【大虾送书第八期】揭秘分布式文件系统大规模元数据管理机制——以Alluxio文件系统为例

news2024/11/24 8:50:36

目录

✨写在前面

✨分布式文件系统元数据的常见类型

🍓文件(inode)元数据

🍓数据块(block)元数据

🍓MountTable

🍓Worker元数据

✨分布式文件系统元数据的存储模式

🍓元数据存储在堆上(HEAP模式)

🍓元数据存储在堆外(ROCKS模式)

🍓堆外存储的内存和磁盘占用

🍓对堆外存储的缓存加速和调优

🍓在HEAP和ROCKS模式间切换

✨文末福利


     🦐博客主页:大虾好吃吗的博客

     🦐专栏地址:免费送书活动专栏地址

写在前面

        当今,我们的世界已经进入一个数据时代。随着互联网、物联网、5G、大数据、人工智能、自动驾驶、元宇宙等信息技术的快速发展,人们在产生、收集、存储、治理和分析的数据的总量呈快速增长的趋势。形态多样、格式复杂、规模庞大、产生迅速的行业领域大规模数据驱动了底层新型基础支撑计算支撑技术的快速变革。通过过去10多年来工业界和学术界先行者的指引和实践,分布式并行计算和分布式数据存储的技术生态不断演进、丰富繁荣。其中,分布式数据存储管理在这个海量数据处理技术栈中处于基础地位,是众多行业大数据应用分析的基石。

        分布式文件系统是从高性能计算到大数据计算时代一直广为应用的主流分布式数据存储管理系统。近些年随着云计算技术的持续发展,分布式对象存储存储、键值存储等技术的应用也开始大行其道。在这个背景下,很多分布式文件系统开始走上对数据存储进行统一高效管理的技术路线。其中,被用户知晓和普遍应该的一款系统是诞生于加州大学伯克利分校的AMPLab的Alluxio,它可以被看作一种统一化大数据虚拟文件系统,不同种类的分布式存储系统(文件系统、对象存储系统)都可以挂载到Alluxio目录中,对提供提供高效统一的访问模式和接口。元数据是一个存储系统中关于数据信息最为重要、正常访问最为频繁的一类关键信息。为了有效地管理来自底层不同分布式存储系统的大规模数据文件和对象,Alluxio需要提供一种高效可扩展的大规模元数据管理机制。

        本文以开源版本的Alluxio 2.8为例,揭秘分布式文件系统中常见的大规模元数据管理机制。对Alluxio用户而言,用户通过文件元信息和Alluxio文件系统接口进行互动,通过数据块元信息来读写数据和缓存。文件和数据块元信息由Alluxio Master统一存储和管理。     

分布式文件系统元数据的常见类型

        Alluxio Master管理的元数据中,最重要的是文件元数据、数据块元数据、挂载点元数据和Alluxio Worker元数据几类。

文件(inode)元数据

        Alluxio文件系统中的每一个文件或文件夹都由一个inode代表,这个inode存储着这个文件所有的属性和元信息,包括文件基本属性、权限信息、管理属性、时间戳、包含的数据块及每一个数据块的元数据等。“inode”这一概念来源于Unix类型的文件系统,在Linux和HDFS等文件系统中被广泛使用,一个inode代表着文件系统目录树上的一个节点。因为Alluxio管理着多个底层存储,所以Alluxio命名空间中的潜在文件数量实际上是所有底层存储中文件的总和。元数据服务作为Alluxio集群中最重要的服务,直接决定了系统的规模、性能和稳定性。值得一提的是,Alluxio文件系统中的inode不一定在底层存储中存在。例如,如果这个路径是用MUST_CACHE方式写入Alluxio,那么Alluxio并不会在底层存储中创建这个文件。此外,如果底层存储是一个对象存储,因为对象存储没有文件夹的概念,所以Alluxio中的文件夹并不会在底层存储中对应实际存在的对象。

总体来说,Alluxio Master对inode的管理可以抽象地分为以下几类:

