不就是G2O嘛

news2024/11/15 19:55:15

从零开始一起学习SLAM | 理解图优化,一步步带你看懂g2o代码

SLAM的后端一般分为两种处理方法,一种是以扩展卡尔曼滤波(EKF)为代表的滤波方法,一种是以图优化为代表的非线性优化方法。不过,目前SLAM研究的主流热点几乎都是基于图优化的。

顺便总结下滤波方法的优缺点:

优点:在当时计算资源受限、待估计量比较简单的情况下,EKF为代表的滤波方法比较有效,经常用在激光SLAM中。

缺点:它的一个大缺点就是存储量和状态量是平方增长关系,因为存储的是协方差矩阵,因此不适合大型场景。而现在基于视觉的SLAM方案,路标点(特征点)数据很大,滤波方法根本吃不消,所以此时滤波的方法效率非常低

在SLAM里,图优化一般分解为两个任务:

1、构建图。机器人位姿作为顶点,位姿间关系作为边。

2、优化图。调整机器人的位姿(顶点)来尽量满足边的约束,使得误差最小。

g2o安装很简单,参考GitHub上官网:

https://github.com/RainerKuemmerle/g2o

1.顶点和边 

注意看 has-many 箭头,你看这个超图包含了许多顶点(HyperGraph::Vertex)和边(HyperGraph::Edge)。而这些顶点顶点继承自 Base Vertex,也就是OptimizableGraph::Vertex,而边可以继承自 BaseUnaryEdge(单边), BaseBinaryEdge(双边)或BaseMultiEdge(多边),它们都叫做OptimizableGraph::Edge

2.配置SparseOptimizer的优化算法和求解器

整个图的核心SparseOptimizer 包含一个优化算法(OptimizationAlgorithm)的对象。OptimizationAlgorithm是通过OptimizationWithHessian 来实现的。其中迭代策略可以从Gauss-Newton(高斯牛顿法,简称GN), Levernberg-Marquardt(简称LM法), Powell's dogleg 三者中间选择一个(我们常用的是GN和LM)

3.如何求解 

OptimizationWithHessian 内部包含一个求解器(Solver),这个Solver实际是由一个BlockSolver组成的。这个BlockSolver有两个部分,一个是SparseBlockMatrix ,用于计算稀疏的雅可比和Hessian矩阵;一个是线性方程的求解器(LinearSolver),它用于计算迭代过程中最关键的一步HΔx=−b,LinearSolver有几种方法可以选择:PCG, CSparse, Choldmod,具体定义后面会介绍

高博在十四讲中g2o求解曲线参数的例子来说明,源代码地址

https://github.com/gaoxiang12/slambook/edit/master/ch6/g2o_curve_fitting/main.cpp

typedef g2o::BlockSolver< g2o::BlockSolverTraits<3,1> > Block;  // 每个误差项优化变量维度为3,误差值维度为1

// 第1步:创建一个线性求解器LinearSolver
Block::LinearSolverType* linearSolver = new g2o::LinearSolverDense<Block::PoseMatrixType>(); 

// 第2步:创建BlockSolver。并用上面定义的线性求解器初始化
Block* solver_ptr = new Block( linearSolver );      

// 第3步:创建总求解器solver。并从GN, LM, DogLeg 中选一个,再用上述块求解器BlockSolver初始化
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg( solver_ptr );

// 第4步:创建终极大boss 稀疏优化器(SparseOptimizer)
g2o::SparseOptimizer optimizer;     // 图模型
optimizer.setAlgorithm( solver );   // 设置求解器
optimizer.setVerbose( true );       // 打开调试输出

