【Redis专题】Redis持久化、主从与哨兵架构详解

news2024/11/27 6:19:26

目录

  • 前言
  • 课程目录
    • 一、Redis持久化
      • 1.1 RDB快照(Snapshot):二进制文件
        • 基本介绍
        • 开启/关闭方式
        • 触发方式
        • bgsave的写时复制(COW,Copy On Write)机制
        • 优缺点
      • 1.2 AOF(append-only file):将读写命令记录下来,方便回放
        • 基本介绍
        • 开启/关闭方式
        • 触发方式
        • AOF重写
        • 优缺点
      • 1.3 RDB和AOF对比,怎么选
      • 1.4 Redis4.0 混合持久化:AOF + RDB
        • 基本介绍
        • 开启/关闭方式
        • 混合持久化aof文件内容
      • 1.5 Redis数据生产备份策略
    • 二、Redis主从架构
      • 2.1 主从架构搭建
      • 2.2 Redis主从工作原理
        • 全量同步业务流程图
        • 增量同步业务流程图
        • 主从复制风暴
      • 2.3 Redis哨兵高可用架构模型
  • 学习总结

前言

课程目录

一、Redis持久化

【持久化】这个单词我想大家都不陌生吧。什么是持久化?我们知道,Redis的数据是存储在内存里面的,所以在Redis这里,其实是指把内存中的数据,通过一些策略写到磁盘中,方便因为宕机、或者重启Redis服务的时候,再次把数据加载到内存中。
那么,Redis中持久化策略(方式)有哪些呢?其实主要的方式有如下三种,让我们来看看吧

1.1 RDB快照(Snapshot):二进制文件

基本介绍

在默认情况下, Redis 将内存数据库快照保存在名字为 dump.rdb 的二进制文件中。(PS:该持久化策略,是默认的策略,当然不排除在随后的版本中改了)

开启/关闭方式

开启/关闭方式:进入程序的目录,修改redis.conf配置文件。开启/关闭RDB只需要将所有的save保存策略打开/注释掉即可

触发方式

RDB快照生成的触发方式有两种。一种是通过设置策略,当满足条件的时候自动触发;另一种,当然是手动触发了。

我们先来说一下【自动触发】的方式。自动触发的方式,就是按照Redis提供给我们的语法,在redis.conf里面增加触发策略。设置规则如下:

语法:save <seconds> <changes> [<seconds> <changes> ...]
解释:在【N 秒内数据集至少有 M 个改动】这一条件被满足时,自动持久化一次

举个例子,设置一条策略【在60秒内有1000个改动时,自动持久化一次】。设置如下

save 60 1000 // 关闭RDB只需要将所有的save保存策略注释掉即可

至于手动触发方式,则是进入redis客户端执行命令savebgsave,就可以生成dump.rdb文件,每次命令执行都会将所有redis内存快照到一个新的.rdb文件里,并覆盖原有.rdb快照文件。
save是同步执行生成rdb文件的操作,执行时不会处理外部的命令;bgsave则是异步执行生成操作,会同时处理外部命令。

bgsave的写时复制(COW,Copy On Write)机制

Redis借助操作系统的写时复制技术(Copy On Write),在生成快照的同时,依然可以正常处理写命令。简单来说,bgsave子进程是由主线程fork出来的,所以可以共享主线程内存的所有数据。bgsave子进程运行后,开始读取主线程的内存数据,并把他们他们写入.rdb文件。此时,如果主线程对这些数据也都是读操作,那主线程跟子进程之间肯定没有影响;若此时主线程需要修改一块数据,那么,这块数据会被复制一份,生成该数据的副本。然后bgsave子进程会把这个副本数据写入.rdb文件中,而在这个过程中,主线程仍然可以直接修改原来的数据。
savebgsave对比:

命令savebgsave
IO类型同步异步
是否阻塞redis其他命令否。不过在生成子进程执行调用函数时会有短暂阻塞
复杂度O(n)O(n)
优点不会消耗额外内存不会阻塞客户端命令
缺点阻塞客户端命令需要fork一个子进程,消耗额外内存