  • 使用一个InodeTree存储所有的inode信息及inode之间的树状结构(文件夹和文件之间的父子关系),Alluxio Master维护着文件系统的树状结构。

  • 实现文件系统操作的接口并支持所有对文件的操作。Alluxio Master开放了一系列文件系统操作接口,并且对每一个操作提供了并发安全和持久化保证,通过这样的方式向上层应用提供了一个分布式文件系统。

  • 通过Journal日志维护一个持久化的状态,保证每一个inode操作的持久性和原子性。Alluxio Master通过保证inode信息和每一个操作记录在Journal日志中,从而保障在任何情况下inode信息和更改都不会丢失。

  • Alluxio的InodeTree通过将锁粒度精细到每一个inode,支持inode级别的读写并发访问。对每一个inode通过锁进行并发控制,保证在并发读写中inode的线程安全。

数据块(block)元数据

        如果inode对应一个文件,则它有0个(空文件)或多个数据块。对一个新建文件而言,所有数据块大小都由 alluxio.user.block.size.bytes.default 设置,只有最后一个数据块除外。只有1个数据块的文件也算作是最后一个数据块。数据块的元信息管理相对inode而言比较简单,因为数据块之间不具有树状的结构或者亲子关系。

        Alluxio Master保存着数据块的元信息以及数据块缓存的当前位置,并对外提供了对这些信息的读写接口。Alluxio Master管理的数据块元数据可以简要地被看作两个键值存储:

(1)<BlockID, BlockMetadata>

(2)<BlockID, List<BlockLocation>>

        其中,BlockMetadata记录了数据块的长度。BlockLocation记录了这个数据块(缓存)存在的Alluxio Worker节点地址,和这个数据块在Alluxio Worker节点上的具体存储位置。

        这两个不同的信息被分开存储主要是因为它们的生命周期不同。Block Metadata是不变的(Immutable)。Alluxio不支持对已经写完的数据块进行随机更改或追加。如果这个文件被重写,它会得到新的FileID(即InodeID)和新的BlockID,旧的数据块会被舍弃。相反,BlockLocation列表是会不断变化的,比如当这个数据块被加载进一个新的Alluxio Worker,或者被从某一个Alluxio Worker上驱逐之后,这个列表信息都会对应地改变。

MountTable

        MountTable管理着所有Alluxio文件系统中的挂载点,提供了诸如挂载点的创建和更改操作。同时Alluxio文件路径和底层存储的文件路径也通过MountTable互相解析对应。

Worker元数据

        Alluxio Master对Alluxio Worker元数据的管理包括了追踪当前有哪些正在工作的Alluxio Worker,并且不断更新Alluxio Worker上的缓存列表。Alluxio Master记录的信息主要包括:

(1)Alluxio Worker的地址、启动时间等不变信息。

(2)Alluxio Worker的空间使用情况,包括多层缓存中每层的使用量,随每次心跳更新。

(3)Alluxio Worker中被缓存的所有BlockID和将要从Alluxio Worker中移除的所有BlockID。这些信息随着每一次心跳和数据块操作(加载、驱逐等)而改变。   

分布式文件系统元数据的存储模式

        分布式文件系统的元数据存储通常包括堆上存储和堆外存储两种。其中,堆上存储访问高效,但是空间有限,而堆外存储空间大,但如果设计不当会造成性能损失。

元数据存储在堆上(HEAP模式)

        以Alluxio为例,在HEAP模式下,所有元信息都以Java对象的形式存储在JVM的堆中。每一个文件在堆上的内存占用大约为2KB~4KB。因此,当Alluxio文件系统中有大量的文件时,堆上元信息将会给JVM带来大量内存压力。不难算出,系统中有1亿文件时,JVM上仅仅是存储这些文件的元信息就会占用200GB~400GB。加上Master JVM必须承担的大量RPC操作内存开销,这个JVM对内存的需求是普通服务器很难承受的。

