、具有代表性且可轻易复制的指数。根据多元化要求&#xff0c;按市值…

Redis哨兵Cluster群集 搭建

Redis群集 Redis群集有三种模式 主从同步/复制哨兵模式Cluster群集 主从同步/复制 概念 主从复制是高可用Redis的基础&#xff0c;哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份&#xff0c;以及对于读操作的负载均衡和简单的故障恢复缺陷…

ENVI_IDL: 基础语法详解

01 题目 02 代码说明 题目本身很简单&#xff0c;但是我自己加了一些东西进去增加难度。主要包括print函数的封装、格式化字符串&#xff0c;但是不影响代码的阅读。&#xff08;注&#xff1a;对于没有语言基础的人而言相对阅读困难&#xff0c;但是由于IDL是解释型语言&…

文字点选验证码识别(下)-训练一个孪生神经网络模型

声明 本文以教学为基准、本文提供的可操作性不得用于任何商业用途和违法违规场景。 本人对任何原因在使用本人中提供的代码和策略时可能对用户自己或他人造成的任何形式的损失和伤害不承担责任。 如有侵权,请联系我进行删除。 文章中没有代码,只有过程思路,请大家谨慎订阅。…

Windows下的Elasticsearch-head安装

Windows下的Elasticsearch-head安装 参考&#xff1a;https://gitcode.net/mirrors/mobz/elasticsearch-head 需要用到 npm 命令&#xff0c;这里可以提前下载安装下Node.js 即可自动安装npm&#xff1b; Node.js 下载安装地址&#xff1a;https://nodejs.org/en/download # 进…

【Unity每日一记】音频,麦克风,粒子和拖尾渲染器

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 秩沅 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a;Uni…

LCD1602液晶显示屏介绍和程序开发

1.LCD1602概述 LCD1602&#xff08;Liquid Crystal Display&#xff09;是一种工业字符型液晶&#xff0c;能够同时显示 1602 即 32 字符(16列两行) 引脚说明第 1 脚: VSS 为电源地第 2 脚: VDD 接 5V 正电源第 3 脚: VL 为液晶显示器对比度调整端,接正电源时对比度最弱&…

华为云云耀云服务器L实例评测| ultralytics最先进模型YOLOv8深度学习AI训练

目录 前言 登录服务器 安装pyhton 部署yolov8 安装Pytorch 下载权重文件 训练模型 前言 前几期我们在云耀云服务器L实例上分别使用docker和直接在centos上部署了yolov5识别API&#xff0c;前端项目vue&#xff0c;后端项目.net Core Web Api,但是从监控图上来看&#…

联网汽车和网络犯罪:入门

正在权衡如何投资预算的原始设备供应商 ( OEM ) 及其供应商可能倾向于放慢应对网络威胁的投资。迄今为止&#xff0c;他们遇到的攻击仍然相对简单&#xff0c;危害性也不是特别大。 然而&#xff0c;对地下犯罪信息交换中的聊天记录的分析表明&#xff0c;这些碎片的存在是为了…

html5学习笔记22-JavaScript 简略学习

https://www.runoob.com/js/js-tutorial.html JavaScript 是 Web 的编程语言。与java无关。 案例&#xff1a;https://c.runoob.com/examples/ JavaScript 是一种轻量级的编程语言、可插入 HTML 页面的编程代码、脚本语言。 ECMA-262 是 JavaScript 标准的官方名称。 HTML 中的…

房地产小程序 | 小程序赋能,房地产业务数字化升级

随着科技的不断发展&#xff0c;房地产行业正逐渐向数字化转型。在这个过程中&#xff0c;房地产小程序成为了一种重要的工具&#xff0c;可以帮助房地产企业提供更好的购房体验、增加销售额&#xff0c;并实现管理的便捷化。 优点 便捷购房体验&#xff1a;房地产小程序为用户…

vite + react + typescript + uni-app + node 开发一个生态系统

简介 使用 vite react typescript uni-app node 来开发一个简易的生态系统案例&#xff0c;包含 APP&#xff0c;H5&#xff0c;微信小程序&#xff0c;控制台&#xff0c;服务端 开发 admin 技术栈&#xff1a;vite react typescript初始化控制台项目选择自定义预设…

快速傅里叶变化

引言 目标 傅里叶变化&#xff08;Fourier transform&#xff09;是一种信号处理技术&#xff0c;它可以将时间信号转换为频率信号&#xff0c;即将一组具有相同数量频率的正弦波叠加在一起&#xff0c;形成一组新的正弦波。如果我们把时间信号从频域转换到时域&#xff0c;那么…

手搭手入门MybaitsX

Mybatis-Plus介绍 为简化开发而生 MyBatis-Plus(opens new window)&#xff08;简称 MP&#xff09;是一个 MyBatis(opens new window) 的增强工具&#xff0c;在 MyBatis 的基础上只做增强不做改变&#xff0c;为简化开发、提高效率而生。 特性 无侵入&#xff1a;只做增强…