说明
如果需要用到这些知识却没有掌握,则会让人感到沮丧,也可能导致面试被拒。无论是花几天时间“突击”,还是利用零碎的时间持续学习,在数据结构上下点功夫都是值得的。那么Python 中有哪些数据结构呢?列表、字典、集合,还有……栈?Python 有栈吗?本系列文章将给出详细拼图。
9章:Advanced Linked Lists
之前曾经介绍过单链表,一个链表节点只有data和next字段,本章介绍高级的链表。
Doubly Linked List,双链表,每个节点多了个prev指向前一个节点。双链表可以用来编写文本编辑器的buffer。
class DListNode: def __init__(self, data): self.data = data self.prev = None self.next = None def revTraversa(tail): curNode = tail while cruNode is not None: print(curNode.data) curNode = curNode.prev def search_sorted_doubly_linked_list(head, tail, probe, target): """ probing technique探查法,改进直接遍历,不过最坏时间复杂度仍是O(n) searching a sorted doubly linked list using the probing technique Args: head (DListNode obj) tail (DListNode obj) probe (DListNode or None) target (DListNode.data): data to search """ if head is None: # make sure list is not empty return False if probe is None: # if probe is null, initialize it to first node probe = head # if the target comes before the probe node, we traverse backward, otherwise # traverse forward if target < probe.data: while probe is not None and target <= probe.data: if target == probe.dta: return True else: probe = probe.prev else: while probe is not None and target >= probe.data: if target == probe.data: return True else: probe = probe.next return False def insert_node_into_ordered_doubly_linekd_list(value): """ 最好画个图看,链表操作很容易绕晕,注意赋值顺序""" newnode = DListNode(value) if head is None: # empty list head = newnode tail = head elif value < head.data: # insert before head newnode.next = head head.prev = newnode head = newnode elif value > tail.data: # insert after tail newnode.prev = tail tail.next = newnode tail = newnode else: # insert into middle node = head while node is not None and node.data < value: node = node.next newnode.next = node newnode.prev = node.prev node.prev.next = newnode node.prev = newnode
循环链表
def travrseCircularList(listRef): curNode = listRef done = listRef is None while not None: curNode = curNode.next print(curNode.data) done = curNode is listRef # 回到遍历起始点 def searchCircularList(listRef, target): curNode = listRef done = listRef is None while not done: curNode = curNode.next if curNode.data == target: return True else: done = curNode is listRef or curNode.data > target return False def add_newnode_into_ordered_circular_linked_list(listRef, value): """ 插入并维持顺序 1.插入空链表;2.插入头部;3.插入尾部;4.按顺序插入中间 """ newnode = ListNode(value) if listRef is None: # empty list listRef = newnode newnode.next = newnode elif value < listRef.next.data: # insert in front newnode.next = listRef.next listRef.next = newnode elif value > listRef.data: # insert in back newnode.next = listRef.next listRef.next = newnode listRef = newnode else: # insert in the middle preNode = None curNode = listRef done = listRef is None while not done: preNode = curNode preNode = curNode.next done = curNode is listRef or curNode.data > value newnode.next = curNode preNode.next = newnode
利用循环双端链表我们可以实现一个经典的缓存失效算法,lru:
# -*- coding: utf-8 -*- class Node(object): def __init__(self, prev=None, next=None, key=None, value=None): self.prev, self.next, self.key, self.value = prev, next, key, value class CircularDoubleLinkedList(object): def __init__(self): node = Node() node.prev, node.next = node, node self.rootnode = node def headnode(self): return self.rootnode.next def tailnode(self): return self.rootnode.prev def remove(self, node): if node is self.rootnode: return else: node.prev.next = node.next node.next.prev = node.prev def append(self, node): tailnode = self.tailnode() tailnode.next = node node.next = self.rootnode self.rootnode.prev = node class LRUCache(object): def __init__(self, maxsize=16): self.maxsize = maxsize self.cache = {} self.access = CircularDoubleLinkedList() self.isfull = len(self.cache) >= self.maxsize def __call__(self, func): def wrapper(n): cachenode = self.cache.get(n) if cachenode is not None: # hit self.access.remove(cachenode) self.access.append(cachenode) return cachenode.value else: # miss value = func(n) if not self.isfull: tailnode = self.access.tailnode() newnode = Node(tailnode, self.access.rootnode, n, value) self.access.append(newnode) self.cache[n] = newnode self.isfull = len(self.cache) >= self.maxsize return value else: # full lru_node = self.access.headnode() del self.cache[lru_node.key] self.access.remove(lru_node) tailnode = self.access.tailnode() newnode = Node(tailnode, self.access.rootnode, n, value) self.access.append(newnode) self.cache[n] = newnode return value return wrapper @LRUCache() def fib(n): if n <= 2: return 1 else: return fib(n - 1) + fib(n - 2) for i in range(1, 35): print(fib(i))
10章:Recursion
Recursion is a process for solving problems by subdividing a larger problem into smaller cases of the problem itself and then solving the smaller, more trivial parts.