上面配置的【自动触发】生成.rdb文件的策略,后台使用的就是bgsave方式

优缺点

优点是:由于是二进制文件,所以Redis重启的时候,恢复速度快
缺点是:容易丢失数据,为什么?看下面【AOF】策略的介绍

1.2 AOF(append-only file):将读写命令记录下来,方便回放

基本介绍

看了上面的【RDB策略】不知道大家有没有感觉,或者意识到什么。那就是,这种策略其实看起来有点“苛刻”,它的数据安全性并不靠谱!
比如【在60秒内有1000个改动时,自动持久化一次】的策略之下,万一我在做第1000个改动的时候服务器宕机了,那不是丢掉了前面999个操作了吗?
所以,快照功能并不是非常耐久(durable)的。 如果 Redis 因为某些原因而造成故障停机,那么服务器将丢失最近写入、且仍未保存到快照中的那些数据。不过从1.1版本开始,Redis增加了一种完全耐久的持久化方式: AOF持久化,将修改的每一条指令记录进文件appendonly.aof文件中(先写入os cache,每隔一段时间fsync到磁盘)。
比如执行命令set zhuge 666.aof文件里会记录如下数据:(这是一种resp协议格式数据,我在下面写上注释给大家翻译一下什么意思)

*3	# 星号后面的数字表示,执行的命令有多少个参数
$3	# 美元符号后面的数字代表这个参数有几个字符
set
$5	# 美元符号后面的数字代表这个参数有几个字符
zhuge
$3	# 美元符号后面的数字代表这个参数有几个字符
666

注意,如果执行带过期时间的set命令,aof文件里记录的是并不是执行的原始命令,而是记录key过期的时间戳。比如执行set tuling 888 ex 1000,对应aof文件里记录如下:

*3
$3
set
$6
tuling
$3
888
*3
$9
PEXPIREAT
$6
tuling
$13
1604249786301

开启/关闭方式

开启/关闭方式:进入程序的目录,修改redis.conf配置文件。开启/关闭aof只需要修改如下参数:
# appendonly yes // 有一些版本默认注释掉。打开注释,设置yes或者no即可 打开/关闭

开启之后,从现在开始, 每当 Redis 执行一个改变数据集的命令时(比如 SET), 这个命令就会被追加到.aof文件的末尾。
这样的话, 当 Redis 重新启动时, 程序就可以通过重新执行.aof文件中的命令来达到重建数据集的目的。

触发方式

同样的,我们可以配置Redis多久才将数据同步到磁盘一次。.aof的触发方式同样也有两种:自动和手动。
【自动触发】的方式,如下:(Redis提供给我们的,需要自己手动打开、关闭)

appendfsync always:每次有新命令追加到 AOF 文件时就执行一次 fsync ,非常慢,也非常安全。
appendfsync everysec:每秒 fsync 一次,足够快,并且在故障时只会丢失 1 秒钟的数据。
appendfsync no:从不 fsync ,将数据交给操作系统来处理。更快,也更不安全的选择。

推荐(并且也是默认)的措施为每秒 fsync 一次, 这种 fsync 策略可以兼顾速度和安全性(最多丢失最近1秒的缓存数据)。

AOF重写

.aof文件里可能有太多没用指令,所以【AOF策略】会定期根据内存的最新数据生成aof文件。例如,执行了如下几条命令:

127.0.0.1:6379> incr readcount
(integer) 1
127.0.0.1:6379> incr readcount
(integer) 2
127.0.0.1:6379> incr readcount
(integer) 3
127.0.0.1:6379> incr readcount
(integer) 4
127.0.0.1:6379> incr readcount
(integer) 5

重写后AOF文件里变成:

*3
$3
SET
$2
readcount
$1
5

如下两个配置可以控制AOF自动重写频率:

// aof文件至少要达到64M才会自动重写,文件太小恢复速度本来就很快,重写的意义不大
# auto-aof-rewrite-min-size 64mb 

// aof文件自上一次重写后文件大小增长了100%则再次触发重写  
# auto-aof-rewrite-percentage 100

优缺点

优点是:数据安全性相对【RDB】方式来说高点
缺点是:恢复速度慢,因为不是二进制,且需要通过【重放】的方式恢复

1.3 RDB和AOF对比,怎么选

命令RDBAOF
启动优先级
文件大小
恢复速度
数据安全性容易丢失数据根据策略决定,但整体比较高

上面提到的启动优先级什么意思呢?意思是,当Redis启动时,会优先读取.aof的文件,其次才是.rdb。为什么呢?因为.aof文件的数据安全性相对可靠一点啊!
那我该选择哪一种持久化策略呢?其实在生产环境中,可以都启用。反正Redis启动时如果既有.rdb文件又有.aof文件的时候,会根据优先级选取。

1.4 Redis4.0 混合持久化:AOF + RDB

基本介绍

不出意外,当出现比较特点比较极端的两个方案时,总会有一个折中的方案出现。这就是Redis在4.0之后的版本推出的【混合持久化,AOF + RDB】方式。
重启Redis时,我们很少使用.rdb来恢复内存状态,因为会丢失大量数据。我们通常使用.aof日志重放,但是重放.aof日志性能相对.rdb来说要慢很多,这样在Redis实例很大的情况下,启动需要花费很长的时间。Redis 4.0 为了解决这个问题,带来了一个新的持久化选项——混合持久化

开启/关闭方式

PS:混合方式的开启,必须要先开启AOF
开启/关闭方式:进入程序的目录,修改redis.conf配置文件。开启/关闭需要修改如下参数:
# appendonly yes
# aof-use-rdb-preamble yes // 需要同时上面的参数也为yes才可开启

混合持久化aof文件内容

如果开启了混合持久化,AOF在重写时,不再是单纯将内存数据转换为RESP命令写入AOF文件,而是将重写这一刻之前的内存做RDB快照处理,并且将RDB快照内容和增量的AOF修改内存数据的命令存在一起,都写入新的.aof文件,新的文件一开始不叫appendonly.aof,等到重写完新的.aof文件才会进行改名,覆盖原有的.aof文件,完成新旧两个.aof文件的替换。
于是在 Redis 重启的时候,可以先加载.aof文件中的RDB内容,然后再重放增量AOF日志就可以完全替代之前的.aof全量文件重放,因此重启效率大幅得到提升。
混合持久化AOF文件结构如下:
在这里插入图片描述

1.5 Redis数据生产备份策略

  1. 写crontab定时调度脚本,每小时都copy一份rdb或aof的备份到一个目录中去,仅仅保留最近48小时的备份
  2. 每天都保留一份当日的数据备份到一个目录中去,可以保留最近1个月的备份
  3. 每次copy备份的时候,都把太旧的备份给删了
  4. 每天晚上将当前机器上的备份复制一份到其他机器上,以防机器损坏

二、Redis主从架构

Redis主从架构模型如下:
在这里插入图片描述
由上图可以看出,在主从结构中,通常从节点只做【读】业务,【写】业务通常还是由主节点master完成。并且,它目前并没有我们小白以为的【宕机自动切换新的主节点】的能力。(PS:我以前一直听说什么Redis集群高可用,节点宕机依然不影响业务,所以我乍一看【主从架构】就以为它已经有这个能力了。而事实上并没有,它只是【缓解了节点压力】,并不具备自动切换)

2.1 主从架构搭建

好记性不如多操作几遍
redis主从架构搭建,配置从节点步骤如下:

  1. 复制一份redis.conf文件,例如,我在我的redis下就复制了两份,并且分别命名为redis-6380.confredis-6381.conf,因为我计划搭建【一主二从】的结构
    在这里插入图片描述
  2. 将相关配置修改为如下值:(以redis-6380.conf为例)
# 修改从节点的运行端口
port 6380

