基于springboot跟redis实现的排行榜功能(实战)

news2025/1/23 7:53:32

概述

前段时间,做了一个世界杯竞猜积分排行榜。对世界杯64场球赛胜负平进行猜测,猜对+1分,错误+0分,一人一场只能猜一次。 1.展示前一百名列表。 2.展示个人排名(如:张三,您当前的排名106579)。 一.redis sorts sets简介 Sorted Sets数据类型就像是set和hash的混合。与sets一样,Sorted Sets是唯一的,不重复的字符串组成。可以说Sorted Sets也是Sets的一种。 Sorted Sets是通过Skip List(跳跃表)和hash Table(哈希表)的双端口数据结构实现的,因此每次添加元素时,Redis都会执行O(log(N))操作。所以当我们要求排序的时候,Redis根本不需要做任何工作了,早已经全部排好序了。元素的分数可以随时更新。 二.springboot 中使用RedisTemplate 本文主要通过redisTemplate来操作redis,当然也可以使用redis-client,看个人喜好.

详细

详细

一、运行效果

image.png

分析
一开始打算直接使用mysql数据库来做,遇到一个问题,每个人的分数都会变化,如何能够获取到个人的排名呢?数据库可以通过分数进行row_num排序,但是这个方法需要进行全表扫描,当参与的人数达到10000的时候查询就非常慢了。
redis的排行榜功能就完美锲合了这个需求。来看看我是怎么实现的吧。

二、实现过程

①、在本机开启了一个单点的redis,配置文件如下

   : springboot-redis-rank   :     : defaultDataSource     : jdbc:mysql://localhost:3306/blue?serverTimezone=UTC     : root     : 123456   :     : : 127.0.0.1     :     : : : 5000

②、Maven依赖引入如下

<parent>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-parent</artifactId>
    <version>2.0.4.RELEASE</version>
</parent>
 
<dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-data-redis</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
        </dependency>
</dependencies>

③、代码实现

1.注入redis,将key声明为常量SCORE_RANK

   
 @Autowired
    private StringRedisTemplate redisTemplate;

    public static final String SCORE_RANK = "score_rank";

2.新增默认排行数据

/**
     * 批量新增
     */
    @Test
    public void batchAdd() {
        Set<ZSetOperations.TypedTuple<String>> tuples = new HashSet<>();
        long start = System.currentTimeMillis();
        for (int i = 0; i < 100000; i++) {
            DefaultTypedTuple<String> tuple = new DefaultTypedTuple<>("张三" + i, 1D + i);
            tuples.add(tuple);
        }
        System.out.println("循环时间:" +( System.currentTimeMillis() - start));
        Long num = redisTemplate.opsForZSet().add(SCORE_RANK, tuples);
        System.out.println("批量新增时间:" +(System.currentTimeMillis() - start));
        System.out.println("受影响行数:" + num);
    }


//输出
循环时间:56
批量新增时间:1015
受影响行数:100000

3.获取前10名(根据分数倒序)

/**
     * 获取排行列表
     */
    @Test
    public void list() {

        Set<String> range = redisTemplate.opsForZSet().reverseRange(SCORE_RANK, 0, 10);
        System.out.println("获取到的排行列表:" + JSON.toJSONString(range));
        Set<ZSetOperations.TypedTuple<String>> rangeWithScores = redisTemplate.opsForZSet().reverseRangeWithScores(SCORE_RANK, 0, 10);
        System.out.println("获取到的排行和分数列表:" + JSON.toJSONString(rangeWithScores));
    }


//输出
获取到的排行列表:["张三99999","张三99998","张三99997","张三99996","张三99995","张三99994","张三99993","张三99992","张三99991","张三99990","张三99989"]
获取到的排行和分数列表:[{"score":100000.0,"value":"张三99999"},{"score":99999.0,"value":"张三99998"},{"score":99998.0,"value":"张三99997"},{"score":99997.0,"value":"张三99996"},{"score":99996.0,"value":"张三99995"},{"score":99995.0,"value":"张三99994"},{"score":99994.0,"value":"张三99993"},{"score":99993.0,"value":"张三99992"},{"score":99992.0,"value":"张三99991"},{"score":99991.0,"value":"张三99990"},{"score":99990.0,"value":"张三99989"}]
 

