计算机竞赛 基于深度学习的行人重识别(person reid)

news2025/1/11 17:53:16

文章目录

  • 0 前言
  • 1 技术背景
  • 2 技术介绍
  • 3 重识别技术实现
    • 3.1 数据集
    • 3.2 Person REID
      • 3.2.1 算法原理
      • 3.2.2 算法流程图
  • 4 实现效果
  • 5 部分代码
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习的行人重识别

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 技术背景

行人重识别技术,是智能视频监控系统的关键技术之一,其研宄是针对特定目标行人的视频检索识别问题。行人再识别是一种自动的目标判定识别技术,它综合地运用了计算机视觉技术、机器学习、视频处理、图像分析、模式识别等多种相关技术于监控系统中,其主要描述的是在多个无重叠视域的摄像头监控环境之下,通过相关算法判断在某个镜头下出现过的感兴趣的目标人物是否在其他摄像头下再次出现。

2 技术介绍

在视频监控系统中,行人再识别任务的整体框架如下图所示:
—个监控系统由多个视域不相交的监控摄像头组成,摄像机的位置可以随时更改,同时也可以随时增加或减少摄像机。不两监控摄像头所摄取的画面、视角等各不相同。在这样的监控系统中,对行人的动向监测是,至关重要的。

对行人的监控主要基于以下三个基本的模块:

在这里插入图片描述

  • 行人检测:
    行人检测的目标是在图片中定位到行人的具体位置。这一步骤仅涉及到对于静止的单张图片的处理,而没有动态的处理,没有时间序列上的相关分析。

  • 行人轨迹跟踪:
    行人轨迹跟踪的主要任务是在一段时间内提供目标任务的位置移动信息。与行人检测不同,轨迹跟踪与时间序列紧密相关。行人轨迹跟踪是在行人检测的基础上进行的。

  • 行人再识别:
    行人再识别任务的目标是在没有相重合视域的摄像头或摄像机网络内的不同背景下的许多行人中中识别某个特定行人。行人再识别的分析基于行人检测和轨迹跟踪的结果。其主要步骤首先是检测和跟踪视频序列中的行人,从而提取行人的特征,建立构建模型所需的行人特征集数据库。


在此基础上,用训练出的模型进行学习从而判断得出某个摄像头下的行人与另一摄像头下的目标人物为同一个人。在智能视频监控系统中的行人再识别任务具有非常广阔的应用前景。行人再识别的应用与行人检测、目标跟踪、行人行为分析、敏感事件检测等等都有着紧密的联系,这些分析处理技术对于公安部门的刑侦工作和城市安防建设工作有着重要的意义。

3 重识别技术实现

3.1 数据集

目前行人再识别的研究需要大量的行人数据集。行人再识别的数据集主要是通过在不同区域假设无重叠视域的多个摄像头来采集拍摄有行人图像的视频,然后对视频提取帧,对于视频帧图像采用人工标注或算法识别的方式进行人体检测及标注来完成的。行人再识别数据集中包含了跨背景、跨时间、不同拍摄角度下、各种不同姿势的行人图片,如下图所示。

在这里插入图片描述

3.2 Person REID

3.2.1 算法原理

给定N个不同的行人从不同的拍摄视角的无重叠视域摄像机捕获的图像集合,行人再识别的任务是学习一个模型,该模型可以尽可能减小行人姿势和背景、光照等因素带来的影响,从而更好地对行人进行整体上的描述,更准确地对不同行人图像之间的相似度进行衡量。

我这里使用注意力相关的特征的卷积神经网络。该基础卷积神经网络架构可以由任何卷积神经网络模型代替,例如,VGG-19,ResNet-101。

该算法的核心模块在于注意力学习模型。

3.2.2 算法流程图

在这里插入图片描述

4 实现效果

在多行人场景下,对特定行人进行寻找
在这里插入图片描述

5 部分代码



    import argparse
    import time
    from sys import platform
    
    from models import *
    from utils.datasets import *
    from utils.utils import *
    
    from reid.data import make_data_loader
    from reid.data.transforms import build_transforms
    from reid.modeling import build_model
    from reid.config import cfg as reidCfg


    def detect(cfg,
               data,
               weights,
               images='data/samples',  # input folder
               output='output',  # output folder
               fourcc='mp4v',  # video codec
               img_size=416,
               conf_thres=0.5,
               nms_thres=0.5,
               dist_thres=1.0,
               save_txt=False,
               save_images=True):
    