        此外,对大部分JVM版本而言,如此数据规模下的GC会变得非常难以管理。Alluxio Master JVM中的这些元信息都是长久存在的对象,尤其会给老年代的GC效率带来很大的影响。尽管有一些商业版JVM可以避免部分或大部分JVM带来的性能和管理问题,但是对大多数用户来说,JVM占用过多还是一个十分棘手的痛点,尤其是Alluxio Master 的JVM可能在未来随着业务扩展可能超出物理机内存的上限。

元数据存储在堆外(ROCKS模式)

        针对HEAP模式难以扩展的问题,Alluxio优化了设计方向。Alluxio 在2.0版本中引入了ROCKS模式,将元信息存储挪到了JVM之外。在ROCKS模式下,Alluxio Master内嵌了一个RocksDB,将文件(和数据块)的元信息从之前的JVM堆上挪到了RocksDB中,而RocksDB的存储介质实际是硬盘而非内存。使用RocksDB存储元数据只需要配置元数据存储模式并指定RocksDB存储的路径:

alluxio.master.metastore=ROCKS

alluxio.master.metastore.dir=${alluxio.work.dir}/metastore

        Alluxio内嵌的RocksDB会使用 alluxio.master.metastore.dir 配置的路径作为自己的元数据存储。以下示例中,我们查看一个运行中的Alluxio集群的RocksDB存储,可以见到Alluxio在RocksDB中保存的Inode和Block元数据各有一个存储目录,并维护了由RocksDB管理的数据文件。RocksDB的存储目录结构在本书中不做赘述,读者可以查看RocksDB的官方文档。

$ ls -al -R metastore/
metastore/:
total 8
drwxrwxr-x. 2 alluxio-user alluxio-group 4096 May 21 03:20 blocks
drwxrwxr-x. 2 alluxio-user alluxio-group 4096 May 21 03:33 inodes

metastore/blocks:
total 4264
-rw-r--r--. 1 alluxio-user alluxio-group     0 May 21 03:20 000005.log
-rw-r--r--. 1 alluxio-user alluxio-group    16 May 21 03:20 CURRENT
-rw-r--r--. 1 alluxio-user alluxio-group    36 May 21 03:20 IDENTITY
-rw-r--r--. 1 alluxio-user alluxio-group     0 May 21 03:20 LOCK
-rw-r--r--. 1 alluxio-user alluxio-group 52837 May 21 03:30 LOG
-rw-r--r--. 1 alluxio-user alluxio-group   176 May 21 03:20 MANIFEST-000004
-rw-r--r--. 1 alluxio-user alluxio-group 13467 May 21 03:20 OPTIONS-000009
-rw-r--r--. 1 alluxio-user alluxio-group 13467 May 21 03:20 OPTIONS-000011

metastore/inodes:
total 4268
-rw-r--r--. 1 alluxio-user alluxio-group     0 May 21 03:20 000005.log
-rw-r--r--. 1 alluxio-user alluxio-group  1211 May 21 03:33 000012.sst
-rw-r--r--. 1 alluxio-user alluxio-group    16 May 21 03:20 CURRENT
-rw-r--r--. 1 alluxio-user alluxio-group    36 May 21 03:20 IDENTITY
-rw-r--r--. 1 alluxio-user alluxio-group     0 May 21 03:20 LOCK
-rw-r--r--. 1 alluxio-user alluxio-group 58083 May 21 03:33 LOG
-rw-r--r--. 1 alluxio-user alluxio-group   247 May 21 03:33 MANIFEST-000004
-rw-r--r--. 1 alluxio-user alluxio-group 13679 May 21 03:20 OPTIONS-000009
-rw-r--r--. 1 alluxio-user alluxio-group 13679 May 21 03:20 OPTIONS-000011

堆外存储的内存和磁盘占用

        在ROCKS模式下,元信息被存储在堆外的RocksDB中,这样会极大地降低元信息存储对Alluxio Master进程的内存压力。与HEAP模式相比,所有的元信息读写从内存速度降低到了硬盘速度,这将会很大程度上影响Alluxio Master的性能和吞吐量。因此Alluxio Master在内存中加入了一个缓存来加速对RocksDB的访问。换言之,在ROCKS模式下,元信息存储的内存占用变成了这部分缓存的内存占用。与HEAP模式下的内存占用估算类似,缓存中每一个文件的元信息存储占用同样的2KB~4KB。

