01-从JDK源码级别剖析JVM类加载机制

news2025/1/12 16:12:38

1. 类加载运行全过程

当我们用java命令运行某个类的main函数启动程序时,首先需要通过类加载器把主类加载到JVM。

public class Math {
    public static final int initData = 666;
    public static User user = new User();

    public int compute() {  //一个方法对应一块栈帧内存区域
        int a = 1;
        int b = 2;
        int c = (a + b) * 10;
        return c;
    }

    public static void main(String[] args) {
        Math math = new Math();
        math.compute();
    }
}

通过Java命令执行代码的大体流程如下:
在这里插入图片描述
其中loadClass的类加载过程有如下几步:
加载 >> 验证 >> 准备 >> 解析 >> 初始化 >> 使用 >> 卸载

  • 加载:在硬盘上查找并通过IO读入字节码文件,使用到类时才会加载,例如调用类的main()方法,new对象等等,在加载阶段会在内存中生成一个代表这个类的java.lang.Class对象,作为方法区这个类的各种数据的访问入口
  • 验证:校验字节码文件的正确性
    v准备:给类的静态变量分配内存,并赋予默认值
  • 解析:将符号引用替换为直接引用,该阶段会把一些静态方法(符号引用,比如main()方法)替换为指向数据所存内存的指针或句柄等(直接引用),这是所谓的静态链接过程(类加载期间完成),动态链接是在程序运行期间完成的将符号引用替换为直接引用,下节课会讲到动态链接
  • 初始化:对类的静态变量初始化为指定的值,执行静态代码块
    在这里插入图片描述
    类被加载到方法区中后主要包含 运行时常量池、类型信息、字段信息、方法信息、类加载器的引用、对应class实例的引用等信息。
    类加载器的引用: 这个类到类加载器实例的引用
    对应class实例的引用: 类加载器在加载类信息放到方法区中后,会创建一个对应的Class 类型的对象实例放到堆(Heap)中, 作为开发人员访问方法区中类定义的入口和切入点。

注意,主类在运行过程中如果使用到其它类,会逐步加载这些类。
jar包或war包里的类不是一次性全部加载的,是使用到时才加载。

public class TestDynamicLoad {

    static {
        System.out.println("*************load TestDynamicLoad************");
    }

    public static void main(String[] args) {
        new A();
        System.out.println("*************load test************");
        B b = null;  //B不会加载,除非这里执行 new B()
    }
}

class A {
    static {
        System.out.println("*************load A************");
    }

    public A() {
        System.out.println("*************initial A************");
    }
}

class B {
    static {
        System.out.println("*************load B************");
    }

    public B() {
        System.out.println("*************initial B************");
    }
}

运行结果:

*************load TestDynamicLoad************
*************load A************
*************initial A************
*************load test************

2. 类加载器

上面的类加载过程主要是通过类加载器来实现的,Java里有如下几种类加载器

  1. 引导类加载器: 负责加载支撑JVM运行的位于JRE的lib目录下的核心类库,比如rt.jar、charsets.jar等
  2. 扩展类加载器: 负责加载支撑JVM运行的位于JRE的lib目录下的ext扩展目录中的JAR类包
  3. 应用程序类加载器: 负责加载ClassPath路径下的类包,主要就是加载你自己写的那些类
  4. 自定义加载器: 负责加载用户自定义路径下的类包

看一个类加载器示例:

public class TestJDKClassLoader {

    public static void main(String[] args) {
        System.out.println(String.class.getClassLoader());
        System.out.println(com.sun.crypto.provider.DESKeyFactory.class.getClassLoader().getClass().getName());
        System.out.println(TestJDKClassLoader.class.getClassLoader().getClass().getName());

        System.out.println();
        ClassLoader appClassLoader = ClassLoader.getSystemClassLoader();
        ClassLoader extClassloader = appClassLoader.getParent();
        ClassLoader bootstrapLoader = extClassloader.getParent();
        System.out.println("the bootstrapLoader : " + bootstrapLoader);
        System.out.println("the extClassloader : " + extClassloader);
        System.out.println("the appClassLoader : " + appClassLoader);

