Spark-内核(集群管理器、通讯架构、任务调度机制、Shuffle、内存管理)

news2024/9/28 11:19:50

文章目录

    • Spark内核
      • Spark部署模式的集群管理器
        • YARN模式运行机制
        • Standalone模式运行机制
      • Spark通讯架构
        • 通信架构概述
        • 通讯架构解析
      • Spark任务调度机制
        • 任务调度概述
        • Stage级调度
        • Spark Task级调度
          • 调度策略
          • 本地化调度
          • 失败重试与黑名单机制
      • Spark Shuffle解析
        • ShuffleMapStage与ResultStage
        • HashShuffle解析
          • 未优化的HashShuffle
          • 优化后的HashShuffle
        • SortShuffle解析
          • 普通SortShuffle
          • bypass SortShuffle
      • Spark内存管理
        • 堆内和堆外内存规划
        • 内存空间分配
          • 静态内存管理
          • 统一内存管理
        • 存储内存管理
          • RDD的持久化机制
          • RDD的缓存过程
          • 淘汰与落盘
        • 执行内存管理

Spark内核

Spark 内核泛指 Spark 的核心运行机制,包括 Spark 核心组件的运行机制、Spark 任务调度机制、Spark 内存管理机制、Spark 核心功能的运行原理等,熟练掌握 Spark 内核原理,能够帮助我们更好地完成 Spark 代码设计,并能够帮助我们准确锁定项目运行过程中出现的问题的症结所在。

Spark部署模式的集群管理器

Spark 支持多种集群管理器(Cluster Manager),分别为:

  1. Standalone:独立模式,Spark 原生的简单集群管理器,自带完整的服务,可单独部署到一个集群中,无需依赖任何其他资源管理系统,使用 Standalone 可以很方便地搭建一个集群;
  2. Hadoop YARN:统一的资源管理机制,在上面可以运行多套计算框架,如 MR、Storm等。根据 Driver 在集群中的位置不同,分为 yarn client(集群外)和 yarn cluster(集群内部);
  3. Apache Mesos:一个强大的分布式资源管理框架,它允许多种不同的框架部署在其上,包括 Yarn;
  4. K8S : 容器式部署环境。

实际上,除了上述这些通用的集群管理器外,Spark 内部也提供了方便用户测试和学习的本地集群部署模式和 Windows 环境。由于在实际工厂环境下使用的绝大多数的集群管理器是 Hadoop YARN,因此我们关注的重点是 Hadoop YARN 模式下的 Spark 集群部署。

YARN模式运行机制

  1. 执行脚本提交任务,实际是启动一个 SparkSubmit 的 JVM 进程;
  2. SparkSubmit 类中的 main 方法反射调用 YarnClusterApplication 的 main 方法;
  3. YarnClusterApplication 创建 Yarn 客户端,然后向 Yarn 服务器发送执行指令:bin/java ApplicationMaster;
  4. Yarn 框架收到指令后会在指定的 NM 中启动 ApplicationMaster;
  5. ApplicationMaster 启动 Driver 线程,执行用户的作业;
  6. AM 向 RM 注册,申请资源;
  7. 获取资源后 AM 向 NM 发送指令:bin/java YarnCoarseGrainedExecutorBackend;
  8. CoarseGrainedExecutorBackend 进程会接收消息,跟 Driver 通信,注册已经启动的Executor;然后启动计算对象 Executor 等待接收任务;
  9. Driver 线程继续执行完成作业的调度和任务的执行;
  10. Driver 分配任务并监控任务的执行。

注意:SparkSubmit、ApplicationMaster 和 CoarseGrainedExecutorBackend 是独立的进程;Driver是独立的线程;Executor 和 YarnClusterApplication 是对象。

Standalone模式运行机制

Standalone 集群有 2 个重要组成部分,分别是:

  1. Master(RM):是一个进程,主要负责资源的调度和分配,并进行集群的监控等职责
  2. Worker(NM):是一个进程,一个 Worker 运行在集群中的一台服务器上,主要负责两个职责,一个是用自己的内存存储 RDD 的某个或某些 partition;另一个是启动其他进程和线程(Executor),对 RDD 上的 partition 进行并行的处理和计算

在 Standalone Cluster 模式下:

  1. 任务提交后,Master 会找到一个 Worker 启动 Driver;
  2. Driver 启动后向 Master 注册应用程序,Master 根据 submit 脚本的资源需求找到内部资源至少可以启动一个 Executor 的所有 Worker,然后在这些 Worker 之间分配 Executor;
  3. Worker 上 的 Executor 启动后会向 Driver 反向注册;
  4. 所有的 Executor 注册完成后,Driver 开始执行 main函数;
  5. 之后执行到 Action 算子时,开始划分 Stage,每个 Stage 生成对应的 taskSet,之后将Task 分发到各个 Executor 上执行。

Spark通讯架构

通信架构概述

Spark 中通信框架的发展:

  • Spark 早期版本中采用 Akka 作为内部通信部件。
  • Spark1.3 中引入 Netty 通信框架,为了解决 Shuffle 的大数据传输问题使用
  • Spark1.6 中 Akka 和 Netty 可以配置使用。Netty 完全实现了 Akka 在 Spark 中的功能。
  • Spark2 系列中,Spark 抛弃 Akka,使用 Netty。

Spark2.x 版本使用 Netty 通讯框架作为内部通讯组件。Spark 基于 Netty 新的 RPC 框架借鉴了 Akka 的中的设计,它是基于 Actor 模型,如下图所示:

Spark 通讯框架中各个组件(Client/Master/Worker)可以认为是一个个独立的实体,各个实体之间通过消息来进行通信。具体各个组件之间的关系图如下:

Endpoint(Client/Master/Worker)有 1 个 InBox 和 N 个 OutBox(N>=1,N 取决于当前 Endpoint与多少其他的 Endpoint 进行通信,一个与其通讯的其他 Endpoint 对应一个 OutBox),Endpoint接收到的消息被写入 InBox,发送出去的消息写入 OutBox 并被发送到其他 Endpoint 的 InBox中。

Spark 通信终端

  • Driver: class DriverEndpoint extends IsolatedRpcEndpoint
  • Executor:class CoarseGrainedExecutorBackend extends IsolatedRpcEndpoint

通讯架构解析

Spark 通信架构如下图所示:

RpcEndpoint:RPC 通信终端。Spark 针对每个节点(Client/Master/Worker)都称之为一个 RPC 终端,且都实现 RpcEndpoint 接口,内部根据不同端点的需求,设计不同的消息和不同的业务处理,如果需要发送(询问)则调用 Dispatcher。在 Spark 中,所有的终端都存在生命周期:

  • Constructor
  • onStart
  • receive*
  • onStop

RpcEnv:RPC 上下文环境,每个 RPC 终端运行时依赖的上下文环境称为 RpcEnv;在把当前 Spark 版本中使用的 NettyRpcEnv

Dispatcher:消息调度(分发)器,针对于 RPC 终端需要发送远程消息或者从远程 RPC接收到的消息,分发至对应的指令收件箱(发件箱)。如果指令接收方是自己则存入收件箱,如果指令接收方不是自己,则放入发件箱;

Inbox:指令消息收件箱。一个本地 RpcEndpoint 对应一个收件箱,Dispatcher 在每次向Inbox 存入消息时,都将对应 EndpointData 加入内部 ReceiverQueue 中,另外 Dispatcher创建时会启动一个单独线程进行轮询 ReceiverQueue,进行收件箱消息消费;

RpcEndpointRef:RpcEndpointRef 是对远程 RpcEndpoint 的一个引用。当我们需要向一个具体的 RpcEndpoint 发送消息时,一般我们需要获取到该 RpcEndpoint 的引用,然后通过该应用发送消息。

OutBox:指令消息发件箱。对于当前 RpcEndpoint 来说,一个目标 RpcEndpoint 对应一个发件箱,如果向多个目标RpcEndpoint发送信息,则有多个OutBox。当消息放入Outbox后,紧接着通过 TransportClient 将消息发送出去。消息放入发件箱以及发送过程是在同一个线程中进行;

RpcAddress:表示远程的 RpcEndpointRef 的地址,Host + Port。

TransportClient:Netty 通信客户端,一个 OutBox 对应一个 TransportClient,TransportClient不断轮询 OutBox,根据 OutBox 消息的 receiver 信息,请求对应的远程 TransportServer;

TransportServer:Netty 通信服务端,一个 RpcEndpoint 对应一个 TransportServer,接受远程消息后调用 Dispatcher 分发消息至对应收发件箱;

Spark任务调度机制

在生产环境下,Spark 集群的部署方式一般为 YARN-Cluster 模式,之后的内核分析内容中我们默认集群的部署方式为 YARN-Cluster 模式。在前面我们讲解了 Spark YARN-Cluster 模式下的任务提交流程,但是我们并没有具体说明 Driver 的工作流程, Driver 线程主要是初始化SparkContext 对 象 , 准 备 运 行 所 需 的 上 下 文 , 然 后 一 方 面 保 持 与ApplicationMaster 的 RPC 连接,通过 ApplicationMaster 申请资源,另一方面根据用户业务逻辑开始调度任务,将任务下发到已有的空闲 Executor 上。

当 ResourceManager 向 ApplicationMaster 返回 Container 资源时,ApplicationMaster 就尝试在对应的 Container 上启动 Executor 进程,Executor 进程起来后,会向 Driver 反向注册,注册成功后保持与 Driver 的心跳,同时等待 Driver 分发任务,当分发的任务执行完毕后,将任务状态上报给 Driver。

任务调度概述

当 Driver 起来后,Driver 则会根据用户程序逻辑准备任务,并根据 Executor 资源情况逐步分发任务。在详细阐述任务调度前,首先说明下 Spark 里的几个概念。一个 Spark 应用程序包括 Job、Stage 以及 Task 三个概念:

  1. Job 是以 Action 方法为界,遇到一个 Action 方法则触发一个 Job;
  2. Stage 是 Job 的子集,以 RDD 宽依赖(即 Shuffle)为界,遇到 Shuffle 做一次划分;
  3. Task 是 Stage 的子集,以并行度(分区数)来衡量,分区数是多少,则有多少个 task。

Spark 的任务调度总体来说分两路进行,一路是 Stage 级的调度,一路是 Task 级的调度,总体调度流程如下图所示:

Spark RDD 通过其 Transactions 操作,形成了 RDD 血缘(依赖)关系图,即 DAG,最后通过 Action 的调用,触发 Job 并调度执行,执行过程中会创建两个调度器:DAGScheduler和 TaskScheduler。

  • DAGScheduler 负责 Stage 级的调度,主要是将 job 切分成若干 Stages,并将每个 Stage打包成 TaskSet 交给 TaskScheduler 调度。

  • TaskScheduler 负责 Task 级的调度,将 DAGScheduler 给过来的 TaskSet 按照指定的调度策略分发到 Executor 上执行,调度过程中 SchedulerBackend 负责提供可用资源,其中SchedulerBackend 有多种实现,分别对接不同的资源管理系统。

Driver 初始化 SparkContext 过程中,会分别初始化 DAGScheduler、TaskScheduler、SchedulerBackend 以及 HeartbeatReceiver,并启动 SchedulerBackend 以及 HeartbeatReceiver。

  • SchedulerBackend 通过 ApplicationMaster 申请资源,并不断从 TaskScheduler 中拿到合适的Task 分发到 Executor 执行;
  • HeartbeatReceiver 负责接收 Executor 的心跳信息,监控 Executor的存活状况,并通知到 TaskScheduler。

Stage级调度

Spark 的任务调度是从 DAG 切割开始,主要是由 DAGScheduler 来完成。当遇到一个Action 操作后就会触发一个 Job 的计算,并交给 DAGScheduler 来提交,下图是涉及到 Job提交的相关方法调用流程图。

Job 由最终的 RDD 和 Action 方法封装而成;

SparkContext 将 Job 交给 DAGScheduler 提交,它会根据 RDD 的血缘关系构成的 DAG进行切分,将一个 Job 划分为若干 Stages,具体划分策略是,由最终的 RDD 不断通过依赖回溯判断父依赖是否是宽依赖,即以 Shuffle 为界,划分 Stage,窄依赖的 RDD 之间被划分到同一个 Stage 中,可以进行 pipeline 式的计算。划分的 Stages 分两类,一类叫做 ResultStage,为 DAG 最下游的 Stage,由 Action 方法决定,另一类叫做ShuffleMapStage,为下游 Stage 准备数据,下面看一个简单的例子 WordCount。

Job 由 saveAsTextFile 触发,该 Job 由 RDD-3 和 saveAsTextFile 方法组成,根据 RDD 之间的依赖关系从 RDD-3 开始回溯搜索,直到没有依赖的 RDD-0,在回溯搜索过程中,RDD-3 依赖 RDD-2,并且是宽依赖,所以在 RDD-2 和 RDD-3 之间划分 Stage,RDD-3 被划到最后一个 Stage,即 ResultStage 中,RDD-2 依赖 RDD-1,RDD-1 依赖 RDD-0,这些依赖都是窄依赖,所以将 RDD-0、RDD-1 和 RDD-2 划分到同一个 Stage,形成 pipeline 操作,。即ShuffleMapStage 中,实际执行的时候,数据记录会一气呵成地执行 RDD-0 到 RDD-2 的转化。不难看出,其本质上是一个深度优先搜索(Depth First Search)算法。