# 把pid进程号写入pidfile配置的文件
pidfile /var/run/redis_6380.pid

# 日志文件命名
logfile "6380.log"

# 指定数据存放目录,需要提前在redis-6380.conf的当前目录下,新建好data目录及其下面的slave-80目录
dir ./data/slave-80  

# 需要注释掉bind
# bind绑定的是自己机器网卡的ip,如果有多块网卡可以配多个ip,
# 代表允许客户端通过机器的哪些网卡ip去访问,
# 内网一般可以不配置bind,注释掉即可
# bind 127.0.0.1
  1. 继续修改配置,这个是配置【主从复制】的核心:(以redis-6380.conf为例)
# 从本机6379的redis实例复制数据,Redis 5.0之前使用slaveof
# 格式:replicaof [master节点的up地址] [master节点的端口6379]
# 比如我的是下面这个
replicaof 127.0.0.1 6379

# 配置从节点只读,默认打开了
replica-read-only yes 
  1. 然后就可以启动从节点了
# redis-6380.conf文件务必用你复制并修改了之后的redis.conf文件
redis-server redis-6380.conf   
  1. 使用redis-cli -p 端口的方式,连接到对应的从库,校验一下
  2. 测试在6379端口的master实例上写数据,看看6380和6381端口的slave实例是否能及时同步新修改数据。我的测试数据如下:
    在这里插入图片描述
    如上所示,我在6379主节点设置了一个name,值为helloRedis,接下来我们去从节点看看:
    在这里插入图片描述
    在这里插入图片描述
    看,6380端口跟6381端口的从节点都同步了数据

2.2 Redis主从工作原理

Redis主从工作原理其实并不是那么神奇,主要是保证数据一致性就好了。那该怎么保证呢?首先肯定是要分场景的。比如:第一次过来同步复制(全量同步);之前已经同步过一次了,但后来因为某些原因断了,现在重新连接上,需要继续同步最近的数据(增量同步,断点续传)。
下面再给大家看看【全量同步】跟【增量同步】的业务流程图

全量同步业务流程图

在这里插入图片描述

  1. 如果你为master配置了一个slave,不管这个slave是否是第一次连接上Master,它都会发送一个PSYNC命令给master请求复制数据
  2. master收到PSYNC命令后,会在后台进行数据持久化(通过bgsave生成最新的.rdb快照文件),持久化期间,master会继续接收客户端的请求,它会把这些可能修改数据集的请求缓存在内存中
  3. 当持久化进行完毕以后,master会把这份.rdb文件数据集发送给slave,slave会把接收到的数据进行持久化生成.rdb,然后再加载到内存中
  4. 然后,master再将之前缓存在内存中的命令发送给slave
  5. 当master与slave之间的连接由于某些原因而断开时,slave能够自动重连master,如果master收到了多个slave并发连接请求,它只会进行一次持久化,而不是一个连接一次,然后再把这一份持久化的数据发送给多个并发连接的slave

小总结:
上面在生成持久化文件的时候有两个要点不知道大家注意到没有?那就是:bgsave.rdb
前面的bgsave比较好理解,异步生成.rdb文件嘛,为了不阻塞主节点的客户读写。那为什么是.rdb而不是.aof呢?其实说来也不算难理解,只不过我估计大家刚接触【redis持久化】所以比较陌生而已。因为.rdb恢复速度快啊!二进制文件嘛。

增量同步业务流程图

在这里插入图片描述

  1. 当master和slave断开重连后,一般都会对整份数据进行复制。但从redis2.8版本开始,redis改用可以支持部分数据复制的命令PSYNC去master同步数据,slave与master能够在网络连接断开重连后只进行部分数据复制(断点续传)
  2. master会在其内存中创建一个复制数据用的缓存队列,缓存最近一段时间的数据,master和它所有的slave都维护了复制的数据下标offset和master的进程id
  3. 因此,当网络连接断开后,slave会请求master继续进行未完成的复制,从所记录的数据下标开始。如果master进程id变化了,或者从节点数据下标offset太旧,已经不在master的缓存队列里了,那么将会进行一次全量数据的复制