        System.out.println();
        System.out.println("bootstrapLoader加载以下文件:");
        URL[] urls = Launcher.getBootstrapClassPath().getURLs();
        for (int i = 0; i < urls.length; i++) {
            System.out.println(urls[i]);
        }

        System.out.println();
        System.out.println("extClassloader加载以下文件:");
        System.out.println(System.getProperty("java.ext.dirs"));

        System.out.println();
        System.out.println("appClassLoader加载以下文件:");
        System.out.println(System.getProperty("java.class.path"));
    }
}

运行结果:

null
sun.misc.Launcher$ExtClassLoader
sun.misc.Launcher$AppClassLoader

the bootstrapLoader : null
the extClassloader : sun.misc.Launcher$ExtClassLoader@3764951d
the appClassLoader : sun.misc.Launcher$AppClassLoader@14dad5dc

bootstrapLoader加载以下文件:
file:/D:/dev/Java/jdk1.8.0_45/jre/lib/resources.jar
file:/D:/dev/Java/jdk1.8.0_45/jre/lib/rt.jar
file:/D:/dev/Java/jdk1.8.0_45/jre/lib/sunrsasign.jar
file:/D:/dev/Java/jdk1.8.0_45/jre/lib/jsse.jar
file:/D:/dev/Java/jdk1.8.0_45/jre/lib/jce.jar
file:/D:/dev/Java/jdk1.8.0_45/jre/lib/charsets.jar
file:/D:/dev/Java/jdk1.8.0_45/jre/lib/jfr.jar
file:/D:/dev/Java/jdk1.8.0_45/jre/classes

extClassloader加载以下文件:
D:\dev\Java\jdk1.8.0_45\jre\lib\ext;C:\Windows\Sun\Java\lib\ext

appClassLoader加载以下文件:
D:\dev\Java\jdk1.8.0_45\jre\lib\charsets.jar;D:\dev\Java\jdk1.8.0_45\jre\lib\deploy.jar;D:\dev\Java\jdk1.8.0_45\jre\lib\ext\access-bridge-64.jar;D:\dev\Java\jdk1.8.0_45\jre\lib\ext\cldrdata.jar;D:\dev\Java\jdk1.8.0_45\jre\lib\ext\dnsns.jar;D:\dev\Java\jdk1.8.0_45\jre\lib\ext\jaccess.jar;D:\dev\Java\jdk1.8.0_45\jre\lib\ext\jfxrt.jar;D:\dev\Java\jdk1.8.0_45\jre\lib\ext\localedata.jar;D:\dev\Java\jdk1.8.0_45\jre\lib\ext\nashorn.jar;D:\dev\Java\jdk1.8.0_45\jre\lib\ext\sunec.jar;D:\dev\Java\jdk1.8.0_45\jre\lib\ext\sunjce_provider.jar;D:\dev\Java\jdk1.8.0_45\jre\lib\ext\sunmscapi.jar;D:\dev\Java\jdk1.8.0_45\jre\lib\ext\sunpkcs11.jar;D:\dev\Java\jdk1.8.0_45\jre\lib\ext\zipfs.jar;D:\dev\Java\jdk1.8.0_45\jre\lib\javaws.jar;D:\dev\Java\jdk1.8.0_45\jre\lib\jce.jar;D:\dev\Java\jdk1.8.0_45\jre\lib\jfr.jar;D:\dev\Java\jdk1.8.0_45\jre\lib\jfxswt.jar;D:\dev\Java\jdk1.8.0_45\jre\lib\jsse.jar;D:\dev\Java\jdk1.8.0_45\jre\lib\management-agent.jar;D:\dev\Java\jdk1.8.0_45\jre\lib\plugin.jar;D:\dev\Java\jdk1.8.0_45\jre\lib\resources.jar;D:\dev\Java\jdk1.8.0_45\jre\lib\rt.jar;D:\ideaProjects\project-all\target\classes;C:\Users\zhuge\.m2\repository\org\apache\zookeeper\zookeeper\3.4.12\zookeeper-3.4.12.jar;C:\Users\zhuge\.m2\repository\org\slf4j\slf4j-api\1.7.25\slf4j-api-1.7.25.jar;C:\Users\zhuge\.m2\repository\org\slf4j\slf4j-log4j12\1.7.25\slf4j-log4j12-1.7.25.jar;C:\Users\zhuge\.m2\repository\log4j\log4j\1.2.17\log4j-1.2.17.jar;C:\Users\zhuge\.m2\repository\jline\jline\0.9.94\jline-0.9.94.jar;C:\Users\zhuge\.m2\repository\org\apache\yetus\audience-annotations\0.5.0\audience-annotations-0.5.0.jar;C:\Users\zhuge\.m2\repository\io\netty\netty\3.10.6.Final\netty-3.10.6.Final.jar;C:\Users\zhuge\.m2\repository\com\google\guava\guava\22.0\guava-22.0.jar;C:\Users\zhuge\.m2\repository\com\google\code\findbugs\jsr305\1.3.9\jsr305-1.3.9.jar;C:\Users\zhuge\.m2\repository\com\google\errorprone\error_prone_annotations\2.0.18\error_prone_annotations-2.0.18.jar;C:\Users\zhuge\.m2\repository\com\google\j2objc\j2objc-annotations\1.1\j2objc-annotations-1.1.jar;C:\Users\zhuge\.m2\repository\org\codehaus\mojo\animal-sniffer-annotations\1.14\animal-sniffer-annotations-1.14.jar;D:\dev\IntelliJ IDEA 2018.3.2\lib\idea_rt.jar

