Python中的Numpy向量计算(R与Python系列第三篇)

news2024/11/26 15:01:22

目录

一、什么是Numpy?

二、如何导入NumPy?

三、生成NumPy数组

3.1利用序列生成

3.2使用特定函数生成NumPy数组

(1)使用np.arange()

(2)使用np.linspace()

四、NumPy数组的其他常用函数

(1)np.zeros()

(2)np.ones()

五、N维数组的属性

1.NumPy数组的物理内存和逻辑视图

2.ndim属性

 3.shape属性

​六、NumPy数组中的运算

0.背景

1.数组向量运算

 2.张量点乘运算

方法一:将二维数组转换为矩阵

方法二:使用张量点乘运算函数dot()

3.NumPy中提供的一些其他常用函数

参考:


说明:本文主要参考《Python极简讲义:一本书入门数据分析与机器学习》(2020年4月出版,电子工业出版社),本文图也是来源于这本书。

仅供学习使用。

R与Python系列第三篇,实际上内容全是Python的内容,跟R没有一点关系,只不过是本人学习Python的第三篇文章,想将R与Python结合使用。当在RStudio中配置好Python环境后(可以看R与Python系列第一篇),Python的代码可以在RStudio中运行,在RStudio的console中>>>表示此时运行的是Python代码,>表示运行R代码。

一、什么是Numpy?

在机器学习算法中,经常会用到数组和矩阵(向量)运算。NumPy是Python的基础,更是数据科学的通用语言,而且与TensorFlow关系密切。

为什么NumPy如此重要?实际上Python本身含有列表(list)和数组(array),但对于大数据来说,这些结构有很多不足。

  • 虽然Python中提供了列表,它可以当作数组使用。但是列表中的元素可以是任意“大杂烩”对象,因此为了区分彼此,列表付出了额外的代价----保存列表中每个对象的指针。这样一来,为了保存一个简单的列表,如[1,2,3,4],Python就不得不配备四个指针,指向四个整数对象。也就是说是,Python不仅要保存对象1,2,3,4的内容,还要保存四个指针,增加了内存成本,是一种低效的行为。
  • Python中也提供了数组,但是它仅仅支持一维数组,不支持多维数组,也没有各种运算函数,因此不适合数值运算。
  • 为了弥补Python数值计算的不足,Jim Hugunin、Travis Oliphant等人联合开发了NumPy项目,NumPy是Python语言的一个扩展程序库,是Numerical Python的简称它提供了两种基本的对象: ndarray(N-dimensional array object)和ufunc(universal function object)。ndarray是存储单一数据类型的多维数组,而ufunc则是可以对数组进行处理的函数。NumPy支持多维度的数组(即N维数组对象ndarray)与矩阵运算,并对数组运算提供了大量的数学函数库。NumPy功能非常强大,支持广播、线性代数运算、傅里叶变换、随机数生成等功能,对很多第三方库(如SciPy、Pandas等)提供了底层支持。

二、如何导入NumPy?

NumPy是Python的外部库。由于Anaconda提供了“全家桶”式的服务,因此在安装Anaconda时,NumPy这个常用的第三方库也被默认安装了。但在使用时,NumPy还是需要显示导入的。使用外部库时,为了方便,我们常会为NumPy起一个别名,通常这个别名为np。

import numpy as np       #导入NumPy并制定别名
print(np.__version__)      #输出其版本号

我们可以使用np.__version__(注意:version前后都是两个下划线)输出NumPy的版本号,这句代码的附属目的是验证NumPy是否被正确加载。如果能正常显示版本号,则说明一切正常,我们可以开始如下的操作了。

三、生成NumPy数组

NumPy最重要的一个特点就是支持N维数组对象ndarray。ndarray对象与列表有相似之处,但也有显著区别。例如,构成列表的元素是大杂烩的,元素类型可以是字符串、字典、元组中的一种或多种,但是NumPy数组中的元素类型要求一致。

3.1利用序列生成

使用array()生成NumPy数组,array()可以接收任意数据类型(如列表、元组等)作为数据源。

如果构造NumPy数组的数据精度不一致,如有整数,也有浮点数,NumPy会自动把所有数据都转换为浮点数,这是因为浮点数的精度更高。

data1 <- [6, 8.5, 9, 0]
arr1 <- np.array(data1)
arr1
输出: array( [6., 8.5, 9., 0.] )

