数学建模--逻辑回归算法的Python实现

news2024/11/27 6:18:10

首先感谢CSDN上发布吴恩达的机器学习逻辑回归算法任务的各位大佬.

通过大佬的讲解和代码才勉强学会.

这篇文章也就是简单记录一下过程和代码.

CSDN上写有关这类文章的大佬有很多,大家都可以多看一看学习学习.

机器学习方面主要还是过程和方法.

这篇文章只完成了线性可分方面的任务,由于时间关系,线性不可分的任务就没有去涉及.

若要深入学习请看这位大佬的文章:https://blog.csdn.net/Cowry5/article/details/80247569

目录

1.数据初始化 

2.数据绘图可视化

3.设置关键函数

4.利用fmin_tnc函数进行拟合

5.计算模型正确率

6.计算绘制图形的决策边界

1.数据初始化 

#%%
#导入必要的库和函数
import scipy.optimize as opt
import time
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from torch import sigmoid
#获取数据并查阅
path="C:\\Users\\Zeng Zhong Yan\\Desktop\\py.vs\\.vscode\\数学建模\\逻辑回归模型材料包\\逻辑回归数据1.txt"
global data1
data=pd.read_csv(path,names=['exam_1','exam_2','admitted'])
data.head()

 

2.数据绘图可视化

#%%
#利用.isin()函数将录取和未录取的样本分离
positive = data[data['admitted'].isin([1])] 
negative = data[data['admitted'].isin([0])] 
#然后进行可视化绘图
#fig用来绘制图像,ax绘制坐标系
fig,ax=plt.subplots(figsize=(10,4))
ax.scatter(positive['exam_1'], positive['exam_2'], s=30, c='b', marker='o', label='Admitted')
ax.scatter(negative['exam_1'], negative['exam_2'], s=30, c='r', marker='x', label='Not Admitted')
ax.legend()
ax.set_xlabel('Exam_1 Score')
ax.set_ylabel('Exam_2 Score')
ax.figure.savefig('C:\\Users\\Zeng Zhong Yan\\Desktop\\py.vs\\.vscode\\数学建模\\逻辑回归模型材料包\\逻辑回归散点分布.png', dpi=500, bbox_inches='tight')
#%%

 

3.设置关键函数

#创建逻辑回归类

    #创建激活函数
def sigmoid(x):
    y=1 / (1 + np.exp(-x))
    return y
    #创建一个函数检查一下其是否能够正常工作
    """
    x1 = np.arange(-10, 10, 0.1)
    plt.plot(x1, sigmoid(x1), c='r')
    plt.show()
    """
def cost(theta, X, y):
    first = (-y) * np.log(sigmoid(X @ theta))
    second = (1 - y)*np.log(1 - sigmoid(X @ theta))
    return np.mean(first - second)
if 'Ones' not in data.columns:
    data.insert(0, 'Ones', 1)
   #创建一个训练训练集
X = data.iloc[:, :-1].values  
y = data.iloc[:, -1].values 
theta = np.zeros(X.shape[1])
print(X.shape, theta.shape, y.shape)# ((100, 3), (3,), (100,))
def gradient(theta, X, y):
    return (X.T @ (sigmoid(X @ theta) - y))/len(X)  

4.利用fmin_tnc函数进行拟合

#%%
"""
1.利用fmin_tnc函数进行拟合
2.或者利用minimize函数进行拟合,minimize中的method有很多的算法进行计算,设置method=xxx即可
"""
result = opt.fmin_tnc(func=cost, x0=theta, fprime=gradient, args=(X, y))
result
# (array([-25.16131867,   0.20623159,   0.20147149]), 36, 0)

5.计算模型正确率

#%%
"""
我们将theta训练完毕之后我们就能够利用模型来测试学生是否能被录取了
以下就是我们构造函数的过程,设置h(x)
如果h(x)=>0.5->能够被录取
如果h(x)<0.5->不能够被录取
根据以上书写预测函数
"""
"""
def predict(theta, X):
    probability = sigmoid(X@theta)
    for x in probability:
        if x>=0.5:
            return 1
        else:
            return 0
"""
def predict(theta, X):
    probability = sigmoid(X@theta)
    return [1 if x >= 0.5 else 0 for x in probability]  # return a list
#%%
"""
预测之后我们可以查看以下模型预测的正确率如何
"""
final_theta = result[0]
predictions = predict(final_theta, X)
correct = [1 if a==b else 0 for (a, b) in zip(predictions, y)]
accuracy = sum(correct) / len(X)
accuracy#0.89