2.1 类加载器初始化过程

参见类运行加载全过程图可知其中会创建JVM启动器实例sun.misc.Launcher。
在Launcher构造方法内部,其创建了两个类加载器,分别是sun.misc.Launcher.ExtClassLoader(扩展类加载器)和sun.misc.Launcher.AppClassLoader(应用类加载器)。
JVM默认使用Launcher的getClassLoader()方法返回的类加载器AppClassLoader的实例加载我们的应用程序。

//Launcher的构造方法
public Launcher() {
    Launcher.ExtClassLoader var1;
    try {
        //构造扩展类加载器,在构造的过程中将其父加载器设置为null
        var1 = Launcher.ExtClassLoader.getExtClassLoader();
    } catch (IOException var10) {
        throw new InternalError("Could not create extension class loader", var10);
    }

    try {
        //构造应用类加载器,在构造的过程中将其父加载器设置为ExtClassLoader,
        //Launcher的loader属性值是AppClassLoader,我们一般都是用这个类加载器来加载我们自己写的应用程序
        this.loader = Launcher.AppClassLoader.getAppClassLoader(var1);
    } catch (IOException var9) {
        throw new InternalError("Could not create application class loader", var9);
    }

    Thread.currentThread().setContextClassLoader(this.loader);
    String var2 = System.getProperty("java.security.manager");
    。。。 。。。 //省略一些不需关注代码

}

3. 双亲委派机制

JVM类加载器是有亲子层级结构的,如下图:
在这里插入图片描述
这里类加载其实就有一个双亲委派机制,加载某个类时会先委托父加载器寻找目标类,找不到再委托上层父加载器加载,如果所有父加载器在自己的加载类路径下都找不到目标类,则在自己的类加载路径中查找并载入目标类。
比如我们的Math类,最先会找应用程序类加载器加载,应用程序类加载器会先委托扩展类加载器加载,扩展类加载器再委托引导类加载器,顶层引导类加载器在自己的类加载路径里找了半天没找到Math类,则向下退回加载Math类的请求,扩展类加载器收到回复就自己加载,在自己的类加载路径里找了半天也没找到Math类,又向下退回Math类的加载请求给应用程序类加载器,应用程序类加载器于是在自己的类加载路径里找Math类,结果找到了就自己加载了。