递归函数:调用自己的函数
# 递归函数:调用自己的函数,看一个最简单的递归函数,倒序打印一个数 def printRev(n): if n > 0: print(n) printRev(n-1) printRev(3) # 从10输出到1 # 稍微改一下,print放在最后就得到了正序打印的函数 def printInOrder(n): if n > 0: printInOrder(n-1) print(n) # 之所以最小的先打印是因为函数一直递归到n==1时候的最深栈,此时不再 # 递归,开始执行print语句,这时候n==1,之后每跳出一层栈,打印更大的值 printInOrder(3) # 正序输出
Properties of Recursion: 使用stack解决的问题都能用递归解决
- A recursive solution must contain a base case; 递归出口,代表最小子问题(n == 0退出打印)
- A recursive solution must contain a recursive case; 可以分解的子问题
- A recursive solution must make progress toward the base case. 递减n使得n像递归出口靠近
Tail Recursion: occurs when a function includes a single recursive call as the last statement of the function. In this case, a stack is not needed to store values to te used upon the return of the recursive call and thus a solution can be implemented using a iterative loop instead.
# Recursive Binary Search def recBinarySearch(target, theSeq, first, last): # 你可以写写单元测试来验证这个函数的正确性 if first > last: # 递归出口1 return False else: mid = (first + last) // 2 if theSeq[mid] == target: return True # 递归出口2 elif theSeq[mid] > target: return recBinarySearch(target, theSeq, first, mid - 1) else: return recBinarySearch(target, theSeq, mid + 1, last)
11章:Hash Tables
基于比较的搜索(线性搜索,有序数组的二分搜索)最好的时间复杂度只能达到O(logn),利用hash可以实现O(1)查找,python内置dict的实现方式就是hash,你会发现dict的key必须要是实现了 __hash__
和 __eq__
方法的。
Hashing: hashing is the process of mapping a search a key to a limited range of array indeices with the goal of providing direct access to the keys.
hash方法有个hash函数用来给key计算一个hash值,作为数组下标,放到该下标对应的槽中。当不同key根据hash函数计算得到的下标相同时,就出现了冲突。解决冲突有很多方式,比如让每个槽成为链表,每次冲突以后放到该槽链表的尾部,但是查询时间就会退化,不再是O(1)。还有一种探查方式,当key的槽冲突时候,就会根据一种计算方式去寻找下一个空的槽存放,探查方式有线性探查,二次方探查法等,cpython解释器使用的是二次方探查法。还有一个问题就是当python使用的槽数量大于预分配的2/3时候,会重新分配内存并拷贝以前的数据,所以有时候dict的add操作代价还是比较高的,牺牲空间但是可以始终保证O(1)的查询效率。如果有大量的数据,建议还是使用bloomfilter或者redis提供的HyperLogLog。
如果你感兴趣,可以看看这篇文章,介绍c解释器如何实现的python dict对象:Python dictionary implementation。我们使用Python来实现一个类似的hash结构。
import ctypes class Array: # 第二章曾经定义过的ADT,这里当做HashMap的槽数组使用 def __init__(self, size): assert size > 0, 'array size must be > 0' self._size = size PyArrayType = ctypes.py_object * size self._elements = PyArrayType() self.clear(None) def __len__(self): return self._size def __getitem__(self, index): assert index >= 0 and index < len(self), 'out of range' return self._elements[index] def __setitem__(self, index, value): assert index >= 0 and index < len(self), 'out of range' self._elements[index] = value def clear(self, value): """ 设置每个元素为value """ for i in range(len(self)): self._elements[i] = value def __iter__(self): return _ArrayIterator(self._elements) class _ArrayIterator: def __init__(self, items): self._items = items self._idx = 0 def __iter__(self): return self def __next__(self): if self._idx < len(self._items): val = self._items[self._idx] self._idx += 1 return val else: raise StopIteration class HashMap: """ HashMap ADT实现,类似于python内置的dict 一个槽有三种状态: 1.从未使用 HashMap.UNUSED。此槽没有被使用和冲突过,查找时只要找到UNUSEd就不用再继续探查了 2.使用过但是remove了,此时是 HashMap.EMPTY,该探查点后边的元素扔可能是有key 3.