        # Initialize
        device = torch_utils.select_device(force_cpu=False)
        torch.backends.cudnn.benchmark = False  # set False for reproducible results
        if os.path.exists(output):
            shutil.rmtree(output)  # delete output folder
        os.makedirs(output)  # make new output folder
    
        ############# 行人重识别模型初始化 #############
        query_loader, num_query = make_data_loader(reidCfg)
        reidModel = build_model(reidCfg, num_classes=10126)
        reidModel.load_param(reidCfg.TEST.WEIGHT)
        reidModel.to(device).eval()
    
        query_feats = []
        query_pids  = []
    
        for i, batch in enumerate(query_loader):
            with torch.no_grad():
                img, pid, camid = batch
                img = img.to(device)
                feat = reidModel(img)         # 一共2张待查询图片,每张图片特征向量2048 torch.Size([2, 2048])
                query_feats.append(feat)
                query_pids.extend(np.asarray(pid))  # extend() 函数用于在列表末尾一次性追加另一个序列中的多个值(用新列表扩展原来的列表)。
    
        query_feats = torch.cat(query_feats, dim=0)  # torch.Size([2, 2048])
        print("The query feature is normalized")
        query_feats = torch.nn.functional.normalize(query_feats, dim=1, p=2) # 计算出查询图片的特征向量
    
        ############# 行人检测模型初始化 #############
        model = Darknet(cfg, img_size)
    
        # Load weights
        if weights.endswith('.pt'):  # pytorch format
            model.load_state_dict(torch.load(weights, map_location=device)['model'])
        else:  # darknet format
            _ = load_darknet_weights(model, weights)
    
        # Eval mode
        model.to(device).eval()
        # Half precision
        opt.half = opt.half and device.type != 'cpu'  # half precision only supported on CUDA
        if opt.half:
            model.half()
    
        # Set Dataloader
        vid_path, vid_writer = None, None
        if opt.webcam:
            save_images = False
            dataloader = LoadWebcam(img_size=img_size, half=opt.half)
        else:
            dataloader = LoadImages(images, img_size=img_size, half=opt.half)
    
        # Get classes and colors
        # parse_data_cfg(data)['names']:得到类别名称文件路径 names=data/coco.names
        classes = load_classes(parse_data_cfg(data)['names']) # 得到类别名列表: ['person', 'bicycle'...]
        colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(classes))] # 对于每种类别随机使用一种颜色画框
    
        # Run inference
        t0 = time.time()
        for i, (path, img, im0, vid_cap) in enumerate(dataloader):
            t = time.time()
            # if i < 500 or i % 5 == 0:
            #     continue
            save_path = str(Path(output) / Path(path).name) # 保存的路径
    
            # Get detections shape: (3, 416, 320)
            img = torch.from_numpy(img).unsqueeze(0).to(device) # torch.Size([1, 3, 416, 320])
            pred, _ = model(img) # 经过处理的网络预测,和原始的
            det = non_max_suppression(pred.float(), conf_thres, nms_thres)[0] # torch.Size([5, 7])
    
            if det is not None and len(det) > 0:
                # Rescale boxes from 416 to true image size 映射到原图
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
    
                # Print results to screen image 1/3 data\samples\000493.jpg: 288x416 5 persons, Done. (0.869s)
                print('%gx%g ' % img.shape[2:], end='')  # print image size '288x416'
                for c in det[:, -1].unique():   # 对图片的所有类进行遍历循环
                    n = (det[:, -1] == c).sum() # 得到了当前类别的个数,也可以用来统计数目
                    if classes[int(c)] == 'person':
                        print('%g %ss' % (n, classes[int(c)]), end=', ') # 打印个数和类别'5 persons'
    
                # Draw bounding boxes and labels of detections
                # (x1y1x2y2, obj_conf, class_conf, class_pred)
                count = 0
                gallery_img = []
                gallery_loc = []
                for *xyxy, conf, cls_conf, cls in det: # 对于最后的预测框进行遍历
                    # *xyxy: 对于原图来说的左上角右下角坐标: [tensor(349.), tensor(26.), tensor(468.), tensor(341.)]
                    if save_txt:  # Write to file
                        with open(save_path + '.txt', 'a') as file:
                            file.write(('%g ' * 6 + '\n') % (*xyxy, cls, conf))
    