一个 Stage 是否被提交,需要判断它的父 Stage 是否执行,只有在父 Stage 执行完毕才能提交当前 Stage,如果一个 Stage 没有父 Stage,那么从该 Stage 开始提交。Stage 提交时会将 Task 信息(分区信息以及方法等)序列化并被打包成 TaskSet 交给 TaskScheduler,一个Partition 对应一个 Task,另一方面 TaskScheduler 会监控 Stage 的运行状态,只有 Executor 丢失或者 Task 由于 Fetch 失败才需要重新提交失败的 Stage 以调度运行失败的任务,其他类型的 Task 失败会在 TaskScheduler 的调度过程中重试。

相对来说 DAGScheduler 做的事情较为简单,仅仅是在 Stage 层面上划分 DAG,提交Stage 并监控相关状态信息。TaskScheduler 则相对较为复杂,下面详细阐述其细节。

Spark Task级调度

Spark Task 的调度是由 TaskScheduler 来完成,由前文可知,DAGScheduler 将 Stage 打包到交给 TaskScheTaskSetduler,TaskScheduler 会将 TaskSet 封装为 TaskSetManager 加入到调度队列中,TaskSetManager 结构如下图所示。

TaskSetManager 负责监控管理同一个Stage中的Tasks, TaskScheduler就是以TaskSetManager 为单元来调度任务

前面也提到,TaskScheduler 初始化后会启动 SchedulerBackend,它负责跟外界打交道,接收 Executor 的注册信息,并维护 Executor 的状态,所以说 SchedulerBackend 是管“粮食”的,同时它在启动后会定期地去“询问”TaskScheduler 有没有任务要运行,也就是说,它会定期地“问”TaskScheduler“我有这么余粮,你要不要啊”,TaskScheduler 在 SchedulerBackend“问”它的时候,会从调度队列中按照指定的调度策略选择 TaskSetManager 去调度运行,大致方法调用流程如下图所示:

上图中,将 TaskSetManager 加入 rootPool 调度池中之后,调用 SchedulerBackend 的 riviveOffers 方法给 driverEndpoint 发送 ReviveOffer 消息;driverEndpoint 收到 ReviveOffer 消息后调用 makeOffers 方法,过滤出活跃状态的 Executor(这些 Executor 都是任务启动时反向注册到 Driver 的 Executor),然后将 Executor 封装成 WorkerOffer 对象;准备好计算资源(WorkerOffer)后,taskScheduler 基于这些资源调用 resourceOffer 在 Executor 上分配 task。

调度策略

TaskScheduler 支持两种调度策略,一种是 FIFO,也是默认的调度策略,另一种是 FAIR。 在 TaskScheduler 初始化过程中会实例化 rootPool,表示树的根节点,是 Pool 类型。

(1) FIFO 调度策略

如果是采用 FIFO 调度策略,则直接简单地将 TaskSetManager 按照先来先到的方式入队,出队时直接拿出最先进队的 TaskSetManager,其树结构如下图所示,TaskSetManager 保存在一个 FIFO 队列中。

(2)FAIR 调度策略

FAIR 调度策略的树结构如下图所示:

FAIR 模式中有一个 rootPool 和多个子 Pool,各个子 Pool 中存储着所有待分配的TaskSetMagager。

在 FAIR 模式中,需要先对子 Pool 进行排序,再对子 Pool 里面的 TaskSetMagager 进行排序,因为 Pool 和 TaskSetMagager 都继承了 Schedulable 特质,因此使用相同的排序算法。

排序过程的比较是基于 Fair-share 来比较的,每个要排序的对象包含三个属性: runningTasks值(正在运行的Task数)minShare值weight值,比较时会综合考量runningTasks值,minShare 值以及 weight 值。

注意,minShare、weight 的值均在公平调度配置文件 fairscheduler.xml 中被指定,调度池在构建阶段会读取此文件的相关配置。

(1)如果A对象的runningTasks大于它的minShare,B对象的runningTasks小于它的minShare,那么 B 排在 A 前面;(runningTasks 比 minShare 小的先执行)

(2)如果 A、B 对象的 runningTasks 都小于它们的 minShare,那么就比较 runningTasks 与minShare 的比值(minShare 使用率),谁小谁排前面;(minShare 使用率低的先执行)

(3)如果 A、B 对象的 runningTasks 都大于它们的 minShare,那么就比较 runningTasks 与weight 的比值(权重使用率),谁小谁排前面。(权重使用率低的先执行)

(4)如果上述比较均相等,则比较名字。

整体上来说就是通过minShare和weight这两个参数控制比较过程,可以做到让minShare使用率和权重使用率少(实际运行 task 比例较少)的先运行。

FAIR 模式排序完成后,所有的 TaskSetManager 被放入一个 ArrayBuffer 里,之后依次被取出并发送给 Executor 执行。

从调度队列中拿到 TaskSetManager 后,由于 TaskSetManager 封装了一个 Stage 的所有Task,并负责管理调度这些 Task,那么接下来的工作就是 TaskSetManager 按照一定的规则一个个取出 Task 给 TaskScheduler,TaskScheduler 再交给 SchedulerBackend 去发到 Executor上执行。

本地化调度

DAGScheduler 切割 Job,划分 Stage, 通过调用 submitStage 来提交一个 Stage 对应的tasks,submitStage 会调用 submitMissingTasks,submitMissingTasks 确定每个需要计算的 task 的 preferredLocations,通过调用 getPreferrdeLocations() 得到 partition 的优先位置,由于一个partition 对应一个 Task,此 partition 的优先位置就是 task 的优先位置,对于要提交到TaskScheduler 的 TaskSet 中的每一个 Task,该 task 优先位置与其对应的 partition 对应的优先位置一致。

从调度队列中拿到 TaskSetManager 后,那么接下来的工作就是 TaskSetManager 按照一定的规则一个个取出 task 给 TaskScheduler,TaskScheduler 再交给 SchedulerBackend 去发到Executor 上执行。前面也提到,TaskSetManager 封装了一个 Stage 的所有 Task,并负责管理调度这些 Task。

根据每个 Task 的优先位置,确定 Task 的 Locality 级别,Locality 一共有五种,优先级由高到低顺序:

名称解析
PROCESS_LOCAL进程本地化,task 和数据在同一个 Executor 中,性能最好。
NODE_LOCAL节点本地化,task 和数据在同一个节点中,但是 task 和数据不在同一个 Executor 中,数据需要在进程间进行传输。
RACK_LOCAL机架本地化,task 和数据在同一个机架的两个节点上,数据需要通过网络在节点之间进行传输。
NO_PREF对于 task 来说,从哪里获取都一样,没有好坏之分。
ANYtask 和数据可以在集群的任何地方,而且不在一个机架中,性能最差。