        缓存的大小由 alluxio.master.metastore.inode.cache.max.size 控制。这个配置项的值根据Alluxio版本可能有所不同。Alluxio Master会先写入缓存,当缓存达到一定使用量之后才开始写入RocksDB(磁盘)。RocksDB的磁盘占用情况如下:大约100万个文件的元信息占用约4GB的硬盘空间。值得注意的是,当Alluxio命名空间内文件数量未触发基于 alluxio.master.metastore.inode.cache.max.size 的驱逐时,所有文件元信息都在基于内存的缓存内,未写入RocksDB,此时这些文件的元信息磁盘占用接近于0。

对堆外存储的缓存加速和调优

        当内存空间充足时,适当调大 alluxio.master.metastore.inode.cache.max.size 可以将更多文件元信息缓存在内存中来提升性能。同时需注意,Alluxio Master上的RPC操作也会消耗内存。即使没有进行中的RPC操作,Alluxio Master上仍然会有一些定期的文件扫描等内部管理逻辑会消耗内存。在估算Alluxio Master进程中内存时,需要一定要预留足够内存给这些操作,不要让元信息存储占用了所有的内存。这和在服务器上不能把100%的内存都分配给应用而不给操作系统预留内存空间的道理是一样的。元信息缓存的管理是基于水位机制的,用户配置一个高水位参数和一个低水位参数,比如以下是默认配置:

alluxio.master.metastore.inode.cache.high.water.mark.ratio=0.85

alluxio.master.metastore.inode.cache.low.water.mark.ratio=0.8

        在缓存使用达到 0.85 * alluxio.master.metastore.inode.cache.max.size时,缓存数据会开始驱逐,将缓存中的数据内容写入RocksDB存储。在缓存占用率降低到0.8时停止驱逐。

在HEAP和ROCKS模式间切换

        使用HEAP模式和ROCKS模式下Journal日志的格式不同,因此从一种模式切换到另一种不能通过简单的更改配置并重启Alluxio Master进程来完成。元数据存储模式的切换可以通过从备份中启动集群完成,见4.5章节。

        本文以Alluxio为例,简要介绍了分布式文件系统的元数据基本类型及其管理和优化方法,更多的数据访问优化细节可以进一步参考查阅Alluxio开源社区代码,也欢迎阅读最近机械工业出版社出版的技术书籍《分布式统一大数据虚拟文件系统——Alluxio原理、技术与实践》

图片

        本书以广泛使用的Alluxio 2.8.0开源版本为基础编写,深入介绍Alluxio相关分布式统一大数据文件系统的技术原理与实践案例,主要内容包括系统入门与使用、内核组件设计实现原理,同时详细介绍了大型企业应用案例与实践,并附有Alluxio的开源社区开发者指南。本书为Alluxio开源社区用户、高校大数据系统课程师生以及潜在企业用户提供了较为完整的技术指南和实用教程,既可作为大数据专业方向的专业教材,也可作为大数据从业者和研究者的重要专业资料。

特别预告:

9月21日晚20:00,本书三位作者顾荣,刘嘉承,毛宝龙老师将为大家带来“Alluxio: 加速新一代大数据与AI变革”的精彩直播。欢迎关注视频号“IT阅读排行榜”订阅直播提醒。

文末福利

  • 本次送书三本
  • 活动时间:截止到2023-09-13 10:00
  • 参与方式:关注博主文章下方公众号,编辑发送信息(第八期)点击链接参与抽奖

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/988708.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