// 第5步:定义图的顶点和边。并添加到SparseOptimizer中
CurveFittingVertex* v = new CurveFittingVertex(); //往图中增加顶点
v->setEstimate( Eigen::Vector3d(0,0,0) );
v->setId(0);
optimizer.addVertex( v );
for ( int i=0; i<N; i++ )    // 往图中增加边
{
  CurveFittingEdge* edge = new CurveFittingEdge( x_data[i] );
  edge->setId(i);
  edge->setVertex( 0, v );                // 设置连接的顶点
  edge->setMeasurement( y_data[i] );      // 观测数值
  edge->setInformation( Eigen::Matrix<double,1,1>::Identity()*1/(w_sigma*w_sigma) ); // 信息矩阵:协方差矩阵之逆
  optimizer.addEdge( edge );//设置迭代次数
}

// 第6步:设置优化参数,开始执行优化
optimizer.initializeOptimization();
optimizer.optimize(100);

 1.线性求解器

LinearSolverCholmod :使用sparse cholesky分解法。继承自LinearSolverCCS
LinearSolverCSparse:使用CSparse法。继承自LinearSolverCCS
LinearSolverPCG :使用preconditioned conjugate gradient 法,继承自LinearSolver
LinearSolverDense :使用dense cholesky分解法。继承自LinearSolver
LinearSolverEigen: 依赖项只有eigen,使用eigen中sparse Cholesky 求解,因此编译好后可以方便的在其他地方使用,性能和CSparse差不多。继承自LinearSolver

2.创建BlockSolver。并用上面定义的线性求解器初始化。

BlockSolver 内部包含 LinearSolver,用上面我们定义的线性求解器LinearSolver来初始化。

你点进去会发现 BlockSolver有两种定义方式,一种是指定的固定变量的solver,我们来看一下定义

using BlockSolverPL = BlockSolver< BlockSolverTraits<p, l> >;

其中p代表pose的维度(注意一定是流形manifold下的最小表示),l表示landmark的维度

另一种是可变尺寸的solver,定义如下

using BlockSolverX = BlockSolverPL<Eigen::Dynamic, Eigen::Dynamic>;

 这是因为在某些应用场景,我们的Pose和Landmark在程序开始时并不能确定,那么此时这个块状求解器就没办法固定变量,此时使用这个可变尺寸的solver,所有的参数都在中间过程中被确定另外你看block_solver.h的最后,预定义了比较常用的几种类型,如下所示:

BlockSolver_6_3 :表示pose 是6维,观测点是3维。用于3D SLAM中的BA
BlockSolver_7_3:在BlockSolver_6_3 的基础上多了一个scale
BlockSolver_3_2:表示pose 是3维,观测点是2维

3.创建总求解器solver。并从GN, LM, DogLeg 中选一个,再用上述块求解器BlockSolver初始化

你点进去 GN、 LM、 Doglet算法内部,会发现他们都继承自同一个类OptimizationWithHessian,如下图所示,这也和我们最前面那个图是相符的。然后,我们点进去看 OptimizationAlgorithmWithHessian,发现它又继承自OptimizationAlgorithm,这也和前面的相符,总之,在该阶段,我们可以选则三种方法:

g2o::OptimizationAlgorithmGaussNewton
g2o::OptimizationAlgorithmLevenberg 
g2o::OptimizationAlgorithmDogleg 

4.创建终极大boss 稀疏优化器(SparseOptimizer),并用已定义求解器作为求解方法。

创建稀疏优化器

g2o::SparseOptimizer    optimizer;

用前面定义好的求解器作为求解方法:

SparseOptimizer::setAlgorithm(OptimizationAlgorithm* algorithm)

其中setVerbose是设置优化过程输出信息用的

SparseOptimizer::setVerbose(bool verbose)

5.定义图的顶点和边。并添加到SparseOptimizer中。

6.设置优化参数,开始执行优化。

设置SparseOptimizer的初始化、迭代次数、保存结果等。

SparseOptimizer::initializeOptimization(HyperGraph::EdgeSet& eset)

设置迭代次数,然后就开始执行图优化了。

SparseOptimizer::optimize(int iterations, bool online)

https://www.jianshu.com/p/e16ffb5b265d

https://blog.csdn.net/heyijia0327/article/details/47686523

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/985589.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Oracle数据库开发者工具