双亲委派机制说简单点就是:先找父亲加载,不行再由儿子自己加载。

我们来看下应用程序类加载器AppClassLoader加载类的双亲委派机制源码,AppClassLoader的loadClass方法最终会调用其父类ClassLoader的loadClass方法,该方法的大体逻辑如下:

  1. 首先,检查一下指定名称的类是否已经加载过,如果加载过了,就不需要再加载,直接返回。
    如果此类没有加载过,那么,再判断一下是否有父加载器;如果有父加载器,则由父加载器加载(即2. 调用parent.loadClass(name, false);).或者是调用bootstrap类加载器来加载。
  2. 如果父加载器及bootstrap类加载器都没有找到指定的类,那么调用当前类加载器的findClass方法来完成类加载。
//ClassLoader的loadClass方法,里面实现了双亲委派机制
protected Class<?> loadClass(String name, boolean resolve)
    throws ClassNotFoundException
{
    synchronized (getClassLoadingLock(name)) {
        // 检查当前类加载器是否已经加载了该类
        Class<?> c = findLoadedClass(name);
        if (c == null) {
            long t0 = System.nanoTime();
            try {
                if (parent != null) {  //如果当前加载器父加载器不为空则委托父加载器加载该类
                    c = parent.loadClass(name, false);
                } else {  //如果当前加载器父加载器为空则委托引导类加载器加载该类
                    c = findBootstrapClassOrNull(name);
                }
            } catch (ClassNotFoundException e) {
                // ClassNotFoundException thrown if class not found
                // from the non-null parent class loader
            }

            if (c == null) {
                // If still not found, then invoke findClass in order
                // to find the class.
                long t1 = System.nanoTime();
                //都会调用URLClassLoader的findClass方法在加载器的类路径里查找并加载该类
                c = findClass(name);

                // this is the defining class loader; record the stats
                sun.misc.PerfCounter.getParentDelegationTime().addTime(t1 - t0);
                sun.misc.PerfCounter.getFindClassTime().addElapsedTimeFrom(t1);
                sun.misc.PerfCounter.getFindClasses().increment();
            }
        }
        if (resolve) {  //不会执行
            resolveClass(c);
        }
        return c;
    }
}

为什么要设计双亲委派机制?

  • 沙箱安全机制: 自己写的java.lang.String.class类不会被加载,这样便可以防止核心API库被随意篡改
  • 避免类的重复加载: 当父亲已经加载了该类时,就没有必要子ClassLoader再加载一次,保证被加载类的唯一性

看一个类加载示例:

package java.lang;

public class String {
    public static void main(String[] args) {
        System.out.println("**************My String Class**************");
    }
}

运行结果:

错误: 在类 java.lang.String 中找不到 main 方法, 请将 main 方法定义为:
   public static void main(String[] args)
否则 JavaFX 应用程序类必须扩展javafx.application.Application

4. 全盘负责委托机制

全盘负责”是指当一个ClassLoder装载一个类时,除非显示的使用另外一个ClassLoder,该类所依赖及引用的类也由这个ClassLoder载入。

自定义类加载器示例:
自定义类加载器只需要继承 java.lang.ClassLoader 类,该类有两个核心方法,一个是loadClass(String, boolean),实现了双亲委派机制,还有一个方法是findClass,默认实现是空方法,所以我们自定义类加载器主要是重写findClass方法。

public class MyClassLoaderTest {
    static class MyClassLoader extends ClassLoader {
        private String classPath;

        public MyClassLoader(String classPath) {
            this.classPath = classPath;
        }

        private byte[] loadByte(String name) throws Exception {
            name = name.replaceAll("\\.", "/");
            FileInputStream fis = new FileInputStream(classPath + "/" + name
                    + ".class");
            int len = fis.available();
            byte[] data = new byte[len];
            fis.read(data);
            fis.close();
            return data;
        }

        protected Class<?> findClass(String name) throws ClassNotFoundException {
            try {
                byte[] data = loadByte(name);
                //defineClass将一个字节数组转为Class对象,这个字节数组是class文件读取后最终的字节数组。
                return defineClass(name, data, 0, data.length);
            } catch (Exception e) {
                e.printStackTrace();
                throw new ClassNotFoundException();
            }
        }