每个数组都有一个dtype属性,用来描述数组的数据类型。除非显示指定,否则np.array会自动推断数据类型。数据类型会被存储在一个特殊的元数据dtype中。

arr1.dtype                   #默认保存为双精度(64 bit)浮点数
输出:dtype('float64') 

如果数据序列是嵌套的,且嵌套序列是等长的,则通过array()方法可以把嵌套的序列转为与嵌套级别适配的高维数组。

data2 = [ [1, 2, 3, 4], [5, 6, 7, 8] ]     #这是一个两层嵌套列表
arr2 = np.array(data2)                     #转换为一个二维数组
arr2

输出:
array([[1, 2, 3, 4],
      [5, 6, 7, 8] ])

3.2使用特定函数生成NumPy数组

(1)使用np.arange()

arange(start, stop, step, dtype)

描述:arange()根据start与stop指定的范围及step设定的步长,生成一个ndarray对象,即一个数组,不仅可以直接输出,还可以当作向量,参与到实际运算当中。取值区间是左闭右开的,即stop这个终止值是不包括在内的。

start:起始值,默认为0;

stop:终止值;

step:步长,如果不指定,默认值为1;

dtype:指定返回ndarray的数据类型,如果没有提供,则会使用输入数据的类型。

arr3 = np.arange(10)     #生成0~9的ndarray数组
print(arr3)
输出:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

ndarray对象可以做运算,如

arr3 = arr3 + 1      #将arr3中每个元素都加1
arr3
输出:
array( [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] ) 

需要说明的是,上述arr3是一个包含10个元素的向量[0,1,2,3,4,5,6,7,8,9],它和标量“1”实施相加操作,原本在向量“尺寸”上是不适配的。之所以能成功实施,是因为利用了“广播”机制。广播机制将这个标量“1”扩展为等长的向量[1,1,1,1,1,1,1,1,1],此时二者的维度是一样的,这才对两个长度不相等的向量进行了相加,这一点和R是一样的。

(2)使用np.linspace()

使用np.linspace()指定区间内生成指定个数的数组。(当然,也可以使用np.arange(),但是需要手动计算函数所需的步长)。

c = np.linspace(1, 10, 20)
c

输出:
array([ 1.        ,  1.47368421,  1.94736842,  2.42105263,  2.89473684,
        3.36842105,  3.84210526,  4.31578947,  4.78947368,  5.26315789,
        5.73684211,  6.21052632,  6.68421053,  7.15789474,  7.63157895,
        8.10526316,  8.57894737,  9.05263158,  9.52631579, 10.        ])

上述代码使用np.linspace()在区间[1,10]中生成了20个等间隔的数据,该方法的前两个参数分别指明生成元素的左右区间边界,第三个参数确定上下限之间均匀等分的数据个数。

需要注意的是,np.arange()中数据区间是左闭右开的(即区间的最后一个数值是取不到的),而np.linspace()生成的数据区间是闭区间。当然可以指定np.linspace()中的参数endpoint=False,使生成数据区间编程左闭右开区间。

四、NumPy数组的其他常用函数

(1)np.zeros()

np.zeros()、np.ones()函数用来生成指定维数和填充固定数值的数组。其中,np.zeros()函数生成的数组由0来填充,np.ones()生成的数组由1来填充。它们通常用来对某些变量进行初始化。

>>> zeros = np.zeros((3,4))     #生成3X4的二维数组,元素均为0
>>> zeros
array([[0., 0., 0., 0.],
       [0., 0., 0., 0.],
       [0., 0., 0., 0.]])

