1、神经网络算法的三大类分别是?
神经网络算法的三大类分别是:
1、前馈神经网络:
这是实际应用中最常见的神经网络类型。第一层是输入,最后一层是输出。如果有多个隐藏层,我们称之为“深度”神经网络。他们计算出一系列改变样本相似性的变换。各层神经元的活动是前一层活动的非线性函数。
2、循环网络:
循环网络在他们的连接图中定向了循环,这意味着你可以按照箭头回到你开始的地方。他们可以有复杂的动态,使其很难训练。他们更具有生物真实性。
循环网络的目的是用来处理序列数据。在传统的神经网络模型中,是从输入层到隐含层再到输出层,层与层之间是全连接的,每层之间的节点是无连接的。但是这种普通的神经网络对于很多问题却无能无力。
循环神经网路,即一个序列当前的输出与前面的输出也有关。具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。
3、对称连接网络:
对称连接网络有点像循环网络,但是单元之间的连接是对称的(它们在两个方向上权重相同)。比起循环网络,对称连接网络更容易分析。
这个网络中有更多的限制,因为它们遵守能量函数定律。没有隐藏单元的对称连接网络被称为“Hopfield 网络”。有隐藏单元的对称连接的网络被称为玻尔兹曼机。
扩展资料:
应用及发展:
心理学家和认知科学家研究神经网络的目的在于探索人脑加工、储存和搜索信息的机制,弄清人脑功能的机理,建立人类认知过程的微结构理论。
生物学、医学、脑科学专家试图通过神经网络的研究推动脑科学向定量、精确和理论化体系发展,同时也寄希望于临床医学的新突破;信息处理和计算机科学家研究这一问题的目的在于寻求新的途径以解决不能解决或解决起来有极大困难的大量问题,构造更加逼近人脑功能的新一代计算机。
2、神经网络有哪些主要分类规则并如何分类?
神经网络模型的分类
人工神经网络的模型很多,可以按照不同的方法进行分类神经网络种类及应用。其中,常见的两种分类方法是,按照网络连接的拓朴结构分类和按照网络内部的信息流向分类。
1
按照网络拓朴结构分类
网络的拓朴结构,即神经元之间的连接方式。按此划分,可将神经网络结构分为两大类:层次型结构和互联型结构。
层次型结构的神经网络将神经元按功能和顺序的不同分为输出层、中间层(隐层)、输出层。输出层各神经元负责接收来自外界的输入信息,并传给中间各隐层神经元;隐层是神经网络的内部信息处理层,负责信息变换。根据需要可设计为一层或多层;最后一个隐层将信息传递给输出层神经元经进一步处理后向外界输出信息处理结果。
而互连型网络结构中,任意两个节点之间都可能存在连接路径,因此可以根据网络中节点的连接程度将互连型网络细分为三种情况:全互连型、局部互连型和稀疏连接型
2
按照网络信息流向分类
从神经网络内部信息传递方向来看,可以分为两种类型:前馈型网络和反馈型网络。
单纯前馈网络的结构与分层网络结构相同,前馈是因网络信息处理的方向是从输入层到各隐层再到输出层逐层进行而得名的。前馈型网络中前一层的输出是下一层的输入,信息的处理具有逐层传递进行的方向性,一般不存在反馈环路。因此这类网络很容易串联起来建立多层前馈网络。
反馈型网络的结构与单层全互连结构网络相同。在反馈型网络中的所有节点都具有信息处理功能,而且每个节点既可以从外界接受输入,同时又可以向外界输出。
3、前馈神经网络、BP神经网络、卷积神经网络的区别与联系
一、计算方法不同
1、前馈神经网络:一种最简单的神经网络,各神经元分层排列。每个神经元只与前一层的神经元相连。接收前一层的输出,并输出给下一层.各层间没有反馈。
2、BP神经网络:是一种按照误差逆向传播算法训练的多层前馈神经网络。
3、卷积神经网络:包含卷积计算且具有深度结构的前馈神经网络。
二、用途不同
1、前馈神经网络:主要应用包括感知器网络、BP网络和RBF网络。
2、BP神经网络:
(1)函数逼近:用输入向量和相应的输出向量训练一个网络逼近一个函数;
(2)模式识别:用一个待定的输出向量将它与输入向量联系起来;
(3)分类:把输入向量所定义的合适方式进行分类;
(4)数据压缩:减少输出向量维数以便于传输或存储。
3、卷积神经网络:可应用于图像识别、物体识别等计算机视觉、自然语言处理、物理学和遥感科学等领域。
联系:
BP神经网络和卷积神经网络都属于前馈神经网络,三者都属于人工神经网络。因此,三者原理和结构相同。
三、作用不同
1、前馈神经网络:结构简单,应用广泛,能够以任意精度逼近任意连续函数及平方可积函数.而且可以精确实现任意有限训练样本集。
2、BP神经网络:具有很强的非线性映射能力和柔性的网络结构。网络的中间层数、各层的神经元个数可根据具体情况任意设定,并且随着结构的差异其性能也有所不同。
3、卷积神经网络:具有表征学习能力,能够按其阶层结构对输入信息进行平移不变分类。
扩展资料:
1、BP神经网络优劣势
BP神经网络无论在网络理论还是在性能方面已比较成熟。其突出优点就是具有很强的非线性映射能力和柔性的网络结构。网络的中间层数、各层的神经元个数可根据具体情况任意设定,并且随着结构的差异其性能也有所不同。但是BP神经网络也存在以下的一些主要缺陷。
①学习速度慢,即使是一个简单的问题,一般也需要几百次甚至上千次的学习才能收敛。
②容易陷入局部极小值。
③网络层数、神经元个数的选择没有相应的理论指导。
④网络推广能力有限。
2、人工神经网络的特点和优越性,主要表现在以下三个方面
①具有自学习功能。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。预期未来的人工神经网络计算机将为人类提供经济预测、效益预测,其应用前途是很远大的。
②具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。
③具有高速寻找优化解的能力。寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。
参考资料:
4、 人工神经网络分类方法
从20世纪80年代末期,人工神经网络方法开始应用于遥感图像的自动分类。目前,在遥感图像的自动分类方面,应用和研究比较多的人工神经网络方法主要有以下几种:
(1)BP(Back Propagation)神经网络,这是一种应用较广泛的前馈式网络,属于有监督分类算法,它将先验知识融于网络学习之中,加以最大限度地利用,适应性好,在类别数少的情况下能够得到相当高的精度,但是其网络的学习主要采用误差修正算法,识别对象种类多时,随着网络规模的扩大,需要的计算过程较长,收敛缓慢而不稳定,且识别精度难以达到要求。
(2)Hopfield神经网络。属于反馈式网络。主要采用Hebb规则进行学习,一般情况下计算的收敛速度较快。这种网络是美国物理学家J.J.Hopfield于1982年首先提出的,它主要用于模拟生物神经网络的记忆机理。Hopfield神经网络状态的演变过程是一个非线性动力学系统,可以用一组非线性差分方程来描述。系统的稳定性可用所谓的“能量函数”进行分析,在满足一定条件下,某种“能量函数”的能量在网络运行过程中不断地减少,最后趋于稳定的平衡状态。Hopfield网络的演变过程是一种计算联想记忆或求解优化问题的过程。
(3)Kohonen网络。这是一种由芬兰赫尔辛基大学神经网络专家Kohonen(1981)提出的自组织神经网络,其采用了无导师信息的学习算法,这种学习算法仅根据输入数据的属性而调整权值,进而完成向环境学习、自动分类和聚类等任务。其最大的优点是最终的各个相邻聚类之间是有相似关系的,即使识别时把样本映射到了一个错误的节点,它也倾向于被识别成同一个因素或者一个相近的因素,这就十分接近人的识别特性。