手写RPC框架--8.压缩报文

RPC框架-Gitee代码(麻烦点个Starred, 支持一下吧) RPC框架-GitHub代码(麻烦点个Starred, 支持一下吧) 压缩报文 对报文进行压缩a.报文压缩b.负载均衡c.使用模板方法优化负载均衡d.一致性hash-负载均衡算法d.1) 介绍d.2) 实现 e.实现心跳检测f.最短响应时间的负载均衡策略 对报文…

vue 将public文件下的图片引入.vue文件内

data() {return {publicPath:process.env.BASE_URL,} }<div :style"{backgroundImage: url(${publicPath}images/tradingRegular_images/rectBg.png)}">11 </div>

从一个向量类中理解Python 中的特殊方法(__init__、__getitem__、__len__、__repr__、__str__)

文章目录 前言一、init、getitem、len、repr、str解释二、向量案例1.实现属于我们自己的向量2.导入向量模块 前言 特殊方法是一种具有特殊命名约定的方法&#xff0c;用来定义类的行为与功能。当满足特定条件时&#xff0c;这些方法会被自动调用&#xff0c;从而实现一些内置的…

Splunk Enterprise for Mac:卓越的数据分析与管理工具

在当今的数字化时代&#xff0c;数据已经成为企业成功的核心驱动力。然而&#xff0c;如何有效地管理和分析这些数据&#xff0c;却常常让企业感到困惑。Splunk Enterprise for Mac 是一款领先的数据分析和管理工具&#xff0c;可以帮助你解决这一难题。 Splunk Enterprise fo…

Nginx(动静分离、分配缓冲区、资源缓存、防盗链、资源压缩、IP黑白名单、大文件传输配置、跨域配置、高可用、性能优化)

Nginx&#xff0c;负载均衡&#xff0c;Http反向代理服务器&#xff0c;支持大部分协议&#xff0c;如TCP、UDP、SMTP、HTTPS 环境搭建 Nginx反向代理-负载均衡 首先通过SpringBootFreemarker快速搭建一个WEB项目&#xff1a;springboot-web-nginx&#xff0c;然后在该项目中&…

适用于Linux的Windows子系统(在VScode中开发Linux项目)

目录 前言 一、VScode扩展安装 二、挂载项目 1.连接 2.挂载&#xff08;挂载之后项目终端就是Linux了&#xff09; 3.愉快的搬砖开始了 4.前端如何通过内网 IP 本地访问到 Ubuntu 上&#xff1f; 总结 前言 系列分为三章&#xff08;从安装到项目使用&#xff09;&…

云端AI:释放企业创新力,打造智慧企业

文章目录 1. 云端AI的基本概念1.1 云计算1.2 人工智能1.3 云端AI 2. 云端AI的重要性2.1 成本效益2.2 弹性扩展2.3 无缝整合2.4 实时更新 3. 云端AI的应用领域3.1 智能客服3.2 预测分析3.3 自动化生产 4. 云端AI的未来趋势4.1 边缘计算与云端AI的融合4.2 可解释性AI4.3 隐私和安…

ORACLE的分区(一)

目录 一、分区概念 二、表分区的优点 三、分区策略 一、分区概念 随着时间的发展&#xff0c;一个表的数据会越来越多&#xff0c;当数据量增大的时候我们一般采取建立索引优化索引的方式提高查询速度&#xff0c;但是数据量再次增大即使是索引也无法提高速度&#xff0c;这时…

从金蝶云星空到聚水潭通过接口配置打通数据

从金蝶云星空到聚水潭通过接口配置打通数据 源系统:金蝶云星空 金蝶K/3Cloud&#xff08;金蝶云星空&#xff09;是移动互联网时代的新型ERP&#xff0c;是基于WEB2.0与云技术的新时代企业管理服务平台。金蝶K/3Cloud围绕着“生态、人人、体验”&#xff0c;旨在帮助企业打造面…

代码随想录Day_59打卡

①、下一个更大元素Ⅱ 给定一个循环数组 nums &#xff08; nums[nums.length - 1] 的下一个元素是 nums[0] &#xff09;&#xff0c;返回 nums 中每个元素的 下一个更大元素 。 数字 x 的 下一个更大的元素 是按数组遍历顺序&#xff0c;这个数字之后的第一个比它更大的数&am…