和开发者相关的数据库特性&#xff0c;功能与工具列举如下&#xff0c;但不限于以下。因为Oracle数据库中的许多功能其实都间接的和开发者发生关系&#xff0c;如Oracle高级安全选件中的透明数据加密&#xff0c;数据编辑。Oracle Spatial and Graph&#xff08;地理空间与图&a…

ansible搭建

一&#xff0c;ansible是一种由Python开发的自动化运维工具&#xff0c;集合了众多运维工具&#xff08;puppet、cfengine、chef、func、fabric&#xff09;的优点&#xff0c;实现了批量系统配置、批量程序部署、批量运行命令等功能 二&#xff0c;特点 * 部署简单 * **默认…

数据结构入门-13-图

文章目录 一、图的概述1.1 图论的作用1.2 图的分类1.2.1 无向图1.2.2 有向图1.2.3 无权图1.2.4 有劝图 1.3 图的基本概念 二、树的基本表示2.1 邻接矩阵2.1.1 邻接矩阵 表示图2.1.2 邻接矩阵的复杂度 2.2 邻接表2.2.1 邻接表的复杂度2.2.2 邻接表By哈希表 三、图的深度优先遍历…

LLM文章阅读:Baichuan 2 干货

如有转载&#xff0c;请注明出处。欢迎关注微信公众号&#xff1a;低调奋进。打算开始写LLM系列文章&#xff0c;主要从数据、训练框架、对齐等方面进行LLM整理。 Baichuan 2: Open Large-scale Language Models 原始文章链接 https://cdn.baichuan-ai.com/paper/Baichuan2-…

Element Plus table formatter函数返回html内容

查看 Element Plus table formatter 支持返回 类型为string 和 VNode对象&#xff1b; 若依全局直接用h函数&#xff0c;无需引用 下面普通基本用法&#xff1a;在Element Plus中&#xff0c;你可以使用自定义的formatter函数来返回VNode对象&#xff0c;从而实现更灵活的自定…

FasterNet(PConv)paper笔记(CVPR2023)

论文&#xff1a;Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural Networks 先熟悉两个概念&#xff1a;FLOPS和FLOPs&#xff08;s一个大写一个小写&#xff09; FLOPS: FLoating point Operations Per Second的缩写&#xff0c;即每秒浮点运算次数&#xff0c;或…

Pytorch实现鸟类品种分类识别(含训练代码和鸟类数据集)

Pytorch实现鸟类品种分类识别(含训练代码和鸟类数据集) 目录 Pytorch实现鸟类品种分类识别(含训练代码和鸟类数据集) 1. 前言 2. 鸟类数据集 &#xff08;1&#xff09;Bird-Dataset26 &#xff08;2&#xff09;自定义数据集 3. 鸟类分类识别模型训练 &#xff08;1&a…

核心实验13合集_vlan mapping 和QinQ_ENSP

项目场景一&#xff1a; 核心实验13合集-1_vlan高级配置_ENSP vlan mapping vlan转换 将用户端发来的vlan30-31的标签全部转换成vlan100向上发送 相关知识点&#xff1a; 定义: VLAN Mapping通过修改报文携带的VLAN Tag来实现不同VLAN的相互映 射。 目的: 在某些场景中&#xf…

c语言数组的用法

c语言数组的用法如下&#xff1a; 一维数组的定义方式 在C语言中使用数组必须先进行定义。一维数组的定义方式为&#xff1a; 类型说明符 数组名 [常量表达式]; 其中&#xff0c;类型说明符是任一种基本数据类型或构造数据类型。数组名是用户定义的数组标识符。方括号中的常量表…

原生js之dom表单改变和鼠标常用事件

那么好,本次我们聊聊表单改变时如何利用onchange方法来触发input改变事件以及鼠标常用的滑入滑出,点击down和点击up事件. 关于onchange方法 onchange方法在鼠标输入完后点击任何非输入框位置时触发.触发时即可改变原有输入框的值. out 、leave、over、down、up鼠标方法 当用…