4.新增李四的分数

/**
     * 单个新增
     */
    @Test
    public void add() {
        redisTemplate.opsForZSet().add(SCORE_RANK, "李四", 8899);
    }

5.获取李四单人的排行

/**
     * 获取单个的排行
     */
    @Test
    public void find(){
        Long rankNum = redisTemplate.opsForZSet().reverseRank(SCORE_RANK, "李四");
        System.out.println("李四的个人排名:" + rankNum);

        Double score = redisTemplate.opsForZSet().score(SCORE_RANK, "李四");
        System.out.println("李四的分数:" + score);
    }


//输出
李四的个人排名:91101
李四的分数:8899.0

6.统计分数之间有多少人

/**
     * 统计两个分数之间的人数
     */
    @Test
    public void count(){
        Long count = redisTemplate.opsForZSet().count(SCORE_RANK, 8001, 9000);
        System.out.println("统计8001-9000之间的人数:" + count);
    }

//输出
统计8001-9000之间的人数:1001

7.获取集合的基数(数量大小)

  
/**
     * 获取整个集合的基数(数量大小)
     */
    @Test
    public void zCard(){
        Long aLong = redisTemplate.opsForZSet().zCard(SCORE_RANK);
        System.out.println("集合的基数为:" + aLong);
    }

//输出
集合的基数为:100001

8.使用加法操作分数

  /**
     * 使用加法操作分数
     */
    @Test
    public void incrementScore(){
        Double score = redisTemplate.opsForZSet().incrementScore(SCORE_RANK, "李四", 1000);
        System.out.println("李四分数+1000后:" + score);
    }

//输出
李四分数+1000后:9899.0

四.归纳

在以上测试类中我们使用了redis的那些功能呢?在以上的例子中我们使用了单个新增,批量新增,获取前十,获取单人排名这些操作,但是redisTemplate还提供了更多的方法。

新增or更新

有三种方式,一种是单个,一种是批量,对分数使用加法(如果不存在,则从0开始加)。

//单个新增or更新
Boolean add(K key, V value, double score);
//批量新增or更新
Long add(K key, Set<TypedTuple<V>> tuples);
//使用加法操作分数
Double incrementScore(K key, V value, double delta);
删除

删除提供了三种方式:通过key/values删除,通过排名区间删除,通过分数区间删除。

//通过key/value删除
Long remove(K key, Object... values);

//通过排名区间删除
Long removeRange(K key, long start, long end);

//通过分数区间删除
Long removeRangeByScore(K key, double min, double max);

1.列表查询:分为两大类,正序和逆序。以下只列表正序的,逆序的只需在方法前加上reverse即可:

//通过排名区间获取列表值集合

Set<V> range(K key, long start, long end);

//通过排名区间获取列表值和分数集合
Set<TypedTuple<V>> rangeWithScores(K key, long start, long end);

//通过分数区间获取列表值集合
Set<V> rangeByScore(K key, double min, double max);

//通过分数区间获取列表值和分数集合
Set<TypedTuple<V>> rangeByScoreWithScores(K key, double min, double max);

//通过Range对象删选再获取集合排行
Set<V> rangeByLex(K key, Range range);



//通过Range对象删选再获取limit数量的集合排行
Set<V> rangeByLex(K key, Range range, Limit limit);

2.单人查询

可获取单人排行,和通过key/value获取分数。以下只列表正序的,逆序的只需在方法前加上reverse即可:

//获取个人排行
Long rank(K key, Object o);

//获取个人分数
Double score(K key, Object o);
统计

统计分数区间的人数,统计集合基数。

//统计分数区间的人数Long count(K key, double min, double max);//统计集合基数Long zCard(K key);

三、项目结构图

image.png

四、补充

以上就是redis中使用排行榜功能的一些例子,和对redis的操作方法了。redis不仅仅只是作为缓存,它更是数据库,提供了许多的功能,我们都可以好好的利用。

在这里我使用redis来实现了世界杯积分排行的展示,无论是在批量更新或是获取个人排行等方便,都有着很高效率,也降低了对数据库操作的压力,达到了很好的效果。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/965997.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

wireshark抓包体验

目录 1、使用基础 1.1 数据包筛选 1.2 MAC地址筛选 1.3 端口筛选 1.4 协议筛选 1.5 包长度筛选 1.6 http请求筛选 2.数据包搜索 3.数据包还原 2、例题复现 1、使用基础 1.1 数据包筛选 ip.src 源ip地址 同理可以得到筛选目标地址&#xff1a; ip.dst 目的ip地址 1.2 …