    }

    public static void main(String args[]) throws Exception {
        //初始化自定义类加载器,会先初始化父类ClassLoader,其中会把自定义类加载器的父加载器设置为应用程序类加载器AppClassLoader
        MyClassLoader classLoader = new MyClassLoader("D:/test");
        //D盘创建 test/com/tuling/jvm 几级目录,将User类的复制类User1.class丢入该目录
        Class clazz = classLoader.loadClass("com.tuling.jvm.User1");
        Object obj = clazz.newInstance();
        Method method = clazz.getDeclaredMethod("sout", null);
        method.invoke(obj, null);
        System.out.println(clazz.getClassLoader().getClass().getName());
    }
}

运行结果:
=======自己的加载器加载类调用方法=======
com.gwx.jvm.MyClassLoaderTest$MyClassLoader

5. 打破双亲委派机制

再来一个沙箱安全机制示例,尝试打破双亲委派机制,用自定义类加载器加载我们自己实现的 java.lang.String.class

public class MyClassLoaderTest {
    static class MyClassLoader extends ClassLoader {
        private String classPath;

        public MyClassLoader(String classPath) {
            this.classPath = classPath;
        }

        private byte[] loadByte(String name) throws Exception {
            name = name.replaceAll("\\.", "/");
            FileInputStream fis = new FileInputStream(classPath + "/" + name
                    + ".class");
            int len = fis.available();
            byte[] data = new byte[len];
            fis.read(data);
            fis.close();
            return data;

        }

        protected Class<?> findClass(String name) throws ClassNotFoundException {
            try {
                byte[] data = loadByte(name);
                return defineClass(name, data, 0, data.length);
            } catch (Exception e) {
                e.printStackTrace();
                throw new ClassNotFoundException();
            }
        }

        /**
         * 重写类加载方法,实现自己的加载逻辑,不委派给双亲加载
         * @param name
         * @param resolve
         * @return
         * @throws ClassNotFoundException
         */
        protected Class<?> loadClass(String name, boolean resolve)
                throws ClassNotFoundException {
            synchronized (getClassLoadingLock(name)) {
                // First, check if the class has already been loaded
                Class<?> c = findLoadedClass(name);

                if (c == null) {
                    // If still not found, then invoke findClass in order
                    // to find the class.
                    long t1 = System.nanoTime();
                    c = findClass(name);

                    // this is the defining class loader; record the stats
                    sun.misc.PerfCounter.getFindClassTime().addElapsedTimeFrom(t1);
                    sun.misc.PerfCounter.getFindClasses().increment();
                }
                if (resolve) {
                    resolveClass(c);
                }
                return c;
            }
        }
    }

    public static void main(String args[]) throws Exception {
        MyClassLoader classLoader = new MyClassLoader("D:/test");
        //尝试用自己改写类加载机制去加载自己写的java.lang.String.class
        Class clazz = classLoader.loadClass("java.lang.String");
        Object obj = clazz.newInstance();
        Method method= clazz.getDeclaredMethod("sout", null);
        method.invoke(obj, null);
        System.out.println(clazz.getClassLoader().getClass().getName());
    }
}

运行结果:

java.lang.SecurityException: Prohibited package name: java.lang
	at java.lang.ClassLoader.preDefineClass(ClassLoader.java:659)
	at java.lang.ClassLoader.defineClass(ClassLoader.java:758)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/981323.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

整理mongodb文档:事务(一)