REST风格【SpringBoot】

1.REST简介 行为动作 通常模块名使用复数&#xff0c;也就是加s 2.RESTful入门 Controller public class UserController {RequestMapping(value "/users", method RequestMethod.POST)public String save() {System.out.println("user save");return &…

pcie 总结

用户空间pci 常用命令 lspci 查看所有pci 设备 lspci -t 树形查看所有设备 lspci -s 00:1f.6 -vvv 查看某个设备所有信息 lspci -s 00:1f.6 -vvv -xxx 增加16进制看看 sudo cat /proc/iomen | grep PCI 查看所有地址映射 如何确定pcie io空间 内存空间大小 (1)读取出基地址…

视频监控/安防监控/AI视频分析/边缘计算/TSINGSEE青犀AI算法智慧仓储解决方案

随着全球经济与科学技术的双重推动&#xff0c;我国的仓储管理已经进入了高速发展时期&#xff0c;物流仓储也由简单的储藏仓库向智能化仓储转变。TSINGSEE青犀AI智慧仓储解决方案是利用先进的信息技术和物联网技术来提高仓储管理效率、降低成本的一种仓储管理模式。 方案功能 …

如何使用PyTorch训练LLM

推荐&#xff1a;使用 NSDT场景编辑器 快速搭建3D应用场景 像LangChain这样的库促进了上述端到端AI应用程序的实现。我们的教程介绍 LangChain for Data Engineering & Data Applications 概述了您可以使用 Langchain 做什么&#xff0c;包括 LangChain 解决的问题&#xf…

Facebook营销攻略:教你集中管理Facebook Business专页及广告

Facebook 在社交媒体间是无人不识的「霸主」&#xff0c;占据着主导地位&#xff0c;2020年 Facebook 创造了 859亿美元的收入&#xff0c;当中有大约600亿美元来自 Facebook 的应用程序&#xff0c;而 Facebook App 已被下载超过50亿次。作为全球最大型的社交媒体公司之一&…

2023年7月京东饮料行业数据分析(京东运营数据分析)

饮料消费已成为当下快消品行业里的主力军&#xff0c;随着社会群体喜好的改变、消费群体的不断扩大&#xff0c;可选择的饮料种类越来越多&#xff0c;我国饮料市场的体量也较为庞大。根据鲸参谋电商数据分析平台的数据显示&#xff0c;今年7月份&#xff0c;京东平台饮料的销量…

如何获得一个Oracle 23c免费开发者版

获取23c开发者版 简单介绍可参考这里。 获取数据库可以参考这篇文章Introducing Oracle Database 23c Free – Developer Release或这里。 Docker Image 这是最快的方法。在OCI上创建一个计算实例&#xff0c;然后就可以拉取image使用了。 docker的安装和配置不赘述了。 …

《DevOps实践指南》- 读书笔记(一)

DevOps实践指南 Part 1 DevOps 介绍精益运动敏捷宣言 1. 敏捷、持续交付和三步法1.1 制造业价值流1.2 技术价值流1.2.1 聚焦于部署前置时间1.2.2 关注返工指标——%C/A 1.3 三步工作法&#xff1a;DevOps 的基础原则 2. 第一步&#xff1a;流动原则2.1 使工作可见2.2 限制制品数…

Jenkins教程—构建多分支流水线项目

本教程向你展示如何使用Jenkins协调一个用 Node Package Manager (npm) 管理的简单 Node.js 和 React 项目&#xff0c; 并同时 为开发和产品环境交付不同的结果。 在开始本教程之前&#xff0c;建议你前往 教程概览 页面&#xff0c;并至少完成一个 介绍教程&#xff0c; 从而…

分布式秒杀方案--java

前提&#xff1a;先把商品详情和秒杀商品缓存redis中&#xff0c;减少对数据库的访问&#xff08;可使用定时任务&#xff09; 秒杀商品无非就是那几步&#xff08;前面还可能会有一些判断&#xff0c;如用户是否登录&#xff0c;一人一单&#xff0c;秒杀时间验证等&#xff0…