在调度执行时,Spark 调度总是会尽量让每个 task 以最高的本地性级别来启动,当一个task 以 X 本地性级别启动,但是该本地性级别对应的所有节点都没有空闲资源而启动失败,此时并不会马上降低本地性级别启动而是在某个时间长度内再次以 X 本地性级别来启动该task,若超过限时时间则降级启动,去尝试下一个本地性级别,依次类推。

可以通过调大每个类别的最大容忍延迟时间,在等待阶段对应的 Executor 可能就会有相应的资源去执行此 task,这就在在一定程度上提到了运行性能。

失败重试与黑名单机制

除了选择合适的 Task 调度运行外,还需要监控 Task 的执行状态,前面也提到,与外部打交道的是 SchedulerBackend,Task 被提交到 Executor 启动执行后,Executor 会将执行状态上报给 SchedulerBackend,SchedulerBackend 则告诉 TaskScheduler,TaskScheduler 找到该Task 对应的 TaskSetManager,并通知到该 TaskSetManager,这样 TaskSetManager 就知道 Task的失败与成功状态,对于失败的 Task,会记录它失败的次数,如果失败次数还没有超过最大重试次数,那么就把它放回待调度的 Task 池子中,否则整个 Application 失败。

在记录 Task 失败次数过程中,会记录它上一次失败所在的 Executor Id 和 Host,这样下次再调度这个 Task 时,会使用黑名单机制,避免它被调度到上一次失败的节点上,起到一定的容错作用。黑名单记录 Task 上一次失败所在的 Executor Id 和 Host,以及其对应的“拉黑”时间,“拉黑”时间是指这段时间内不要再往这个节点上调度这个 Task 了。

Spark Shuffle解析

ShuffleMapStage与ResultStage

在划分 stage 时,最后一个 stage 称为 finalStage,它本质上是一个 ResultStage 对象,前面的所有 stage 被称为 ShuffleMapStage。

ShuffleMapStage 的结束伴随着 shuffle 文件的写磁盘。

ResultStage 基本上对应代码中的 action 算子,即将一个函数应用在 RDD 的各个 partition的数据集上,意味着一个 job 的运行结束。

HashShuffle解析

未优化的HashShuffle

这里我们先明确一个假设前提:每个 Executor 只有 1 个 CPU core,也就是说,无论这个 Executor 上分配多少个 task 线程,同一时间都只能执行一个 task 线程。

如下图中有 3 个 Reducer,从 Task 开始那边各自把自己进行 Hash 计算(分区器:hash/numreduce 取模),分类出 3 个不同的类别,每个 Task 都分成 3 种类别的数据,想把不同的数据汇聚然后计算出最终的结果,所以 Reducer 会在每个 Task 中把属于自己类别的数据收集过来,汇聚成一个同类别的大集合,每 1 个 Task 输出 3 份本地文件,这里有 4 个Mapper Tasks,所以总共输出了 4 个 Tasks x 3 个分类文件 = 12 个本地小文件。

优化后的HashShuffle

优化的 HashShuffle 过程就是启用合并机制,合并机制就是复用 buffer,开启合并机制的配置是 spark.shuffle.consolidateFiles。该参数默认值为 false,将其设置为 true 即可开启优化机制。通常来说,如果我们使用 HashShuffleManager,那么都建议开启这个选项。

这里还是有 4 个 Tasks,数据类别还是分成 3 种类型,因为 Hash 算法会根据你的 Key 进行分类,在同一个进程中,无论是有多少过 Task,都会把同样的 Key 放在同一个 Buffer里,然后把 Buffer 中的数据写入以 Core 数量为单位的本地文件中,(一个 Core 只有一种类型的 Key 的数据),每 1 个 Task 所在的进程中,分别写入共同进程中的 3 份本地文件,这里有 4 个 Mapper Tasks,所以总共输出是 2 个 Cores x 3 个分类文件 = 6 个本地小文件。

SortShuffle解析

普通SortShuffle

在该模式下,数据会先写入一个数据结构,reduceByKey 写入 Map,一边通过 Map 局部聚合,一遍写入内存。Join 算子写入 ArrayList 直接写入内存中。然后需要判断是否达到阈值,如果达到就会将内存数据结构的数据写入到磁盘,清空内存数据结构。在溢写磁盘前,先根据 key 进行排序,排序过后的数据,会分批写入到磁盘文件中。默认批次为 10000 条,数据会以每批一万条写入到磁盘文件。写入磁盘文件通过缓冲区溢写的方式,每次溢写都会产生一个磁盘文件,也就是说一个 Task 过程会产生多个临时文件。

最后在每个 Task 中,将所有的临时文件合并,这就是 merge 过程,此过程将所有临时文件读取出来,一次写入到最终文件。意味着一个 Task 的所有数据都在这一个文件中。同时单独写一份索引文件,标识下游各个Task的数据在文件中的索引,start offset和end offset。

bypass SortShuffle

bypass 运行机制的触发条件如下:

  1. shuffle reduce task 数量小于等于 spark.shuffle.sort.bypassMergeThreshold 参数的值,默认为 200。
  2. 不是聚合类的 shuffle 算子(比如 reduceByKey)。

此时 task 会为每个 reduce 端的 task 都创建一个临时磁盘文件,并将数据按 key 进行hash 然后根据 key 的 hash 值,将 key 写入对应的磁盘文件之中。当然,写入磁盘文件时也是先写入内存缓冲,缓冲写满之后再溢写到磁盘文件的。最后,同样会将所有临时磁盘文件都合并成一个磁盘文件,并创建一个单独的索引文件。

该过程的磁盘写机制其实跟未经优化的 HashShuffleManager 是一模一样的,因为都要创建数量惊人的磁盘文件,只是在最后会做一个磁盘文件的合并而已。因此少量的最终磁盘文件,也让该机制相对未经优化的 HashShuffleManager 来说,shuffle read 的性能会更好。

而该机制与普通 SortShuffleManager 运行机制的不同在于:不会进行排序。也就是说,启用该机制的最大好处在于,shuffle write 过程中,不需要进行数据的排序操作,也就节省掉了这部分的性能开销。

Spark内存管理

堆内和堆外内存规划

作为一个 JVM 进程,Executor 的内存管理建立在 JVM 的内存管理之上,Spark 对 JVM的堆内(On-heap)空间进行了更为详细的分配,以充分利用内存。同时,Spark 引入了堆外(Off-heap)内存,使之可以直接在工作节点的系统内存中开辟空间,进一步优化了内存的使用。堆内内存受到 JVM 统一管理,堆外内存是直接向操作系统进行内存的申请和释放。

(1)堆内内存

堆 内 内 存 的 大 小 , 由 Spark 应 用 程 序 启 动 时 的 – executor-memoryspark.executor.memory 参数配置。Executor 内运行的并发任务共享 JVM 堆内内存,这些任务在缓存 RDD 数据和广播(Broadcast)数据时占用的内存被规划为存储(Storage)内存,而这些任务在执行 Shuffle 时占用的内存被规划为执行(Execution)内存,剩余的部分不做特殊规划,那些 Spark 内部的对象实例,或者用户定义的 Spark 应用程序中的对象实例,均占用剩余的空间。不同的管理模式下,这三部分占用的空间大小各不相同。