个人博客 整理mongodb文档:事务(一) 原文链接&#xff0c;个人博客 求关注&#xff0c;本文主要讲下怎么在mongose下使用事务&#xff0c;建议电脑端看 文章概叙 本文的开发环境为Nodejs&#xff0c;在‘单机模式’讲解最基本的事务概念。并没有涉及分片以及集群&#xff0…

《向量数据库指南》——AI原生向量数据库Milvus Cloud 2.3新功能

New Feature Upsert 功能 支持用户通过 upsert 接口更新或插入数据。已知限制,自增 id 不支持 upsert;upsert 是内部实现是 delete + insert所以性能上会有一定损耗,如果明确知道是写入数据的场景请继续使用 insert。 Range Search 功能 支持用户通过输入参数指定 search 的…

TortoiseGit设置作者信息和用户名、密码存储

前言 Git 客户端每次与服务器交互&#xff0c;都需要输入密码&#xff0c;但是我们可以配置保存密码&#xff0c;只需要输入一次&#xff0c;就不再需要输入密码。 操作说明 在任意文件夹下&#xff0c;空白处&#xff0c;鼠标右键点击 在弹出菜单中按照下图点击 依次点击下…

LLVM 与代码混淆技术

项目源码 什么是 LLVM LLVM 计划启动于2000年&#xff0c;开始由美国 UIUC 大学的 Chris Lattner 博士主持开展&#xff0c;后来 Apple 也加入其中。最初的目的是开发一套提供中间代码和编译基础设施的虚拟系统。 LLVM 命名最早源自于底层虚拟机&#xff08;Low Level Virtu…

LEARN GIT

概念 基础概念 本地电脑 代码区&#xff1a;工作区间&#xff0c;放代码的地方 暂存区&#xff1a;git所管理的暂存区域 本地仓库&#xff1a;git所管理的本机的硬盘区域 远程电脑 远程仓库&#xff1a;github、gitee 代码提交管理的过程 代码区------->暂存区-------&…

关于 RK3568的linux系统killed用户应用进程(用户现象为崩溃) 的解决方法

若该文为原创文章&#xff0c;转载请注明原文出处 本文章博客地址&#xff1a;https://hpzwl.blog.csdn.net/article/details/132710642 红胖子网络科技博文大全&#xff1a;开发技术集合&#xff08;包含Qt实用技术、树莓派、三维、OpenCV、OpenGL、ffmpeg、OSG、单片机、软硬…

模拟Proactor模式实现 I/O 处理单元

编写main.cpp 1.socket通信 服务器应用程序可以通过读取和写入 Socket 对象 来监听来自客户端的请求并向客户端返回响应 #define MAX_FD 65536 // 最大的文件描述符个数 #define MAX_EVENT_NUMBER 10000 // 监听的最大的事件数量 // 添加信号捕捉 void addsig(int sig, …

【MySQL】索引 详解

索引 详解 一. 概念二. 作用三. 使用场景四. 操作五. 索引背后的数据结构B-树B树聚簇索引与非聚簇索引 一. 概念 索引是一种特殊的文件&#xff0c;包含着对数据表里所有记录的引用指针。可以对表中的一列或多列创建索引&#xff0c;并指定索引的类型&#xff0c;各类索引有各…

机器学习的特征工程

字典特征提取 def dict_demo():"""字典特征提取:return:"""data [{city: 北京, temperature: 100}, {city: 上海, temperature: 60}, {city: 深圳, temperature: 30}]# data [{city:[北京,上海,深圳]},{temperature:["100","6…

《机器人学一(Robotics(1))》_台大林沛群 第 5 周【机械手臂 轨迹规划】 Quiz 5

我又行了&#xff01;&#x1f923; 求解的 位置 可能会有 变动&#xff0c;根据求得的A填写相应值即可。注意看题目。 coursera链接 文章目录 第1题 Cartesian space求解 题1-3 的 Python 代码 第2题第3题第4题 Joint space求解 题4-6 的 Python 代码 第5题第6题其它可参考代…

leetcode 88:合并两个有序数组 。 双指针解法

题目 算法 双指针 code var merge function(nums1, m, nums2, n) {// 其实就是一个nums1数组从后向前的降序重排&#xff0c;从最后开始&#xff0c;比较nums1有效位置和nums2当前位置数的大小&#xff0c;依次填入&#xff0c;nums2最后若有剩余&#xff0c;则再多一步从后…