值得注意的是,np.zeros((3,4))的含义。尺寸参数3和4使用两层括号包裹,实际上,应该将(3,4)整体看作是一个匿名元组对象,np.zeros((3,4))等价于np.zeros(shape=(3,4)),在shape参数处需要通过一个元组或者列表来指明生成数组的尺寸。

元组的外部轮廓是两个圆括号,那么在默认指定shape参数的情况下,那么在默认指定shape参数的情况下,这对圆括号就会和np.zeros()方法的外层括号相连,造成一定程度上的理解困扰,为此,推荐np.zeros( shape = [3,4] ),即将方括号作为轮廓特征的列表 来表示数组的尺寸。(元组的外部轮廓特征是两个圆括号,列表的外部轮廓特征是方括号。)

(2)np.ones()

类似地,可以用np.ones()生成指定尺寸、元素全为1的数组:

>>> ones_ = np.ones(shape = [3,4], dtype =float)
>>> ones_
array([[1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.]])

(3).reshape() 重构数组尺寸

>>> arr = np.arange(6)         #创建一个一维数组,数组元素为0,1,...,5
>>> arr = arr.reshape((2,3))   #将arr的尺寸重构为两行三列
>>> arr
array([[0, 1, 2],
       [3, 4, 5]])

注意,reshape()内参数(2,3)的类型是元组,表示数组为两行三列的。

五、N维数组的属性

1.NumPy数组的物理内存和逻辑视图

需要说明的是,在物理内存中是不存在N维数组的,限于存储介质的物理特性,它永远只有一维结构。我们常见的便于理解的N维数组仅仅是“逻辑视图”,它们不过是包装出来的。NumPy数组的物理内存和逻辑视图如下图所示,“编译器”或第三方工具在幕后做了很多额外的工作,这才使得我们享受到了便利。(大致了解一下即可。)

2.ndim属性

N维数组是包含同类型的数据容器,每个数组的维度(dimension)都是由一个ndim属性来描述。

使用.ndim来查看数组的维度

  • 一维数组,是由一个维度构成,.ndim=1, 有时候,一维数组也被称为1D张量(1D Tensor)。
  • 二维数组,是由两个维度构成,.ndim=2,行和列,有时候,二维数组也被称为2D张量(2D Tensor)。
  • 三维数组,是由三个维度构成,.ndim=3,通道、行和列(或者可以记为 页,行 ,列,其中页表示书的一页,这只是为了便于记忆,没啥实质内容。)
  • 以此类推。。。
>>> mp_array = np.arange(0,10)  #创建一个一维数组
>>> mp_array.ndim
1

 3.shape属性

对于N维数组,shape(数组的形状)主要用来表示数组每个维度的数量,一维数组的shape就是它的长度。

 使用.shpae查看形状属性。

>>> mp_array.shape      #查看数组的形状信息
(10,)

NumPy数组形状并不是一成不变的,可以通过reshape()方法将原有数组进行“重构”(变形reshape)。

>>> b = np.arange(15)  #创建一个包含15个元素的一维数组
>>> b
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14])
>>> b = b.reshape(3,5)  #改变数组形状为3行5列
>>> b
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14]])
>>> b.ndim  #查看数组的维度信息
2     #这是一个2D张量
>>> b.shape #查看数组的形状信息
(3, 5)
>>> b.size  #查看数组元素的总个数
15

三维数组的构建

>>> a = np.arange(30).reshape(2,3,5) #重构数组为2通道3行5列
>>> a
array([[[ 0,  1,  2,  3,  4],
        [ 5,  6,  7,  8,  9],
        [10, 11, 12, 13, 14]],

       [[15, 16, 17, 18, 19],
        [20, 21, 22, 23, 24],
        [25, 26, 27, 28, 29]]])

 六、NumPy数组中的运算

0.背景

如果想要让两个列表对应元素相加,除了使用for循环,还可以使用列表推导式来完成这个任务(这里不介绍列表推导式,可以参考1中6.5.1内容。),列表不能直接进行对应元素的相加!而R中是可以直接进行向量化运算,即逐元素运算。

Python中由于NumPy扩展库使得数组可以进行向量化运算,NumPy扩展库是是一个久经考验的数值计算包,NumPy有十分成熟的算数运算函数,我们不需要给出复杂的计算公式,直接调用NumPy的内置函数,即可达到我们的运算目的。

列表是不能直接完成对应元素相加的,而NumPy数组是可以进行逐元素运算的,逐元素实施加、减、乘、除等运算。

事实上,NumPy中数组的运算,都是基于更为基础的算法库---基础线性子程序(basic linear algebra subprograms,简成BLAS)而实现的。BLAS是一个更底层的、高度并行和优化的张量操作程序,通常由Fortran、C语言编写。