主从复制风暴

什么是主从复制风暴?简单来说,就是一个主节点,需要应付很多从节点的复制请求,就算是采用异步执行同步命令,但是当数据多了之后也会容易陷入瓶颈。这就是主从复制风暴。
在这里插入图片描述
为了缓解主从复制风暴(多个从节点同时复制主节点导致主节点压力过大),可以做如下架构,让部分从节点与从节点(与主节点同步)同步数据:
在这里插入图片描述

2.3 Redis哨兵高可用架构模型

学习总结

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/978260.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Git—版本控制系统

git版本控制系统 1、什么是版本控制2、常见的版本控制工具3、版本控制分类3.1、本地版本控制3.2、集中版本控制 SVN3.3、分布式版本控制 Git 4、Git与SVN的主要区别5、Git环境配置6、启动Git7、常用的Linux命令8、Git配置9、设置用户名与邮箱&#xff08;用户标识&#xff0c;必…

数学建模--逻辑回归算法的Python实现

首先感谢CSDN上发布吴恩达的机器学习逻辑回归算法任务的各位大佬. 通过大佬的讲解和代码才勉强学会. 这篇文章也就是简单记录一下过程和代码. CSDN上写有关这类文章的大佬有很多,大家都可以多看一看学习学习. 机器学习方面主要还是过程和方法. 这篇文章只完成了线性可分方面的任…

Mac Homebrew中常用的 Brew 命令

Mac 中常用的 Brew 命令集 Brew&#xff08;Homebrew&#xff09;是一个强大的包管理器&#xff0c;用于在 macOS 上安装、更新和管理各种软件包。它使得在 Mac 上安装开发工具、应用程序和库变得轻松和便捷。本博客将介绍一些在 Mac 中常用的 Brew 命令&#xff0c;以帮助您更…

SpringMVC_SSM整合

一、回顾SpringMVC访问接口流程 1.容器加载分析 容器分析 手动注册WebApplicationContext public class ServletConfig extends AbstractDispatcherServletInitializer {Overrideprotected WebApplicationContext createServletApplicationContext() {//获取SpringMVC容器An…

UDP的可靠性传输

UDP系列文章目录 第一章 UDP的可靠性传输-理论篇&#xff08;一&#xff09; 第二章 UDP的可靠性传输-理论篇&#xff08;二&#xff09; 文章目录 UDP系列文章目录前言1.TCP 和UDP格式对比2.UDP分片原理3.UDP 传输层应该注意问题4.MTU5.UDP 分片机制设计重点 一、ARQ协议什么…

华为OD机考算法题:食堂供餐

目录 题目部分 解析与思路 代码实现 题目部分 题目食堂供餐题目说明某公司员工食堂以盒饭方式供餐。为将员工取餐排队时间降低为0&#xff0c;食堂的供餐速度必须要足够快。现在需要根据以往员工取餐的统计信息&#xff0c;计算出一个刚好能达成排队时间为0的最低供餐速度。…

PPO算法

PPO算法 全称Proximal Policy Optimization&#xff0c;是TRPO(Trust Region Policy Optimization)算法的继承与简化&#xff0c;大大降低了实现难度。原论文 算法大致流程 首先&#xff0c;使用已有的策略采样 N N N条轨迹&#xff0c;使用这些轨迹上的数据估计优势函数 A ^ …

算法做题记录

一、递推 95.费解的开关 #include<iostream> #include<cstring> using namespace std;const int N 8;char a[N][N],s[N][N]; int T; int ans20,cnt; int dir[5][2]{1,0,-1,0,0,1,0,-1,0,0};void turn(int x,int y) {for(int i0;i<5;i){int xx xdir[i][0];in…

数学建模--Topsis评价方法的Python实现

目录 1.算法流程简介 2.算法核心代码 3.算法效果展示 1.算法流程简介 """ TOPSIS(综合评价方法):主要是根据根据各测评对象与理想目标的接近程度进行排序. 然后在现有研究对象中进行相对优劣评价。 其基本原理就是求解计算各评价对象与最优解和最劣解的距离…

文字验证码:简单有效的账号安全守卫!