Unity中Shader的渲染排序Tags{“Queue“ = “Transparent“}

文章目录 前言一、在Unity中渲染排序一般是固定的几个层级&#xff0c;透明 和 半透明是以 2500 为 分界点&#xff0c;渲染层级 从 低 到 高二、渲染队列 可以 在 SubShader 或 Pass 中写 前言 Unity中Shader的渲染排序 一、在Unity中渲染排序一般是固定的几个层级&#xff0…

【vue2第十章】data数据与组件间通信

组件化化开发时data写法。 组件化开发中data是一个函数&#xff0c;一个组件的data选项必须是一个函数。需要保证每个组件的实列维护自己的独立的数据。 写法就是&#xff1a; 函数名(){return{属性名:值,属性名:值,属性名:值} }这里不管实列化多少份这个组件&#xff0c;每个…

软件架构Architecture篇卷首语

2023年9月2日&#xff0c;周六晚上 我为什么要开始学习软件架构&#xff1f;我为什么要专门开始这个专栏&#xff1f; 原因如下&#xff1a; Well-structured software is delivered in half the time, at half the cost, with 8x less bugs ——US Air Force study 这句话是我…

2022年06月 C/C++(六级)真题解析#中国电子学会#全国青少年软件编程等级考试

C/C++编程(1~8级)全部真题・点这里 第1题:小白鼠再排队2 N只小白鼠(1 < N < 100),每只鼠头上戴着一顶有颜色的帽子。现在称出每只白鼠的重量,要求按照白鼠重量从小到大的顺序输出它们头上帽子的颜色。帽子的颜色用 “red”,“blue”等字符串来表示。不同的小白鼠可…

C++面试题(期)-数据库(二)

目录 1.3 事务 1.3.1 说一说你对数据库事务的了解 1.3.2 事务有哪几种类型&#xff0c;它们之间有什么区别&#xff1f; 1.3.3 MySQL的ACID特性分别是怎么实现的&#xff1f; 1.3.4 谈谈MySQL的事务隔离级别 1.3.5 MySQL的事务隔离级别是怎么实现的&#xff1f; 1.3.6 事…

TiDB同城双中心监控组件高可用方案

作者&#xff1a; Prest13 原文来源&#xff1a; https://tidb.net/blog/44b9b8b1 背景 在双中心部署tidb dr-auto sync集群&#xff0c;出于监控的高可用考虑&#xff0c;在物理分离的两个数据中心分别部署独立的prometheusalertmanagergrafana&#xff0c;实现任一监控均…

查询优化器内核剖析之查询的执行与计划的缓存 Hint 提示

本篇议题如下: 查询的执行与计划的缓存 Hint 提示 首先看到第一个议题 查询的执行与计划的缓存 一旦查询被优化之后&#xff0c;存储引擎就使用选中的执行计划将结果返回&#xff0c;而被使用的这个执行 计划就会被保存在内存中一个被称之为“计划缓存”的地方&#xff0c;从…

Leetcode 面试题 17.01 不用加号的加法

设计一个函数把两个数字相加。不得使用 或者其他算术运算符。 示例: 输入: a 1, b 1 输出: 2 提示&#xff1a; a, b 均可能是负数或 0结果不会溢出 32 位整数 我的答案&#xff1a; 一、信息 1.设计一个函数把两个数相加 2.不得使用或者其他运算符 3.a,b均为负数或…

代码随想录算法训练营第39天 | ● 62.不同路径 ● 63. 不同路径II

文章目录 前言一、62.不同路径二、63.不同路径II总结 前言 动态规划 一、62.不同路径 深搜动态规划数论 深搜&#xff1a; 注意题目中说机器人每次只能向下或者向右移动一步&#xff0c;那么其实机器人走过的路径可以抽象为一棵二叉树&#xff0c;而叶子节点就是终点&#…

Socket交互的基本流程?