9、补充视频

改进后的dijkstra算法 利用小根堆 将小根堆特定位置更改,再改成小根堆 nodeHeap.addOrUpdateOrIgnore(edge.to, edge.weight + distance);//改进后的dijkstra算法 //从head出发,所有head能到达的节点,生成到达每个节点的最小路径记录并返回 public static HashMap<No…

Bytebase 和 GitLab 签署 Technology Partner 技术合作伙伴协议

Bytebase 和 GitLab 签署技术合作伙伴协议&#xff0c;携手为开发者提供流畅的数据库协作开发和管理体验。 GitLab 是世界领先的开源 AI 驱动 DevSecOps 平台&#xff0c;旨在帮助开发者团队更好协作、更高效交付软件。Bytebase 是一款为 DevOps 团队准备的数据库 CI/CD 工具&a…

一文讲解Linux内核内存管理架构

内存管理子系统可能是linux内核中最为复杂的一个子系统&#xff0c;其支持的功能需求众多&#xff0c;如页面映射、页面分配、页面回收、页面交换、冷热页面、紧急页面、页面碎片管理、页面缓存、页面统计等&#xff0c;而且对性能也有很高的要求。本文从内存管理硬件架构、地址…

上海控安携汽车网络安全新研产品出席AUTOSEMO“恒以致远,共创共赢”主题研讨会

8月31日&#xff0c;AUTOSEMO“恒以致远&#xff0c;共创共赢”主题研讨会在天津成功召开。本次大会由中国汽车工业协会软件分会中国汽车基础软件生态标委会&#xff08;简称&#xff1a;AUTOSEMO&#xff09;与天津市西青区人民政府联合主办。现场汇聚了100余位来自产学研政企…

单片机-LED介绍

简介 LED 即发光二极管。它具有单向导电性&#xff0c;通过 5mA 左右电流即可发光 电流 越大&#xff0c;其亮度越强&#xff0c;但若电流过大&#xff0c;会烧毁二极管&#xff0c;一般我们控制在 3 mA-20mA 之间&#xff0c;通常我们会在 LED 管脚上串联一个电阻&#xff0c…

unity 控制Dropdown的Arrow箭头变化

Dropdown打开下拉菜单会以“Template”为模板创建一个Dropdown List&#xff0c;在“Template”上添加一个脚本在Start()中执行下拉框打开时的操作&#xff0c;在OnDestroy()中执行下拉框收起时的操作即可。 效果代码如下用于控制Arrow旋转可以根据自己的想法进行修改&#xff…

雷达有源干扰识别仿真

各类干扰信号 基于数字射频存储(DRFM)技术的雷达干扰系统有三种工作方式&#xff1a;转发方式、应答方式和噪声方式&#xff0c;即&#xff0c;对应有三种干扰类型。 噪声干扰 DRFM干扰系统在噪声工作方式下不但可以产生传统噪声干扰&#xff0c;还可以通过将数字噪声调制到干…

网络空间内生安全数学基础(1)——背景

目录 &#xff08;一&#xff09;内生安全基本定义及实现什么是内生安全理论内生安全理论实现方法动态性异构性冗余性 &#xff08;二&#xff09;安全防御和可靠性问题起源内生安全防御、可靠性保证与香农可靠通信 &#xff08;三&#xff09;总结 &#xff08;一&#xff09;…

C语言sizeof()计算空间大小为8的问题

在练习数据结构过程中&#xff0c;定义指针p&#xff0c;并且申请了10个char类型空间&#xff0c;但在计算p所指空间大小时候&#xff0c;发现了一些奇怪的现象。 #include <stdio.h> #include <stdlib.h>int main(){char s[12];printf("the size of memory …