前言 文字验证码不仅是一种简单易懂的验证方式&#xff0c;同时也是保护您的账号安全的重要工具。通过输入正确的文字组合&#xff0c;您可以有效地确认自己的身份&#xff0c;确保只有真正的用户才能访问您的账号。 HTML代码 <script src"https://cdn6.kgcaptcha.…

rust编译出错:error: failed to run custom build command for `ring v0.16.20`

安装 Visual Studio&#xff0c;确保选择 —.NET 桌面开发、使用 C 的桌面开发和通用 Windows 平台开发。显示已安装的工具链rustup show。然后通过运行更改和设置工具链rustup default stable-x86_64-pc-windows-msvc。 另外是想用clion进行调试rust 需要你按下面配置即可解…

【Spring MVC】统一功能处理

一、登录验证 登录验证通过拦截器实现&#xff0c;拦截器就是在用户访问服务器时&#xff0c;预先拦截检查一下用户的访问请求。 没有拦截器时&#xff0c;用户访问服务器的流程是&#xff1a;用户–>controller–>service–>Mapper。有拦截器时&#xff0c;用户访问…

自旋锁和读写锁

目录 一、自旋锁 1.自旋锁和挂起等待锁 2.自旋锁的接口 二、读写锁 1.读者写者模型与读写锁 2.读写锁接口 3.加锁的原理 4.读写优先级 一、自旋锁 1.自旋锁和挂起等待锁 互斥锁的类型有很多&#xff0c;我们之前使用的锁实际上是互斥锁中的挂起等待锁。互斥锁比较有代…

JMeter(三十九):selenium怪异的UI自动化测试组合

文章目录 一、背景二、JMeter+selenium使用过程三、总结一、背景 题主多年前在某社区看到有人使用jmeter+selenium做UI自动化测试的时候,感觉很是诧异、怪异,为啥?众所周知在python/java+selenium+testng/pytest这样的组合框架下,为啥要选择jmeter这个东西[本身定位是接口测…

基于微信小程序的智能垃圾分类回收系统,附源码、教程

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝30W、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 1 简介 视频演示地址&#xff1a; 基于微信小程序的智能垃圾分类回收系统&#xff0c;可作为毕业设计 小…

《C++ Primer》第2章 变量(一)

参考资料&#xff1a; 《C Primer》第5版《C Primer 习题集》第5版 2.1 基本内置类型&#xff08;P30&#xff09; C 定义的基本类型包括算术类型&#xff08;arithmetic type&#xff09;和空类型&#xff08;void&#xff09;&#xff0c;其中算术类型包括字符、整型、布尔…

postgresql-类型转换函数

postgresql-类型转换函数 简介CAST 函数to_date函数to_timestampto_charto_number隐式类型转换 简介 类型转换函数用于将数据从一种类型转换为另一种类型。 CAST 函数 CAST ( expr AS data_type )函数用于将 expr 转换为 data_type 数据类型&#xff1b;PostgreSQL 类型转 换…

《86盒应用于家居中控》——实现智能家居的灵动掌控

近年来&#xff0c;智能家居产品受到越来越多消费者的关注&#xff0c;其便捷、舒适的生活方式让人们对未来生活充满期待。作为智能家居方案领域的方案商&#xff0c;启明智显生产设计的86盒凭借出色的性能和良好的用户体验&#xff0c;成功应用于家居中控系统&#xff0c;让家…

Gof23设计模式之策略模式

1.概述 该模式定义了一系列算法&#xff0c;并将每个算法封装起来&#xff0c;使它们可以相互替换&#xff0c;且算法的变化不会影响使用算法的客户。策略模式属于对象行为模式&#xff0c;它通过对算法进行封装&#xff0c;把使用算法的责任和算法的实现分割开来&#xff0c;…

剑指 Offer 43. 1~n 整数中 1 出现的次数(困难)

题目&#xff1a; class Solution { public:int countDigitOne(int n) {// mulk 表示 10^k// 在下面的代码中&#xff0c;可以发现 k 并没有被直接使用到&#xff08;都是使用 10^k&#xff09;// 但为了让代码看起来更加直观&#xff0c;这里保留了 klong long mulk 1;int…