Spark 对堆内内存的管理是一种逻辑上的”规划式”的管理,因为对象实例占用内存的申请和释放都由 JVM 完成,Spark 只能在申请后和释放前记录这些内存,我们来看其具体流程:

申请内存流程如下:

  • Spark 在代码中 new 一个对象实例;
  • JVM 从堆内内存分配空间,创建对象并返回对象引用;
  • Spark 保存该对象的引用,记录该对象占用的内存。

释放内存流程如下:

  • Spark 记录该对象释放的内存,删除该对象的引用;
  • 等待 JVM 的垃圾回收机制释放该对象占用的堆内内存。

我们知道,JVM 的对象可以以序列化的方式存储,序列化的过程是将对象转换为二进制字节流,本质上可以理解为将非连续空间的链式存储转化为连续空间或块存储,在访问时则需要进行序列化的逆过程——反序列化,将字节流转化为对象,序列化的方式可以节省存储空间,但增加了存储和读取时候的计算开销。

Spark的堆内存有两种问题:

  • 对于 Spark 中序列化的对象,由于是字节流的形式,其占用的内存大小可直接计算,而对于非序列化的对象,其占用的内存是通过周期性地采样近似估算而得,即并不是每次新增的数据项都会计算一次占用的内存大小,这种方法降低了时间开销但是有可能误差较大,导致某一时刻的实际内存有可能远远超出预期;
  • 此外,在被 Spark 标记为释放的对象实例,很有可能在实际上并没有被 JVM 回收,导致实际可用的内存小于 Spark 记录的可用内存。所以 Spark 并不能准确记录实际可用的堆内内存,从而也就无法完全避免内存溢出(OOM, Out of Memory)的异常

虽然不能精准控制堆内内存的申请和释放,但 Spark 通过对存储内存和执行内存各自独立的规划管理以及预留一部分空间,可以决定是否要在存储内存里缓存新的 RDD,以及是否为新的任务分配执行内存,在一定程度上可以提升内存的利用率,减少异常的出现。

(2)堆外内存

为了进一步优化内存的使用以及提高 Shuffle 时排序的效率,Spark 引入了堆外(Offheap)内存,使之可以直接在工作节点的系统内存中开辟空间,存储经过序列化的二进制数据

堆外内存意味着把内存对象分配在 Java 虚拟机的堆以外的内存,这些内存直接受操作系统管理(而不是虚拟机)。这样做的结果就是能保持一个较小的堆,以减少垃圾收集对应用的影响。

利用 JDK Unsafe API(从 Spark 2.0 开始,在管理堆外的存储内存时不再基于 Tachyon,而是与堆外的执行内存一样,基于 JDK Unsafe API 实现),Spark 可以直接操作系统堆外内存,减少了不必要的内存开销,以及频繁的 GC 扫描和回收,提升了处理性能堆外内存可以被精确地申请和释放(堆外内存之所以能够被精确的申请和释放,是由于内存的申请和释放不再通过 JVM 机制,而是直接向操作系统申请,JVM 对于内存的清理是无法准确指定时间点的,因此无法实现精确的释放),而且序列化的数据占用的空间可以被精确计算,所以相比堆内内存来说降低了管理的难度,也降低了误差。

在默认情况下堆外内存并不启用,可通过配置 spark.memory.offHeap.enabled 参数启用,并由 spark.memory.offHeap.size 参数设定堆外空间的大小。除了没有 other 空间,堆外内存与堆内内存的划分方式相同,所有运行中的并发任务共享存储内存和执行内存。

内存空间分配

静态内存管理

在 Spark 最初采用的静态内存管理机制下,存储内存、执行内存和其他内存的大小在Spark应用程序运行期间均为固定的,但用户可以应用程序启动前进行配置,堆内内存的分配如图所示:

  • storage内存是存储broadcastcachepersist数据的地方。其中10%(60%*10%)用于防止OOM。另外90%中的20%用于unroll,数据展开的(比如说,rdd.perist让数据序列化持久化,当要读出来的时候就需要反序列化,可以理解为解压,这就需要unroll这部分的内存空间了;还有other中的Partition数据被转换成存储内存中的Block),其余的内存(90%*80%)用于RDD缓存数据和广播变量
  • execution内存是执行内存,文档中说join,aggregate都在这部分内存中执行,shuffle的数据也会先缓存在这个内存中,满了再写入磁盘,能够减少IO。其实map过程也是在这个内存中执行的。
  • other内存是程序执行时预留给自己的内存,像task的执行和task执行时产生的对象

可以看到,可用的堆内内存的大小需要按照下列方式计算:

可用的存储内存 = systemMaxMemory * spark.storage.memoryFraction * spark.storage.safetyFraction
可用的执行内存 = systemMaxMemory * spark.shuffle.memoryFraction * spark.shuffle.safetyFraction

其中:systemMaxMemory 取决于当前 JVM 堆内内存的大小,最后可用的执行内存或者存储内存要在此基础上与各自的 memoryFraction 参数和 safetyFraction 参数相乘得出。

上述计算公式中的两个 safetyFraction 参数,其意义在于在逻辑上预留出 1-safetyFraction 这么一块保险区域,降低因实际内存超出当前预设范围而导致 OOM 的风险(上文提到,对于非序列化对象的内存采样估算会产生误差)。值得注意的是,这个预留的保险区域仅仅是一种逻辑上的规划,在具体使用时 Spark 并没有区别对待,和”其它内存”一样交给了 JVM 去管理。

Storage 内存和 Execution 内存都有预留空间,目的是防止 OOM,因为 Spark 堆内内存大小的记录是不准确的,需要留出保险区域。

堆外的空间分配较为简单,只有存储内存和执行内存,如下图所示。可用的执行内存和存储内存占用的空间大小直接由参数 spark.memory.storageFraction 决定,由于堆外内存占用的空间可以被精确计算,所以无需再设定保险区域

静态内存管理机制实现起来较为简单,但如果用户不熟悉 Spark 的存储机制,或没有根据具体的数据规模和计算任务或做相应的配置,很容易造成”一半海水,一半火焰”的局面,即存储内存和执行内存中的一方剩余大量的空间,而另一方却早早被占满,不得不淘汰或移出旧的内容以存储新的内容。由于新的内存管理机制的出现,这种方式目前已经很少有开发者使用,出于兼容旧版本的应用程序的目的,Spark 仍然保留了它的实现。

统一内存管理

Spark1.6 之后引入的统一内存管理机制,与静态内存管理的区别在于存储内存和执行内存共享同一块空间,可以动态占用对方的空闲区域,统一内存管理的堆内内存结构如图所示:

堆内内存整体划分为Usable Memory(可用内存)和Reversed Memory(预留内存)两大部分。其中预留内存作为OOM等异常情况的内存使用区域,默认被分配300M的空间。可用内存可进一步分为统一内存(Unified Memory)和Other内存其他两部分,默认占比为6:4。

统一内存中的Storage(存储内存)和Execution(执行内存)以及Other内存,其参数及使用范围均与静态内存模式一致,不再重复赘述。只是此时的Storage、Execution之间启用了动态内存占用机制。

动态内存占用机制:

  1. 设置内存的初始值,即Execution和Storage均需设定各自的内存区域范围(spark.storage.storageFraction 参数,默认参数0.5);
  2. 若存在一方内存不足,另一方内存空余时,可占用对方内存空间;
  3. 双方内存均不足时,需落盘处理;
  4. Execution内存被占用时,Storage需将此部分转存硬盘并归还空间;
  5. Storage内存被占用时,Execution无需归还。

凭借统一内存管理机制,Spark 在一定程度上提高了堆内和堆外内存资源的利用率,降低了开发者维护 Spark 内存的难度,但并不意味着开发者可以高枕无忧。如果存储内存的空间太大或者说缓存的数据过多,反而会导致频繁的全量垃圾回收,降低任务执行时的性能,因为缓存的 RDD 数据通常都是长期驻留内存的。所以要想充分发挥 Spark 的性能,需要开发者进一步了解存储内存和执行内存各自的管理方式和实现原理。

和静态管理模式分配一致,堆外内存默认值为384M。整体分为Storage和Execution两部分,且启用动态内存占用机制,其中默认的初始化占比值均为0.5。

存储内存管理

RDD的持久化机制

弹性分布式数据集(RDD)作为 Spark 最根本的数据抽象,是只读的分区记录(Partition)的集合,只能基于在稳定物理存储中的数据集上创建,或者在其他已有的 RDD 上执行转换(Transformation)操作产生一个新的 RDD。转换后的 RDD 与原始的 RDD 之间产生的依赖关系,构成了血统(Lineage)。凭借血统,Spark 保证了每一个 RDD 都可以被重新恢复。但RDD 的所有转换都是惰性的,即只有当一个返回结果给 Driver 的行动(Action)发生时,Spark 才会创建任务读取 RDD,然后真正触发转换的执行。

Task 在启动之初读取一个分区时,会先判断这个分区是否已经被持久化,如果没有则需要检查 Checkpoint 或按照血统重新计算。所以如果一个 RDD 上要执行多次行动,可以在第一次行动中使用 persist 或 cache 方法,在内存或磁盘中持久化或缓存这个 RDD,从而在后面的行动时提升计算速度。

事实上,cache 方法是使用默认的 MEMORY_ONLY 的存储级别将 RDD 持久化到内存,故缓存是一种特殊的持久化。 堆内和堆外存储内存的设计,便可以对缓存 RDD 时使用的内存做统一的规划和管理。

RDD 的持久化由 Spark 的 Storage 模块负责,实现了 RDD 与物理存储的解耦合。Storage模块负责管理 Spark 在计算过程中产生的数据,将那些在内存或磁盘、在本地或远程存取数据的功能封装了起来。在具体实现时 Driver 端和 Executor 端的 Storage 模块构成了主从式的架构,即 Driver 端的 BlockManager 为 Master,Executor 端的 BlockManager 为 Slave

Storage 模块在逻辑上以 Block 为基本存储单位,RDD 的每个 Partition 经过处理后唯一对应一个 Block(BlockId 的格式为 rdd_RDD-ID_PARTITION-ID )。Driver 端的 Master 负责整个 Spark 应用程序的 Block 的元数据信息的管理和维护,而 Executor 端的 Slave 需要将 Block的更新等状态上报到 Master,同时接收 Master 的命令,例如新增或删除一个 RDD。

在对 RDD 持久化时,Spark 规定了 MEMORY_ONLY、MEMORY_AND_DISK 等 7 种不同的存储级别,而存储级别是以下 5 个变量的组合:

class StorageLevel private(
    private var _useDisk: Boolean, //磁盘
    private var _useMemory: Boolean, //这里其实是指堆内内存
    private var _useOffHeap: Boolean, //堆外内存
    private var _deserialized: Boolean, //是否为非序列化
    private var _replication: Int = 1 //副本个数
)

Spark 中 7 种存储级别如下:

持久化级别含义
MEMORY_ONLY以非序列化的Java对象的方式持久化在JVM内存中。如果内存无法完全存储RDD所有的partition,那么那些没有持久化的partition就会在下一次需要使用它的时候,重新被计算。
MEMORY_AND_DISK同上,但是当某些partition无法存储在内存中时,会持久化到磁盘中。下次需要使用这些partition时,需要从磁盘上读取。
MEMORY_ONLY_SER同MEMORY_ONLY,但是会使用Java序列化方式,将Java对象序列化后进行持久化。可以减少内存开销,但是需要进行反序列化,因此会加大CPU开销
MEMORY_AND_DSK_SER同MEMORY_AND_DSK。但是使用序列化方式持久化Java对象。
DISK_ONLY使用非序列化Java对象的方式持久化,完全存储到磁盘上。
MEMORY_ONLY_2
MEMORY_AND_DISK_2如果是尾部加了2的持久化级别,表示会将持久化数据复用一份,保存到其他节点,从而在数据丢失时,不需要再次计算,只需要使用备份数据即可。

通过对数据结构的分析,可以看出存储级别从三个维度定义了 RDD 的 Partition(同时也就是 Block)的存储方式:

  • 存储位置:磁盘/堆内内存/堆外内存。如 MEMORY_AND_DISK 是同时在磁盘和堆内内存上存储,实现了冗余备份。OFF_HEAP 则是只在堆外内存存储,目前选择堆外内存时不能同时存储到其他位置。
  • 存储形式:Block 缓存到存储内存后,是否为非序列化的形式。如 MEMORY_ONLY 是非序列化方式存储,OFF_HEAP 是序列化方式存储。
  • 副本数量:大于 1 时需要远程冗余备份到其他节点。如 DISK_ONLY_2 需要远程备份 1个副本。
RDD的缓存过程

RDD 在缓存到存储内存之前,Partition 中的数据一般以迭代器(Iterator)的数据结构来访问,这是 Scala 语言中一种遍历数据集合的方法。通过 Iterator 可以获取分区中每一条序列化或者非序列化的数据项(Record),这些 Record 的对象实例在逻辑上占用了 JVM 堆内内存的 other 部分的空间,同一 Partition 的不同 Record 的存储空间并不连续。

RDD 在缓存到存储内存之后,Partition 被转换成 Block,Record 在堆内或堆外存储内存中占用一块连续的空间。将 Partition 由不连续的存储空间转换为连续存储空间的过程,Spark称之为"展开"(Unroll)。