1.数组向量运算

向量化运算即对应元素进行运算。要求两个对象的形状(即维数)是一样的。NumPy吸纳了Fortran或MATLAB等语言的优点,只要操作数组的形状(维度)一致,我们就可以很方便地对它们逐元素(element-wise)实施加、减、乘、除、取余、指数运算等操作。

>>> a = np.arange(10) #生成一维ndarray数组,长度为10
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> b =np.linspace(1,10,10)#生成一维ndarray数组,长度为10
>>> b
array([ 1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9., 10.])
>>> a+b #数组加法
array([ 1.,  3.,  5.,  7.,  9., 11., 13., 15., 17., 19.])
>>> a-b #数组减法
array([-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.])
>>> a*b #数组乘法
array([ 0.,  2.,  6., 12., 20., 30., 42., 56., 72., 90.])
>>> a/b#数组除法
array([0.        , 0.5       , 0.66666667, 0.75      , 0.8       ,
       0.83333333, 0.85714286, 0.875     , 0.88888889, 0.9       ])
>>> a%b #数组取余
array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])
>>> a**2 #数组元素平方
array([ 0,  1,  4,  9, 16, 25, 36, 49, 64, 81])

 2.张量点乘运算

张量点乘运算是指二维数据在数学意义上的矩阵运算,点乘运算这个名称是由NumPy取的。

值得注意的是,二维数组和矩阵本质上是相同地,但是数组默认操作是基于“逐元素”原则的,所以要求两个操作对象之间的维度信息必须是一样的。然而,数学意义上的矩阵乘法不要求两个操作对象之间的维度是一样的,只要求前一个矩阵的列数等于后一个矩阵的行数。

如何执行矩阵的乘法运算?

  • 方法一:将二维数组转换为矩阵;
  • 方法二:使用张量点乘运算,是NumPy给矩阵乘法取得新名称dot(点乘)。

方法一:将二维数组转换为矩阵

>>> a = np.array([[1,2], [3,4]])
>>> a
array([[1, 2],
       [3, 4]])
>>> a = np.mat(a)  #将数组a转成矩阵a
>>> a
matrix([[1, 2],
        [3, 4]])

>>> b = np.arange(8).reshape(2,4)
>>> b
array([[0, 1, 2, 3],
       [4, 5, 6, 7]])
>>> b = np.mat(b)  #将数组b转换成矩阵b
>>> b
matrix([[0, 1, 2, 3],
        [4, 5, 6, 7]])
>>> a*b #此时,矩阵a和矩阵b之间执行的是点乘运算
matrix([[ 8, 11, 14, 17],
        [16, 23, 30, 37]])

方法二:使用张量点乘运算函数dot()

>>> a     #是矩阵形式
matrix([[1, 2],
        [3, 4]])
>>> a.A   #.A表示 将矩阵a变换成 二维数组
array([[1, 2],
       [3, 4]])
>>> b.A   #.A表示 将矩阵b变换成 二维数组
array([[0, 1, 2, 3],
       [4, 5, 6, 7]])



#执行矩阵乘法运算--Numpy又称其为点乘运算
>>> np.dot(a.A, b.A)
array([[ 8, 11, 14, 17],
       [16, 23, 30, 37]])
>>> a.A @ b.A
array([[ 8, 11, 14, 17],
       [16, 23, 30, 37]])

说明:np.dot()函数可以在两个元素之间用@符号代替,即a@b结果和np.dot(a,b)是一样的。使用a@b这样更简便一些。

3.NumPy中提供的一些其他常用函数

  • 统计函数:sum() 、min()、 max()、 median()、 mean()、 average()、 std()、 var()分别用于求和、求最小值、求最大值、求中位数、求平均数、求加权平均数、求标准差、求方差。
  • 数学函数:三角函数sin() 、cos() 、tan()等。
  • NumPy提供的函数远不止于此,如果想要娴熟运用它,多查询NumPy的官方帮助文件。

参考:

Python极简讲义:一本书入门数据分析与机器学习》(2020年4月出版,电子工业出版社)(这本书对介绍Numpy写的很详细,非常详细,我觉得初学者只看这一本书,就可以完全理解和掌握NumPy相关知识,强烈推荐阅读!本文大部分内容来源于这本书。)

《Python深度学习:基于TensorFlow》(2018年9月,机工社)(个人认为相对来说,这本书没有上一本更适合Python小白,很多地方的理解需要依靠第一本书的介绍。但是这本书语言使用上比较专业。)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/969500.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【论文解读】斯坦福小镇Generative Agents

git开源地址&#xff1a;GitHub - joonspk-research/generative_agents: Generative Agents: Interactive Simulacra of Human Behavior 论文地址&#xff1a;https://arxiv.org/abs/2304.03442 前言 最近很火的方向&#xff0c;利用GhatGPT的规划、对话、总结能力&#xff…

电商类面试问题--01Elasticsearch与Mysql数据同步问题

在实现基于关键字的搜索时&#xff0c;首先需要确保MySQL数据库和ES库中的数据是同步的。为了解决这个问题&#xff0c;可以考虑两层方案。 全量同步&#xff1a;全量同步是在服务初始化阶段将MySQL中的数据与ES库中的数据进行全量同步。可以在服务启动时&#xff0c;对ES库进…

Flink提交jar出现错误RestHandlerException: No jobs included in application.

今天打包一个flink的maven工程为jar&#xff0c;通过flink webUI提交&#xff0c;发现居然报错。 如上图所示&#xff0c;提示错误为&#xff1a; Server Response Message: org.apache.flink.runtime.rest.handler.RestHandlerException: No jobs included in application. …

6.网络编程套接字(上)

文章目录 1.网络编程基础1.1为什么需要网络编程&#xff1f;——丰富的网络资源1.2什么是网络编程1.3网络编程中的基本概念1.3.1发送端和接收端1.3.2请求和响应1.3.3客户端和服务端1.3.4常见的客户端服务端模型 2.Socket套接字2.1概念2.2分类2.3Java数据报套接字通信模型2.4Jav…

HTTPS协议详解:基本概念与工作原理

个人主页&#xff1a;insist--个人主页​​​​​​ 本文专栏&#xff1a;网络基础——带你走进网络世界 本专栏会持续更新网络基础知识&#xff0c;希望大家多多支持&#xff0c;让我们一起探索这个神奇而广阔的网络世界。 目录 一、HTTPS协议的基本概念 二、为什么需要HTTP…

三相PMSM的坐标变换

三相PMSM的坐标变换 三相PMSM的数学模型具有复杂性和耦合性的多变量系统。因此需要对其进行降阶和解耦变换。 Vα&#xff0c;Vb&#xff0c;Vc是自然坐标系。 Vα&#xff0c;Vβ是静止坐标系。 Vd&#xff0c;Vq是同步旋转坐标系。 自然坐标系 三相永磁同步电机的驱动电路…

PixelSNAIL论文代码学习(1)——总体框架和平移实现因果卷积

文章目录 引言正文目录解析README.md阅读Setup配置Training the model训练模型Pretrained Model Check Point预训练的模型训练方法 train.py文件的阅读model.py文件阅读h12_noup_smallkey_spec模型定义_base_noup_smallkey_spec模型实现一、定义因果卷积过程通过平移实现因果卷…

PCIe DL_Feature详解

DL_Feature的引入 Data Link Control and Management State Machine在PCIe Gen4引入了DL_Feature这个状态&#xff0c;该状态主要用来协商PCIe link 两端是否支持新的DL Feature&#xff0c;目前为止DL Feature只引入了Scaled Flow Control 来提高Gen4及以上的效率。   DL_Fe…

Qt 简单闹钟

//wiget.h#ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QTime> //时间类 #include <QTimer> //定时器类 #include <QTextToSpeech> #include <QDebug> QT_BEGIN_NAMESPACE namespace Ui { class Widget; } QT_END_NAMESPA…

YoloV8改进策略:轻量级Slim Neck打造极致的YoloV8

文章目录 摘要Yolov8官方结果源码改进方法测试结果总结摘要 论文链接:https://arxiv.org/ftp/arxiv/papers/2206/2206.02424.pdf 作者研究了增强 CNN 学习能力的通用方法,例如 DensNet、VoVNet 和 CSPNet,然后根据这些方法的理论设计了 Slim-Neck 结构。 使用轻量级卷积…