槽正在使用 _MapEntry节点 """ class _MapEntry: # 槽里存储的数据 def __init__(self, key, value): self.key = key self.value = value UNUSED = None # 没被使用过的槽,作为该类变量的一个单例,下边都是is 判断 EMPTY = _MapEntry(None, None) # 使用过但是被删除的槽 def __init__(self): self._table = Array(7) # 初始化7个槽 self._count = 0 # 超过2/3空间被使用就重新分配,load factor = 2/3 self._maxCount = len(self._table) - len(self._table) // 3 def __len__(self): return self._count def __contains__(self, key): slot = self._findSlot(key, False) return slot is not None def add(self, key, value): if key in self: # 覆盖原有value slot = self._findSlot(key, False) self._table[slot].value = value return False else: slot = self._findSlot(key, True) self._table[slot] = HashMap._MapEntry(key, value) self._count += 1 if self._count == self._maxCount: # 超过2/3使用就rehash self._rehash() return True def valueOf(self, key): slot = self._findSlot(key, False) assert slot is not None, 'Invalid map key' return self._table[slot].value def remove(self, key): """ remove操作把槽置为EMPTY""" assert key in self, 'Key error %s' % key slot = self._findSlot(key, forInsert=False) value = self._table[slot].value self._count -= 1 self._table[slot] = HashMap.EMPTY return value def __iter__(self): return _HashMapIteraotr(self._table) def _slot_can_insert(self, slot): return (self._table[slot] is HashMap.EMPTY or self._table[slot] is HashMap.UNUSED) def _findSlot(self, key, forInsert=False): """ 注意原书有错误,代码根本不能运行,这里我自己改写的 Args: forInsert (bool): if the search is for an insertion Returns: slot or None """ slot = self._hash1(key) step = self._hash2(key) _len = len(self._table) if not forInsert: # 查找是否存在key while self._table[slot] is not HashMap.UNUSED: # 如果一个槽是UNUSED,直接跳出 if self._table[slot] is HashMap.EMPTY: slot = (slot + step) % _len continue elif self._table[slot].key == key: return slot slot = (slot + step) % _len return None else: # 为了插入key while not self._slot_can_insert(slot): # 循环直到找到一个可以插入的槽 slot = (slot + step) % _len return slot def _rehash(self): # 当前使用槽数量大于2/3时候重新创建新的table origTable = self._table newSize = len(self._table) * 2 + 1 # 原来的2*n+1倍 self._table = Array(newSize) self._count = 0 self._maxCount = newSize - newSize // 3 # 将原来的key value添加到新的table for entry in origTable: if entry is not HashMap.UNUSED and entry is not HashMap.EMPTY: slot = self._findSlot(entry.key, True) self._table[slot] = entry self._count += 1 def _hash1(self, key): """ 计算key的hash值""" return abs(hash(key)) % len(self._table) def _hash2(self, key): """ key冲突时候用来计算新槽的位置""" return 1 + abs(hash(key)) % (len(self._table)-2) class _HashMapIteraotr: def __init__(self, array): self._array = array self._idx = 0 def __iter__(self): return self def __next__(self): if self._idx < len(self._array): if self._array[self._idx] is not None and self._array[self._idx].key is not None: key = self._array[self._idx].key self._idx += 1 return key else: self._idx += 1 else: raise StopIteration def print_h(h): for idx, i in enumerate(h): print(idx, i) print('\n') def test_HashMap(): """ 一些简单的单元测试,不过测试用例覆盖不是很全面 """ h = HashMap() assert len(h) == 0 h.add('a', 'a') assert h.valueOf('a') == 'a' assert len(h) == 1 a_v = h.remove('a') assert a_v == 'a' assert len(h) == 0 h.add('a', 'a') h.add('b', 'b') assert len(h) == 2 assert h.valueOf('b') == 'b' b_v = h.remove('b') assert b_v == 'b' assert len(h) == 1 h.remove('a') assert len(h) == 0 n = 10 for i in range(n): h.add(str(i), i) assert len(h) == n print_h(h) for i in range(n): assert str(i) in h for i in range(n): h.remove(str(i)) assert len(h) == 0
12章: Advanced Sorting
第5章介绍了基本的排序算法,本章介绍高级排序算法。
归并排序(mergesort): 分治法