Block 有序列化和非序列化两种存储格式,具体以哪种方式取决于该 RDD 的存储级别非序列化的 Block 以一种 DeserializedMemoryEntry 的数据结构定义,用一个数组存储所有的对象实例,序列化的 Block 则以 SerializedMemoryEntry 的数据结构定义,用字节缓冲区(ByteBuffer)来存储二进制数据。每个 Executor 的 Storage 模块用一个链式 Map 结构(LinkedHashMap)来管理堆内和堆外存储内存中所有的 Block 对象的实例,对这个LinkedHashMap 新增和删除间接记录了内存的申请和释放。

因为不能保证存储空间可以一次容纳 Iterator 中的所有数据,当前的计算任务在 Unroll 时要向 MemoryManager 申请足够的 Unroll 空间来临时占位,空间不足则 Unroll 失败,空间足够时可以继续进行。

对于序列化的 Partition,其所需的 Unroll 空间可以直接累加计算,一次申请对于非序列化的 Partition 则要在遍历 Record 的过程中依次申请,即每读取一条 Record,采样估算其所需的 Unroll 空间并进行申请,空间不足时可以中断,释放已占用的 Unroll 空间。

如果最终 Unroll 成功,当前 Partition 所占用的 Unroll 空间被转换为正常的缓存 RDD 的存储空间,如下图所示。

在静态内存管理时,Spark 在存储内存中专门划分了一块 Unroll 空间,其大小是固定的,统一内存管理时则没有对 Unroll 空间进行特别区分,当存储空间不足时会根据动态占用机制进行处理。

淘汰与落盘

由于同一个 Executor 的所有的计算任务共享有限的存储内存空间,当有新的 Block 需要缓存但是剩余空间不足且无法动态占用时,就要对 LinkedHashMap 中的旧 Block 进行淘汰(Eviction),而被淘汰的 Block 如果其存储级别中同时包含存储到磁盘的要求,则要对其进行落盘(Drop),否则直接删除该 Block。

存储内存的淘汰规则为:

  • 被淘汰的旧 Block 要与新 Block 的 MemoryMode 相同,即同属于堆外或堆内内存
  • 新旧 Block 不能属于同一个 RDD,避免循环淘汰
  • 旧 Block 所属 RDD 不能处于被读状态,避免引发一致性问题
  • 遍历 LinkedHashMap 中 Block,按照最近最少使用(LRU)的顺序淘汰,直到满足新Block 所需的空间。其中 LRU 是 LinkedHashMap 的特性。

落盘的流程则比较简单,如果其存储级别符合_useDisk 为 true 的条件,再根据其_deserialized判断是否是非序列化的形式,若是则对其进行序列化,最后将数据存储到磁盘,在 Storage模块中更新其信息。

执行内存管理

执行内存主要用来存储任务在执行 Shuffle 时占用的内存,Shuffle 是按照一定规则对RDD 数据重新分区的过程,我们来看 Shuffle 的 Write 和 Read 两阶段对执行内存的使用:

(1)Shuffle Write

若在 map 端选择普通的排序方式,会采用 ExternalSorter 进行外排,在内存中存储数据时主要占用堆内执行空间。

若在 map 端选择 Tungsten 的排序方式,则采用 ShuffleExternalSorter 直接对以序列化形式存储的数据排序,在内存中存储数据时可以占用堆外或堆内执行空间,取决于用户是否开启了堆外内存以及堆外执行内存是否足够。

(2)Shuffle Read

在对 reduce 端的数据进行聚合时,要将数据交给 Aggregator 处理,在内存中存储数据时占用堆内执行空间。

如果需要进行最终结果排序,则要将再次将数据交给 ExternalSorter 处理,占用堆内执行空间。

在 ExternalSorter 和 Aggregator 中,Spark 会使用一种叫 AppendOnlyMap 的哈希表在堆内执行内存中存储数据,但在 Shuffle 过程中所有数据并不能都保存到该哈希表中,当这个哈希表占用的内存会进行周期性地采样估算,当其大到一定程度,无法再从 MemoryManager 申请到新的执行内存时,Spark 就会将其全部内容存储到磁盘文件中,这个过程被称为溢存(Spill),溢存到磁盘的文件最后会被归并(Merge)

Shuffle Write 阶段中用到的 Tungsten 是 Databricks 公司提出的对 Spark 优化内存和 CPU 使用的计划(钨丝计划),解决了一些 JVM 在性能上的限制和弊端。Spark 会根据 Shuffle 的情况来自动选择是否采用 Tungsten 排序

Tungsten 采用的页式内存管理机制建立在 MemoryManager 之上,即 Tungsten 对执行内存的使用进行了一步的抽象,这样在 Shuffle 过程中无需关心数据具体存储在堆内还是堆外

每个内存页用一个 MemoryBlock 来定义,并用 Object objlong offset 这两个变量统一标识一个内存页在系统内存中的地址。

堆内的 MemoryBlock 是以 long 型数组的形式分配的内存,其 obj 的值为是这个数组的对象引用,offset 是 long 型数组的在 JVM 中的初始偏移地址,两者配合使用可以定位这个数组在堆内的绝对地址;堆外的 MemoryBlock 是直接申请到的内存块,其 obj 为 null,offset 是这个内存块在系统内存中的 64 位绝对地址。Spark 用 MemoryBlock 巧妙地将堆内和堆外内存页统一抽象封装,并用页表(pageTable)管理每个 Task 申请到的内存页。

Tungsten 页式管理下的所有内存用 64 位的逻辑地址表示,由页号和页内偏移量组成:

  • 页号:占 13 位,唯一标识一个内存页,Spark 在申请内存页之前要先申请空闲页号。
  • 页内偏移量:占 51 位,是在使用内存页存储数据时,数据在页内的偏移地址。

有了统一的寻址方式,Spark 可以用 64 位逻辑地址的指针定位到堆内或堆外的内存,整个Shuffle Write 排序的过程只需要对指针进行排序,并且无需反序列化,整个过程非常高效,对于内存访问效率和 CPU 使用效率带来了明显的提升。

Spark 的存储内存和执行内存有着截然不同的管理方式:

  • 对于存储内存来说,Spark 用一个LinkedHashMap 来集中管理所有的 Block,Block 由需要缓存的 RDD 的 Partition 转化而成;
  • 而对于执行内存,Spark 用 AppendOnlyMap 来存储 Shuffle 过程中的数据,在 Tungsten 排序中甚至抽象成为页式内存管理,开辟了全新的 JVM 内存管理机制。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/97030.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SpringCloud微服务之Zuul网关

SpringCloud微服务之Zuul网关 家庭生活中经常有这样的感悟,家中的财政大权在老婆手里,想要花个小钱买个冰棍,得跟老婆请示,想要出个远门看看北京猿人,得跟老婆请示,想不要脸面去个夜店看看别的妞好在哪里&…