                    # Add bbox to the image
                    label = '%s %.2f' % (classes[int(cls)], conf) # 'person 1.00'
                    if classes[int(cls)] == 'person':
                        #plot_one_bo x(xyxy, im0, label=label, color=colors[int(cls)])
                        xmin = int(xyxy[0])
                        ymin = int(xyxy[1])
                        xmax = int(xyxy[2])
                        ymax = int(xyxy[3])
                        w = xmax - xmin # 233
                        h = ymax - ymin # 602
                        # 如果检测到的行人太小了,感觉意义也不大
                        # 这里需要根据实际情况稍微设置下
                        if w*h > 500:
                            gallery_loc.append((xmin, ymin, xmax, ymax))
                            crop_img = im0[ymin:ymax, xmin:xmax] # HWC (602, 233, 3)
                            crop_img = Image.fromarray(cv2.cvtColor(crop_img, cv2.COLOR_BGR2RGB))  # PIL: (233, 602)
                            crop_img = build_transforms(reidCfg)(crop_img).unsqueeze(0)  # torch.Size([1, 3, 256, 128])
                            gallery_img.append(crop_img)
    
                if gallery_img:
                    gallery_img = torch.cat(gallery_img, dim=0)  # torch.Size([7, 3, 256, 128])
                    gallery_img = gallery_img.to(device)
                    gallery_feats = reidModel(gallery_img) # torch.Size([7, 2048])
                    print("The gallery feature is normalized")
                    gallery_feats = torch.nn.functional.normalize(gallery_feats, dim=1, p=2)  # 计算出查询图片的特征向量
    
                    # m: 2
                    # n: 7
                    m, n = query_feats.shape[0], gallery_feats.shape[0]
                    distmat = torch.pow(query_feats, 2).sum(dim=1, keepdim=True).expand(m, n) + \
                              torch.pow(gallery_feats, 2).sum(dim=1, keepdim=True).expand(n, m).t()
                    # out=(beta∗M)+(alpha∗mat1@mat2)
                    # qf^2 + gf^2 - 2 * qf@gf.t()
                    # distmat - 2 * qf@gf.t()
                    # distmat: qf^2 + gf^2
                    # qf: torch.Size([2, 2048])
                    # gf: torch.Size([7, 2048])
                    distmat.addmm_(1, -2, query_feats, gallery_feats.t())
                    # distmat = (qf - gf)^2
                    # distmat = np.array([[1.79536, 2.00926, 0.52790, 1.98851, 2.15138, 1.75929, 1.99410],
                    #                     [1.78843, 1.96036, 0.53674, 1.98929, 1.99490, 1.84878, 1.98575]])
                    distmat = distmat.cpu().numpy()  # : (3, 12)
                    distmat = distmat.sum(axis=0) / len(query_feats) # 平均一下query中同一行人的多个结果
                    index = distmat.argmin()
                    if distmat[index] < dist_thres:
                        print('距离:%s'%distmat[index])
                        plot_one_box(gallery_loc[index], im0, label='find!', color=colors[int(cls)])
                        # cv2.imshow('person search', im0)
                        # cv2.waitKey()
    
            print('Done. (%.3fs)' % (time.time() - t))
    
            if opt.webcam:  # Show live webcam
                cv2.imshow(weights, im0)
    
            if save_images:  # Save image with detections
                if dataloader.mode == 'images':
                    cv2.imwrite(save_path, im0)
                else:
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release()  # release previous video writer
    
                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        width = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        height = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (width, height))
                    vid_writer.write(im0)
    
        if save_images:
            print('Results saved to %s' % os.getcwd() + os.sep + output)
            if platform == 'darwin':  # macos
                os.system('open ' + output + ' ' + save_path)
    
        print('Done. (%.3fs)' % (time.time() - t0))