def merge_sorted_list(listA, listB): """ 归并两个有序数组,O(max(m, n)) ,m和n是数组长度""" print('merge left right list', listA, listB, end='') new_list = list() a = b = 0 while a < len(listA) and b < len(listB): if listA[a] < listB[b]: new_list.append(listA[a]) a += 1 else: new_list.append(listB[b]) b += 1 while a < len(listA): new_list.append(listA[a]) a += 1 while b < len(listB): new_list.append(listB[b]) b += 1 print(' ->', new_list) return new_list def mergesort(theList): """ O(nlogn),log层调用,每层n次操作 mergesort: divided and conquer 分治 1. 把原数组分解成越来越小的子数组 2. 合并子数组来创建一个有序数组 """ print(theList) # 我把关键步骤打出来了,你可以运行下看看整个过程 if len(theList) <= 1: # 递归出口 return theList else: mid = len(theList) // 2 # 递归分解左右两边数组 left_half = mergesort(theList[:mid]) right_half = mergesort(theList[mid:]) # 合并两边的有序子数组 newList = merge_sorted_list(left_half, right_half) return newList """ 这是我调用一次打出来的排序过程 [10, 9, 8, 7, 6, 5, 4, 3, 2, 1] [10, 9, 8, 7, 6] [10, 9] [10] [9] merge left right list [10] [9] -> [9, 10] [8, 7, 6] [8] [7, 6] [7] [6] merge left right list [7] [6] -> [6, 7] merge left right list [8] [6, 7] -> [6, 7, 8] merge left right list [9, 10] [6, 7, 8] -> [6, 7, 8, 9, 10] [5, 4, 3, 2, 1] [5, 4] [5] [4] merge left right list [5] [4] -> [4, 5] [3, 2, 1] [3] [2, 1] [2] [1] merge left right list [2] [1] -> [1, 2] merge left right list [3] [1, 2] -> [1, 2, 3] merge left right list [4, 5] [1, 2, 3] -> [1, 2, 3, 4, 5] """
快速排序
def quicksort(theSeq, first, last): # average: O(nlog(n)) """ quicksort :也是分而治之,但是和归并排序不同的是,采用选定主元(pivot)而不是从中间 进行数组划分 1. 第一步选定pivot用来划分数组,pivot左边元素都比它小,右边元素都大于等于它 2. 对划分的左右两边数组递归,直到递归出口(数组元素数目小于2) 3. 对pivot和左右划分的数组合并成一个有序数组 """ if first < last: pos = partitionSeq(theSeq, first, last) # 对划分的子数组递归操作 quicksort(theSeq, first, pos - 1) quicksort(theSeq, pos + 1, last) def partitionSeq(theSeq, first, last): """ 快排中的划分操作,把比pivot小的挪到左边,比pivot大的挪到右边""" pivot = theSeq[first] print('before partitionSeq', theSeq) left = first + 1 right = last while True: # 找到第一个比pivot大的 while left <= right and theSeq[left] < pivot: left += 1 # 从右边开始找到比pivot小的 while right >= left and theSeq[right] >= pivot: right -= 1 if right < left: break else: theSeq[left], theSeq[right] = theSeq[right], theSeq[left] # 把pivot放到合适的位置 theSeq[first], theSeq[right] = theSeq[right], theSeq[first] print('after partitionSeq {}: {}\t'.format(theSeq, pivot)) return right # 返回pivot的位置 def test_partitionSeq(): l = [0,1,2,3,4] assert partitionSeq(l, 0, len(l)-1) == 0 l = [4,3,2,1,0] assert partitionSeq(l, 0, len(l)-1) == 4 l = [2,3,0,1,4] assert partitionSeq(l, 0, len(l)-1) == 2 test_partitionSeq() def test_quicksort(): def _is_sorted(seq): for i in range(len(seq)-1): if seq[i] > seq[i+1]: return False return True from random import randint for i in range(100): _len = randint(1, 100) to_sort = [] for i in range(_len): to_sort.append(randint(0, 100)) quicksort(to_sort, 0, len(to_sort)-1) # 注意这里用了原地排序,直接更改了数组 print(to_sort) assert _is_sorted(to_sort) test_quicksort()
利用快排中的partitionSeq操作,我们还能实现另一个算法,nth_element,快速查找一个无序数组中的第k大元素
def nth_element(seq, beg, end, k): if beg == end: return seq[beg] pivot_index = partitionSeq(seq, beg, end) if pivot_index == k: return seq[k] elif pivot_index > k: return nth_element(seq, beg, pivot_index-1, k) else: return nth_element(seq, pivot_index+1, end, k) def test_nth_element(): from random import shuffle n = 10 l = list(range(n)) shuffle(l) print(l) for i in range(len(l)): assert nth_element(l, 0, len(l)-1, i) == i test_nth_element()