YOLOV7改进-空洞卷积+共享权重的Scale-Aware RFE

代码 1、先把文件复制到common.py中 2、yolo.py添加类名 3、下半部分进行添加修改 4、cfg-training&#xff1a;新建配置文件 加了一行&#xff0c;后面对于序号1 5、这里选择12层替代

软件第三方测评机构简析:良好的测试环境对软件产品起到的作用

近年来&#xff0c;软件行业发展迅速&#xff0c;软件产品的质量成为用户关注的焦点。而软件的质量评估往往需要依赖专业的第三方测评机构&#xff0c;为了更好地了解软件测试环境对产品质量的重要性&#xff0c;小编整理了以下简析&#xff1a; 一、良好的测试环境对软件产品…

Redis是单线程Or多线程?单线程为什么反而快?

0. 从什么角度看是单线程or多线程 从总体角度来&#xff0c;redis是单线程的&#xff1a; Redis 单线程指的是&#xff1a; 「接收客户端请求->解析请求 ->进行数据读写等操作->发送数据给客户端」 这个过程是由一个线程&#xff08;主线程&#xff09;来完成的…

【Leetcode刷题】哈希

本篇文章为 LeetCode 哈希模块的刷题笔记&#xff0c;仅供参考。 哈希表是一种使用哈希函数组织数据&#xff0c;以支持快速插入和搜索的数据结构。哈希表通过哈希函数通过将任意类型的数据映射到固定大小的数据&#xff0c;以实现快速查找和存储数据。C 中的无序容器 unorder…

音视频编码格式-AAC ADT

1408(16进制) : 0001 0100 0000 1000 audioObjectType为 00010 , 即 2&#xff0c; profie (audioObjectType -1 ) AAC LC samplingFrequencyIndex为 1000 , 即 8 , 对应的采样频率为 16000 channelConfiguration为 0001 , 表示channel数量为1

10、哈希函数与哈希表

哈希函数 出现次数最多的 32G 小文件方法&#xff1a;利用哈希函数在种类上均分 设计RandomPool结构 设计一种结构&#xff0c;在该结构中有如下三个功能: insert(key):将某个key加入到该结构&#xff0c;做到不重复加入 delete(key):将原本在结构中的某个key移除 getRando…

电商3D资产优化管线的自动化

如果你曾经尝试将从 CAD 程序导出的 3D 模型上传到 WebGL 或 AR 服务&#xff0c;那么可能会遇到最大文件大小、永无休止的进度条和糟糕的帧速率等问题。 为了创作良好的在线交互体验&#xff0c;优化 3D 数据的大小和性能至关重要。 这也有利于你的盈利&#xff0c;因为较小的…

识别评估项目风险常用6大方法

提前识别和评估项目风险&#xff0c;有助于风险预防和规避&#xff0c;从而提前采取预防措施&#xff0c;有效避免和减少风险的发生&#xff0c;防止风险进一步扩大和恶化。如果没有提前识别风险&#xff0c;没有及时处理风险问题&#xff0c;往往造成项目交付延迟、成本超支等…

实时监测与优化:3D车辆状态可视化的崭新前景

当谈到车辆状态可视化时&#xff0c;我们进入了数字化时代的新境界。这不仅是一种技术革命&#xff0c;更是一种全新的智能化管理方式&#xff0c;为车辆运营提供了前所未有的便利和效率。以下是3D车辆状态可视化的一些关键方面&#xff0c;以及它如何改变了我们的交通和物流管…

RT-DETR个人整理向理解

一、前言 在开始介绍RT-DETR这个网络之前&#xff0c;我们首先需要先了解DETR这个系列的网络与我们常提及的anchor-base以及anchor-free存在着何种差异。 首先我们先简单讨论一下anchor-base以及anchor-free两者的差异与共性&#xff1a; 1、两者差异&#xff1a;顾名思义&…