机械制图(CAD)

目录 第一课&#xff08;80分钟&#xff09; 第二课&#xff08;80分钟&#xff09; 力啥学机械制图&#xff1f;我们的工厂要加工机械&#xff0c;而加工机械零件前&#xff0c;我们要先给工人图纸来看,工人才知道该怎样加工&#xff0c;所以我们今天就来学习下怎样画出符何…

任意文件读取和漏洞复现

任意文件读取 1. 概述 一些网站的需求&#xff0c;可能会提供文件查看与下载的功能。如果对用户查看或下载的文件没有限制或者限制绕过&#xff0c;就可以查看或下载任意文件。这些文件可以是漂代码文件&#xff0c;配置文件&#xff0c;敏感文件等等。 任意文件读取会造成&…

电脑开机操作系统引导过程

电脑开机时操作系统引导&#xff1a; CPU首先执行主存中ROM中的引导程序。 将磁盘的第一块——主引导记录(MBR)读入到内存中&#xff0c;执行磁盘引导程序&#xff0c;扫描分区表。 在主分区(C盘)执行分区引导程序。 在C盘根目录下找到完整的操作系统初始化程序并执行。

系统虚拟机(VM)

系统虚拟机&#xff1a;将一台物理机器虚拟化为多台虚拟机&#xff0c;每个虚拟机上都可以运行一个独立的操作系统&#xff0c;由虚拟机管理程序(VMM)来管理。 第一种直接运行在硬件上&#xff0c;可以直接分配物理资源&#xff0c;性能更好&#xff0c;可支持更多的虚拟机&am…

ModaHub魔搭社区专访百度智能云李莅:企业需要的是一款企业级向量数据库还是向量引擎?

ModaHub魔搭社区&#xff1a;虽然您认为它是刚需&#xff0c;但也有人认为我可能不是需要一款企业级的向量数据库&#xff0c;而是需要一个向量引擎。我可以在传统的数据库上加一个向量引擎&#xff0c;然后它就变成了一款向量数据库&#xff0c;您觉得他们这样的想法是可行的吗…

布隆过滤器Moudule安装

Redis帮我们实现了布隆过滤器算法&#xff0c;可以通过module方式安装&#xff0c;直接使用&#xff0c;其实可以自己实现这样的算法。 安装遇到的问题&#xff0c;通过官网下载的zip或者git下载的源码&#xff0c;都是master版本&#xff0c;make会出问题&#xff0c;报错文件…

springboot初试elasticsearch

引入依赖 elasticsearch的依赖版本与你elasticsearch要一致 <dependency><groupId>org.elasticsearch.client</groupId><artifactId>elasticsearch-rest-high-level-client</artifactId> </dependency> 索引库的操作 创建索引库 impo…

stack和queue容器

1 stack 基本概念 概念&#xff1a;stack是一种先进后出(First In Last Out,FILO)的数据结构&#xff0c;它只有一个出口 栈中只有顶端的元素才可以被外界使用&#xff0c;因此栈不允许有遍历行为 栈中进入数据称为 — 入栈 push 栈中弹出数据称为 — 出栈 pop 2 stack 常用…

Linux——进程间信号(超级详解!!)

索引 一.初始信号1.什么是信号2.前后台进程3.信号的种类4.信号的管理 二.信号产生前1.验证键盘是可以产生信号的2.通过系统调用接口发送信号3.由软件条件产生信号4.硬件异常产生信号5.总结6.core dump 信号产生中1.信号在内核中的表示2.信号集操作函数 信号产生后1.了解内核态和…

Java Web3J :使用web3j监听、查询、订阅智能合约的事件

前面有文章写如何使用Docker-compose方式部署blockscout浏览器+charts图表,区块链浏览器已经部署成功了,同时我们在链上增加了治理投票流程,如何实时的把治理事件快速同步到浏览器呢?这时就想到了Web3J来监听智能合约的事件,来达到同步事件的效果 目录 Web3J简介功能简介m…