代码随想录第九天

专题:字符串 题目:字符串的左旋转操作是把字符串前面的若干个字符转移到字符串的尾部。请定义一个函数实现字符串左旋转操作的功能。 比如,输入字符串"abcdefg"和数字2,该函数将返回左旋转两位得到的结果"cdefgab&…

ADI Blackfin DSP处理器-BF533的开发详解56:CVBS输入-DSP和ADV7180的MDMA用法(含源码)

硬件准备 ADSP-EDU-BF533:BF533开发板 AD-HP530ICE:ADI DSP仿真器 软件准备 Visual DSP软件 硬件链接 CVBS IN视频输出 代码实现功能 电视视频是奇场合偶场交替传输的,所以通过 CVBSIN 模块采集到的图像如上实验所看到的,是…

CentOS 7.6 安装与配置 MySql 5.7.40

1 通过wget下载MySql的rpm # wget https://dev.mysql.com/get/mysql57-community-release-el7-9.noarch.rpm2 检查是否存在MySql的repo # cd /etc/yum.repos.d/ # ls CentOS-Base.repo CentOS-Epel.repo可以看到没有MySql的repo 3 安装MySql的repo,并查看是否安…

React 生命周期

React 生命周期 这篇文章,我们来聊一聊在React中的生命周期。首先我们明确一点,在React中,函数式组件是没有生命周期的。谈到生命周期,都是关于类组件的! 生命周期官方网址 React.Component – React (docschina.or…

macOS Monterey 12.6.2 (21G320) Boot ISO 原版可引导镜像

macOS Monterey 12.6,皆为安全更新,不再赘述。 macOS Monterey 12.6,发布于 2022 年 9 月 12 日(北京时间今日凌晨),本次为安全更新。 今日(2022-07-21)凌晨,Apple 终于…

CentOS 8:SSH远程登录

SSH远程登录 SSH远程登录,也是 C / S 模式 服务端:sshd ,默认是启动的 systemctl status sshd systemctl start sshd SecureCRT 是打开了一个远程终端 注意:在终端环境里,不可以启动GUI程序 例如,在 …

【单片机】DS1302时钟/蜂鸣器

目录 一、DS1302时钟 1、DS1302时钟的介绍 2、DS1302时钟寄存器 3、DS1302时序图 4、BCD码 5、写一个时钟 6、写一个可调时钟 二、蜂鸣器 1、蜂鸣器的介绍​编辑 2、三极管放大驱动蜂鸣器 2.1NPN三极管工作原理(基极电流和发射电流均流向集电区&#xff…

Python图像识别实战(二):实现批量图像读取和像素转换(附源码和实现效果)

前面我介绍了可视化的一些方法以及机器学习在预测方面的应用,分为分类问题(预测值是离散型)和回归问题(预测值是连续型)(具体见之前的文章)。 从本期开始,我将做一个关于图像识别的…

Dubbo 3 Dubbo 快速入门 3.2 Dubbo 快速入门 3.2.3 服务消费者

Dubbo 【黑马程序员Dubbo快速入门,Java分布式框架dubbo教程】 3 Dubbo 快速入门 文章目录Dubbo3 Dubbo 快速入门3.2 Dubbo 快速入门3.2.3 服务消费者3.2 Dubbo 快速入门 3.2.3 服务消费者 OK,之前我们 已经完成了 服务提供 者的改造 现在来改造 服务…

智能电网中采用博弈论的方法(Python代码实现)

目录 1 概述 2 系统模型 2.1 单价模型 2.2 效用模型和 能源消费者(EC) 的目标 2.3 成本模型和 中央电站(CPS) 的目标 2.4 优化问题 3 优化的能源管理模型 4 模型的特性 4.1 均衡的存在 4.2 决策过程 5 算法 6 数值的…

vector详解(不定长数组)

目录 什么是vector vector的介绍 模板的声明方式 vector的基本操作 push_back insert erase 遍历vector 小明爱数列-练习题 思路 什么是vector vector的介绍 和我一样,我猜你们看到题目时心里都会产生一个疑问"什么是vector?(大佬除外)".vector其实是…

一起Talk Android吧(第四百四十四回:UI控件之DatePicker)

文章目录概念介绍使用方法内容总结各位看官们大家好,上一回中咱们说的例子是"UI控件之NumberPicker",这一回中说的例子是"UI控件之DatePicker"。闲话休提,言归正转,让我们一起Talk Android吧! 概念介绍 看官…

CSS实现文字扫光特效

上大学的玩 ae 的时候,就曾遇到过这个特效。偶然在百度看到了类似特效,没想到竟然能用 css 实现,所以就研究了一下,文字扫光效果如下: 实现思路: 光效移动效果,可以通过 background-image 设置…

RCNN网络源码解读(Ⅲ) --- finetune训练过程

目录 0.回顾 1.finetune二分类代码解释(finetune.py) 1.1 load_data(定义获取数据的方法) 1.2 CustomFineTuneDataset类 1.3 custom_batch_sampler类( custom_batch_sampler.py) 1.4 训练train_mod…

JVM.......未完待续

一、了解 JVM JVM ( Java Virtual Machine ),又称之为 Java虚拟机。JVM 的运行与操作系统无关,能够实现跨平台,只要是安装了JVM的机器,都能运行Java程序,Java语言最重要的特点 "跨平台运行",也…

关于应用形态数轴方法的一点展望

“既然目前物理化学关于物质世界的最高理论成果,即所谓由量子力学和统计力学组成的第一原理,只能求算物质无生命的性质,而药物设计关心的却是有生命的性质.那么是否第一原理对药物设计就无所作为呢?不是的.也就是说,尽…

设备资产管理系统有什么用?

在PC时代,电脑、打印设备的那个已经成为当代企业的必备资产,生产型企业还有生产设备等资产,企业规模越大资产就越多,就越难管理,因此设备资产管理系统成为诸多企业数字化管理的重要组成之一。设备管理系统的应用不仅能…

算法基础篇-10-动态规划

1. 简介 动态规划是一种算法思想; 动态规划递归式子问题 1.1 案例1: 斐波那契数列 斐波那契数列:FnFn-1Fn-2 代码演示: 使用递归和非递归的方法来求解斐波那契数列的第n项; 递归的方法: public static…

uniapp实战仿写网易云音乐(二)—视频页面(scroll-view组件实现横线滑动,mescroll-uni实现视频列表,向下滑动刷新当前页面)

文章目录前言顶部导航条的实现视频列表的展示部分CSS部分最后前言 接着上篇文章继续完成剩下的部分,本篇文章是完成第二个页面——视频页面的部分,视频还是没有做播放的效果,主要是做展示效果。下面附上两篇文章链接,没看过的同学…