TCP socket通信过程图 什么是网络编程&#xff0c;网络编程就是编写程序使两台连联网的计算机相互交换数据。怎么交换数据呢&#xff1f;操作系统提供了“套接字”&#xff08;socket&#xff09;的组件我们基于这个组件进行网络通信开发。tcp套接字工作流程都以“打电话”来生…

Opencv快速入门教程,Python计算机视觉基础

快速入门 OpenCV 是 Intel 开源计算机视觉库。它由一系列 C 函数和少量 C 类构成&#xff0c; 实现了图像处理和计算机视觉方面的很多通用算法。 OpenCV 拥有包括 300 多个 C 函数的跨平台的中、高层 API。它不依赖于其它的外部库——尽管也 可以使用某些外部库。 OpenCV 对非…

Java开发环境---jdk下载与安装,配置环境变量及如何验证是否安装成功

1、jdk说明与介绍 1、JDK即Java Develop Kit&#xff0c;是Java开发工具包 2、JDK的基本组件包括&#xff1a; javac:编译器&#xff0c;将源程序转成字节码。jar:打包工具,将相关类文件打包成一个文件。javadoc&#xff1a;文档生成器&#xff0c;从源码注释中提取文档。jdb…

PlumeLog【lite模式】部署使用

一 简述 本文档记录PlumeLog【lite模式】模式安装使用 启动模式 优点 缺点 Lite 模式 不依赖任何外部中间件直接启动使用&#xff0c;部署简单 性能有限&#xff0c;一天10G内可以应付&#xff0c;最好是SSD硬盘,适合管理系统类小玩家 Plumelog: 一个简单易用的java日志…

ROS机器人编程---------(一)安装ROS

安装ROS 打开终端按顺序执行下面命令 默认安装在/opt/ros路径下 打开一个终端输入roscore 测试是否安装成功 启动ROS &#xff2d;aster roscore启动小海龟仿真器 rosrun turtlesim turtlesim_node启动海龟控制结点 rosrun turtlesim turtlesim_teleop_key使用键盘方向键控…

【李群李代数】Sophus库中SE3类测试(附manif 与sophus 对比)

测试演示 测试结果 对Sophus库中SE3类进行一系列的测试&#xff0c;包括李群性质、原始数据访问、变异访问器、构造函数以及拟合等方面。在每个测试中&#xff0c;都会使用一些预设的数据进行操作&#xff0c;并通过SOPHUS_TEST_APPROX和SOPHUS_TEST_EQUAL等宏来检查操作结果是…

2023应届生java面试搞笑之一:CAS口误说成开心锁-笑坏面试官

源于&#xff1a;XX网&#xff0c;如果冒犯&#xff0c;表示歉意 面试官&#xff1a;什么是CAS 我&#xff1a;这个简单&#xff0c;开心锁 面试官&#xff1a;WTF&#xff1f; 我&#xff1a;一脸自信&#xff0c;对&#xff0c;就是这个 面试官&#xff1a;哈哈大笑&#xff…

opencv入门-Opencv原理以及Opencv-Python安装

图像的表示 1&#xff0c;位数 计算机采用0/1编码的系统&#xff0c;数字图像也是0/1来记录信息&#xff0c;图像都是8位数图像&#xff0c;包含0~255灰度&#xff0c; 其中0代表最黑&#xff0c;1代表最白 3&#xff0c; 4&#xff0c;OpenCV部署方法 安装OpenCV之前…

AUTOSAR规范与ECU软件开发(实践篇)7.10MCAL模块配置方法及常用接口函数介绍之Base与Resource的配置

目录 1、前言 2 、Base与Resource模块 1、前言 本例程的硬件平台为MPC5744P开发板&#xff0c;主要配置MPC5744P的mcal的每个模块的配置&#xff0c;如要配置NXP的MCU之S32k324的例程请参考&#xff1a; 2 、Base与Resource模块 Base与Resource这两个模块与具体功能无关&…

什么是 Web 应用程序安全测试?

Web 应用程序安全测试是一种严格的实践&#xff0c;旨在识别、分析和纠正基于 Web 的应用程序中的漏洞。 此过程涉及使用一套全面的工具和方法来评估 Web 应用程序的安全性和完整性。它包括渗透测试、漏洞评估和代码审查等实践。 Web 应用程序安全测试的主要目标是阻止潜在的…