    if __name__ == '__main__':
        parser = argparse.ArgumentParser()
        parser.add_argument('--cfg', type=str, default='cfg/yolov3.cfg', help="模型配置文件路径")
        parser.add_argument('--data', type=str, default='data/coco.data', help="数据集配置文件所在路径")
        parser.add_argument('--weights', type=str, default='weights/yolov3.weights', help='模型权重文件路径')
        parser.add_argument('--images', type=str, default='data/samples', help='需要进行检测的图片文件夹')
        parser.add_argument('-q', '--query', default=r'query', help='查询图片的读取路径.')
        parser.add_argument('--img-size', type=int, default=416, help='输入分辨率大小')
        parser.add_argument('--conf-thres', type=float, default=0.1, help='物体置信度阈值')
        parser.add_argument('--nms-thres', type=float, default=0.4, help='NMS阈值')
        parser.add_argument('--dist_thres', type=float, default=1.0, help='行人图片距离阈值,小于这个距离,就认为是该行人')
        parser.add_argument('--fourcc', type=str, default='mp4v', help='fourcc output video codec (verify ffmpeg support)')
        parser.add_argument('--output', type=str, default='output', help='检测后的图片或视频保存的路径')
        parser.add_argument('--half', default=False, help='是否采用半精度FP16进行推理')
        parser.add_argument('--webcam', default=False, help='是否使用摄像头进行检测')
        opt = parser.parse_args()
        print(opt)
    
        with torch.no_grad():
            detect(opt.cfg,
                   opt.data,
                   opt.weights,
                   images=opt.images,
                   img_size=opt.img_size,
                   conf_thres=opt.conf_thres,
                   nms_thres=opt.nms_thres,
                   dist_thres=opt.dist_thres,
                   fourcc=opt.fourcc,
                   output=opt.output)


6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/993379.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【动手学深度学习】--长短期记忆网络LSTM

文章目录 长短期记忆网络LSTM1.门控记忆元1.1输入门、忘记门、输出门1.2候选记忆元1.3记忆元1.4隐状态 2.从零实现2.1加载数据集2.2初始化模型参数2.3定义模型2.4 训练与预测 3.简洁实现 长短期记忆网络LSTM 学习视频&#xff1a;长短期记忆网络&#xff08;LSTM&#xff09;【…

DP-modeler建模

1、打开软件&#xff0c;新建工程&#xff0c;导入模型&#xff0c;如下&#xff1a; 2、建立一个立体模型&#xff0c;结果如下图&#xff1a;

jmeter安装了插件,但是添加时无插件选项

想用阶梯加压&#xff0c;然后需要安装插件&#xff0c;按照网上教程&#xff0c;下载插件管理器&#xff0c;使用插件管理器安装好jpgc后&#xff08;如图一&#xff0c;已勾选&#xff0c;说明已安装&#xff09;&#xff0c; 然后重启打开jmeter&#xff0c;添加线程组下一级…

python知识:有效使用property装饰器

一、说明 Python是唯一有习语&#xff08;idioms&#xff09;的语言。这增强了它的可读性&#xff0c;也许还有它的美感。装饰师遵循Python的禅宗&#xff0c;又名“Pythonic”方式。装饰器从 Python 2.2 开始可用。PEP318增强了它们。下面是一个以初学者为中心的教程&#xff…

Jdk1.7之ConcurrentHashMap源码总结

文章目录 一、常见属性1. 初始化容量2. 加载因子3. 并发级别 二、重要方法1. 构造方法2. ConcurrentHashMap#put方法2.1 ConcurrentHashMap#put#ensureSegment2.2 ConcurrentHashMap#Segment#put2.2.1 Segment#put#scanAndLockForPut2.2.2 Segment#put#rehash 3. ConcurrentHas…

linux内核如何根据文件名索引到文件内容

https://zhuanlan.zhihu.com/p/78724124 根据文件名索引到文件内容 表面上&#xff0c;用户通过文件名&#xff0c;打开文件。实际上&#xff0c;系统内部这个过程分成三步&#xff1a;首先&#xff0c;系统找到这个文件名对应的inode号码&#xff1b;其次&#xff0c;通过in…

迅为RK3568开发板驱动指南第六篇-平台总线

文档教程更新至第六篇 第1篇 驱动基础篇 第2篇 字符设备基础 第3篇 并发与竞争 第4篇 高级字符设备进阶 第5篇 中断 第6篇 平台总线 未完待续&#xff0c;持续更新中... 视频教程更新至十一期 第一期_驱动基础 第二期_字符设备基础 第三期_并发与竞争 第四期_高级字…

解释模块化开发及其优势,并介绍常用的模块化规范。

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 模块化开发⭐ 模块化开发的优势⭐ 常用的模块化规范⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎来到前端入门之旅&#xff01;这个专栏是…

公众号hanniman往期精选

目录 一、AI产品分析&#xff08;10篇&#xff09; 二、AI产品经理&#xff08;10篇&#xff09; 三、AI技术&#xff08;10篇&#xff09; 四、AI行业及个人成长&#xff08;10篇&#xff09; 一、AI产品分析 1、【重点】深度 | 关于AIGC商业化的13个非共识认知&#xff08;80…