6.计算绘制图形的决策边界

面我们将设置模型的决策边界
x1 = np.arange(130, step=0.1)
x2 = -(final_theta[0] + x1*final_theta[1]) / final_theta[2]
#%
fig, ax = plt.subplots(figsize=(8,4))
ax.scatter(positive['exam_1'], positive['exam_2'], c='b', label='Admitted')
ax.scatter(negative['exam_1'], negative['exam_2'], s=50, c='r', marker='x', label='Not Admitted')
ax.plot(x1, x2)
ax.set_xlim(0, 130)
ax.set_ylim(0, 130)
ax.set_xlabel('x1')
ax.set_ylabel('x2')
ax.set_title('Decision Boundary')
ax.figure.savefig('C:\\Users\\Zeng Zhong Yan\\Desktop\\py.vs\\.vscode\\数学建模\\逻辑回归模型材料包\\Decision Boundary.png', dpi=500, bbox_inches='tight')
#%%

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/978253.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Mac Homebrew中常用的 Brew 命令

Mac 中常用的 Brew 命令集 Brew&#xff08;Homebrew&#xff09;是一个强大的包管理器&#xff0c;用于在 macOS 上安装、更新和管理各种软件包。它使得在 Mac 上安装开发工具、应用程序和库变得轻松和便捷。本博客将介绍一些在 Mac 中常用的 Brew 命令&#xff0c;以帮助您更…

SpringMVC_SSM整合

一、回顾SpringMVC访问接口流程 1.容器加载分析 容器分析 手动注册WebApplicationContext public class ServletConfig extends AbstractDispatcherServletInitializer {Overrideprotected WebApplicationContext createServletApplicationContext() {//获取SpringMVC容器An…

UDP的可靠性传输

UDP系列文章目录 第一章 UDP的可靠性传输-理论篇&#xff08;一&#xff09; 第二章 UDP的可靠性传输-理论篇&#xff08;二&#xff09; 文章目录 UDP系列文章目录前言1.TCP 和UDP格式对比2.UDP分片原理3.UDP 传输层应该注意问题4.MTU5.UDP 分片机制设计重点 一、ARQ协议什么…

华为OD机考算法题:食堂供餐

目录 题目部分 解析与思路 代码实现 题目部分 题目食堂供餐题目说明某公司员工食堂以盒饭方式供餐。为将员工取餐排队时间降低为0&#xff0c;食堂的供餐速度必须要足够快。现在需要根据以往员工取餐的统计信息&#xff0c;计算出一个刚好能达成排队时间为0的最低供餐速度。…

PPO算法

PPO算法 全称Proximal Policy Optimization&#xff0c;是TRPO(Trust Region Policy Optimization)算法的继承与简化&#xff0c;大大降低了实现难度。原论文 算法大致流程 首先&#xff0c;使用已有的策略采样 N N N条轨迹&#xff0c;使用这些轨迹上的数据估计优势函数 A ^ …

算法做题记录

一、递推 95.费解的开关 #include<iostream> #include<cstring> using namespace std;const int N 8;char a[N][N],s[N][N]; int T; int ans20,cnt; int dir[5][2]{1,0,-1,0,0,1,0,-1,0,0};void turn(int x,int y) {for(int i0;i<5;i){int xx xdir[i][0];in…

数学建模--Topsis评价方法的Python实现

目录 1.算法流程简介 2.算法核心代码 3.算法效果展示 1.算法流程简介 """ TOPSIS(综合评价方法):主要是根据根据各测评对象与理想目标的接近程度进行排序. 然后在现有研究对象中进行相对优劣评价。 其基本原理就是求解计算各评价对象与最优解和最劣解的距离…

文字验证码:简单有效的账号安全守卫!