华为OD机试 - 滑动窗口最大和

滑动窗口的经典题型&#xff0c;重复题目 #include <stdio.h> #include <string.h> #include <stdlib.h>#define MAX(a,b) ((a) > (b) ? (a) : (b)) int main() {int n;scanf("%d", &n);int *list malloc(sizeof(int) * n);for (int i …

[学习笔记]DeepWalk图神经网络论文精读

参考资料&#xff1a;DeepWalk【图神经网络论文精读】 word2vec 相关论文&#xff1a; Efficient Estimation of Word Representations in Vector Space Distributed Representations of Words and Phrases and their Compositionality 随机游走Ramdom Walk简述 通过随机游…

LLMs之Falcon 180B:Falcon 180B的简介、安装、使用方法之详细攻略

LLMs之Falcon 180B&#xff1a;Falcon 180B的简介、安装、使用方法之详细攻略 导读&#xff1a;Falcon-180B是一个由TII发布的模型&#xff0c;它是Falcon系列的升级版本&#xff0c;是一个参数规模庞大、性能优越的开放语言模型&#xff0c;适用于各种自然语言处理任务&#x…

Net跨平台UI框架Avalonia入门-样式详解

设计器的使用 设计器预览 在window和usercontrol中&#xff0c;在代码中修改了控件&#xff0c;代码正确情况下&#xff0c;设计器中就可以实时看到变化&#xff0c;但是在样式&#xff08;Styles&#xff09;文件中&#xff0c;无法直接看到&#xff0c;需要使用设计器预览D…

uni-app 前面项目(vue)部署到本地win系统Nginx上

若依移动端的项目&#xff1a;整合了uview开源ui框架&#xff0c; 配置后端请求接口基本路径地址&#xff1a; 打包复现到nginx下&#xff1a; 安装个稳定版本的&#xff1a;nginx-1.24.0 部署配置&#xff1a; 增加了网站&#xff1a;8083端口的&#xff0c; 网站目录在ngi…

Reactor

1.epoll底层工作原理 creat: 红黑树 就绪队列 回调机制 control: 用户告诉内核做什么事情&#xff0c;就是操作红黑树 wait: 操作就绪队列 2.LT ET模式 3.Reactor 4.前摄式

懒汉式逆向APK

作者&#xff1a;果然翁 通过各方神仙文档,以及多天调试,整理了这篇极简反编译apk的文档(没几个字,吧).轻轻松松对一个apk(没壳的)进行逆向分析以及调试.其实主要就是4个命令. 准备 下载apktool &#xff1a;https://ibotpeaches.github.io/Apktool/install/下载Android SDK …

被问到: http 协议和 https 协议的区别怎么办?别慌,这篇文章给你答案

前言 作为软件测试师&#xff0c;大家都知道一些常用的网络协议是我们必须要了解和掌握的&#xff0c;比如 HTTP 协议&#xff0c;HTTPS 协议就是两个使用非常广泛的协议&#xff0c;所以也是面试官问的面试的时候问的比较多的两个协议&#xff1b;因为这两个协议有相似和关联的…

CSP 202209-1 如此编码

答题 题目就是字多 #include<iostream>using namespace std;int main() {int n,m;cin>>n>>m;int a[n],c[n1];c[0]1;for(int i0;i<n;i){cin>>a[i];c[i1]c[i]*a[i];}for(int i0;i<n;i){cout<<(m%c[i1]-m%c[i])/c[i]<< ;} }

基于 Flink CDC 高效构建入湖通道

摘要&#xff1a;本文整理自阿里云 Flink 数据通道负责人、Flink CDC 开源社区负责人&#xff0c; Apache Flink PMC Member & Committer 徐榜江&#xff08;雪尽&#xff09;&#xff0c;在 Streaming Lakehouse Meetup 的分享。内容主要分为四个部分&#xff1a; 1. Flin…

2.4 选择结构语句

选择结构语句根据是否满足某个条件确定执行哪些操作&#xff0c;分为if条件语句和switch条件语句。 1. 单分支if语句 &#xff08;1&#xff09;if语句是指如果满足某种条件&#xff0c;就进行某种处理&#xff0c;格式如下。 if(条件) {// 执行语句 } 根据上述格式中&…