前言 文字验证码不仅是一种简单易懂的验证方式&#xff0c;同时也是保护您的账号安全的重要工具。通过输入正确的文字组合&#xff0c;您可以有效地确认自己的身份&#xff0c;确保只有真正的用户才能访问您的账号。 HTML代码 <script src"https://cdn6.kgcaptcha.…

rust编译出错:error: failed to run custom build command for `ring v0.16.20`

安装 Visual Studio&#xff0c;确保选择 —.NET 桌面开发、使用 C 的桌面开发和通用 Windows 平台开发。显示已安装的工具链rustup show。然后通过运行更改和设置工具链rustup default stable-x86_64-pc-windows-msvc。 另外是想用clion进行调试rust 需要你按下面配置即可解…

【Spring MVC】统一功能处理

一、登录验证 登录验证通过拦截器实现&#xff0c;拦截器就是在用户访问服务器时&#xff0c;预先拦截检查一下用户的访问请求。 没有拦截器时&#xff0c;用户访问服务器的流程是&#xff1a;用户–>controller–>service–>Mapper。有拦截器时&#xff0c;用户访问…

自旋锁和读写锁

目录 一、自旋锁 1.自旋锁和挂起等待锁 2.自旋锁的接口 二、读写锁 1.读者写者模型与读写锁 2.读写锁接口 3.加锁的原理 4.读写优先级 一、自旋锁 1.自旋锁和挂起等待锁 互斥锁的类型有很多&#xff0c;我们之前使用的锁实际上是互斥锁中的挂起等待锁。互斥锁比较有代…

JMeter(三十九):selenium怪异的UI自动化测试组合

文章目录 一、背景二、JMeter+selenium使用过程三、总结一、背景 题主多年前在某社区看到有人使用jmeter+selenium做UI自动化测试的时候,感觉很是诧异、怪异,为啥?众所周知在python/java+selenium+testng/pytest这样的组合框架下,为啥要选择jmeter这个东西[本身定位是接口测…

基于微信小程序的智能垃圾分类回收系统,附源码、教程

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝30W、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 1 简介 视频演示地址&#xff1a; 基于微信小程序的智能垃圾分类回收系统&#xff0c;可作为毕业设计 小…

《C++ Primer》第2章 变量(一)

参考资料&#xff1a; 《C Primer》第5版《C Primer 习题集》第5版 2.1 基本内置类型&#xff08;P30&#xff09; C 定义的基本类型包括算术类型&#xff08;arithmetic type&#xff09;和空类型&#xff08;void&#xff09;&#xff0c;其中算术类型包括字符、整型、布尔…

postgresql-类型转换函数

postgresql-类型转换函数 简介CAST 函数to_date函数to_timestampto_charto_number隐式类型转换 简介 类型转换函数用于将数据从一种类型转换为另一种类型。 CAST 函数 CAST ( expr AS data_type )函数用于将 expr 转换为 data_type 数据类型&#xff1b;PostgreSQL 类型转 换…

《86盒应用于家居中控》——实现智能家居的灵动掌控

近年来&#xff0c;智能家居产品受到越来越多消费者的关注&#xff0c;其便捷、舒适的生活方式让人们对未来生活充满期待。作为智能家居方案领域的方案商&#xff0c;启明智显生产设计的86盒凭借出色的性能和良好的用户体验&#xff0c;成功应用于家居中控系统&#xff0c;让家…

Gof23设计模式之策略模式

1.概述 该模式定义了一系列算法&#xff0c;并将每个算法封装起来&#xff0c;使它们可以相互替换&#xff0c;且算法的变化不会影响使用算法的客户。策略模式属于对象行为模式&#xff0c;它通过对算法进行封装&#xff0c;把使用算法的责任和算法的实现分割开来&#xff0c;…

剑指 Offer 43. 1~n 整数中 1 出现的次数(困难)

题目&#xff1a; class Solution { public:int countDigitOne(int n) {// mulk 表示 10^k// 在下面的代码中&#xff0c;可以发现 k 并没有被直接使用到&#xff08;都是使用 10^k&#xff09;// 但为了让代码看起来更加直观&#xff0c;这里保留了 klong long mulk 1;int…

Text Workflow for Mac,简单易用的文本转换工具

如果你需要一个能够将文本转换成多种语言和文件格式的工具&#xff0c;那么Text Workflow for Mac将是你的不二之选。 这个软件支持多种语言翻译和多种文件格式转换&#xff0c;让你可以轻松地将文本转换成你需要的形式。而且&#xff0c;它的操作非常简单&#xff0c;只需要几…

精讲算法的时间复杂度

目录 一、算法效率 1.算法效率 1.1如何衡量一个算法的好坏 1.2算法的复杂度 二、时间复杂度 1.时间复杂度的概念 2.大O的渐进表示法 3.常见时间复杂度的计算举例 三、空间复杂度 一、算法效率 1.算法效率 1.1如何衡量一个算法的好坏 long long Fib(int N) {if(N <…