编程题四大算法思想(三)——贪心法:找零问题、背包问题、任务调度问题、活动选择问题、Prim算法

news2025/1/3 14:10:06

文章目录

  • 贪心法
    • 找零问题(change-making problem)
      • 贪心算法要求
        • 基本思想
        • 适合求解问题的特征
    • ==背包问题==
      • 0/1背包问题
        • 0/1背包问题——贪心法
      • 分数背包问题
    • 任务调度问题
    • 活动选择问题
      • 活动选择——贪心法
        • 最早结束时间优先——最优性证明
    • ==Prim算法==

贪心法

  我在当前情况下,我把我做到最好。我也不管全局如何,整体如何。我就考虑我现在的这一个,或者这一小部分怎样最好。

  • 贪心技术是一种设计算法的通用策略。
  • 贪心技术的基本思想:
    • 基于贪心选择准则,每次得到局部最优的选择。
    • 希望利用局部最后得到全局最优解。
    • 贪心选择性质:局部最优可以得到全局最优。
  • 找到正确的贪心选择准则是设计贪心算法的关键。
    • 不同的贪心选择准则可以得到不同的结果。

打个比方,我现在有几种选择:

学编程、打游戏、读书、去外面玩、去兼职、……

如果我的目的是提高自己的知识水平,那起码对于现在的这些选择来说,我选择“学编程”或者“读书”就是最优的。

只是说当前这一步怎么走是最优的,也并没有去管后面的路怎么走。

比如你说选择“打游戏”,后面可能也会更成功,但是不管这个。

找零问题(change-making problem)

  • 给定无限多不同面额的硬币 d 1 > . . . > d m d_1>...>d_m d1>...>dm,对于总额 n n n,如何找到最少的硬币数目?
  • 问题:目标函数和约束条件是什么?

例如:

d 1 = 25 c , d 2 = 10 c , d 3 = 5 c , d 4 = 1 c ,而且 n = 48 c d_1=25c,d_2=10c,d_3=5c,d_4=1c,而且n=48c d1=25c,d2=10c,d3=5c,d4=1c,而且n=48c

我们可能想,要使得硬币数目最少,那简单啊。

先紧着面额最大的来凑就行了。

先拿个25c的、再拿两个10c的,5c的没法拿,于是再拿3个1c的。

于是得到贪婪解:<1,2,0,3>

我们这个策略就是,很简单,先紧着最大的拿。

但是我们虽然这样做了,而且貌似可行。

但是实际上,它对于大多数情况而言,这样可能是没问题的;但是没法保证所有情况啊,你没法保证对于所有情况、任意某一种情况,这样都没问题。

有一些情况,你这样做,可能就压根不是最优解了。

但是:

  • 对大多数常用的硬币面额都可以得到最优解。
  • 对任意硬币面额,有可能不是最优解。

例如:

d 1 = 25 c , d 2 = 10 c , d 3 = 1 c 而且 n = 30 c d_1=25c,d_2=10c,d_3=1c而且n=30c d1=25c,d2=10c,d3=1c而且n=30c

那么你还按照上面的规则,

先拿个25c的,然后拿五个1c的。——此时是6个硬币。

但实际上我们可以看出,直接拿三个10c的就够了,而且只用3个硬币。

所以可见,我们刚才的那种简单的想法:先紧着大面额的拿。

这种方法,可能在某些情况下没毛病,但是在有些情况下就不对了、不是最优解了。

**那咋办呢。**是不是我的想法、我的策略设计的有问题呢?

那到底咋样弄,才能对于所有情况都能得到最优解呢?

我们可以用回溯法。(不是讲贪心吗,咋又说回溯了?——后面再说这个问题)


  • **贪婪法:**建议通过一系列步骤来构造问题的解,每一步对目前构造的部分解做一个扩展,直到获得问题的完全解。(完全解,不是最优解)
  • 必须满足:可行局部最优不可取消

贪心算法要求

  • 可行的:即它必须满足问题的约束。
  • 局部最优:它是当前步骤中所有可行选择中最佳的局部选择。
  • 不可取消:即选择一旦做出,在算法的后面步骤中就无法改变了。

就像人生中的一些选择一样,就是贪心算法么,每次选的是局部最优,而且选了之后就没法取消了。

  在每一步中,它要求“贪婪”地选择最佳操作,并希望通过一系列局部的最优选择,能够产生一个整个问题的(全局的)最优解。

基本思想

  • 从问题的某一个初始解出发,通过一系列的贪心选择(当前状态下的局部最优选择),逐步逼近给定的目标,尽可能快地求得更好的解。
  • 在贪心算法(greedy method)中也采用逐步构造最优解的方法。在每个阶段,都做出一个按某个评价函数最优的决策,该评价函数最优称为贪心准则(greedy criterion)。
  • 贪心算法的正确性,就是要证明按贪心准则求得的解是全局最优解。
  • 贪心算法不能对所有问题都得到全局最优解。
  • 但是对于许多问题,它能够产生全局最优解。如单源最短路径问题,最小生成树问题等。

适合求解问题的特征

  • **贪心选择性质:**可通过局部最优(贪心)选择达到全局最优解。
    • 通常以自顶向下的方式进行,每次选择后将问题转化为规模更小的子问题。
    • 该性质是贪心法使用成功的保障,否则得到的是近优解。
  • 最优子结构性质:问题的最优解包含它的子问题的最优解
    • 并不是所有具有最优子结构性质的问题都可以采用贪心策略。
    • 往往可以利用最优子结构性质来证明贪心选择性质。

背包问题

  • 0-1背包问题

  给定n种物品和一个背包。物品i的重量是 W i W_i Wi,其价值为 V i V_i Vi,背包的容量为C。应如何选择装入背包的物品,使得装入背包中物品的总价值最大?

0-1背包问题,对于一个物品,0就是不拿它,1就是拿它。

在选择装入背包的物品时,对每种物品只有两种选择,要么装入背包、要么不装入背包。不能将一个物品装入背包多次,也不能只装入某物品的一部分。

  • 背包问题

  与0-1背包问题类似,所不同的是,在选择物品i装入背包时,可以选择物品i的一部分,而不一定要全部装入背包,1≤i≤n

背包问题,也叫“分数背包问题”,对于一个物品,物品太大了,背包剩余空间不够了,此时我可以把物品拆下来、把一部分放进去。

0/1背包问题

  • 已知
    • 背包容量C>0
    • n个物品,体积 w i > 0 w_i>0 wi>0,价值 p i > 0   f o r   i = 1 , . . . , n p_i>0\ for\ i=1,...,n pi>0 for i=1,...,n
  • 确定 { 1 , 2 , . . . , n } \{1,2,...,n\} {1,2,...,n}的子集,满足:

m a x ∑ i ∈ A p i , s u b j e c t   t o   ∑ i ∈ A w i ≤ C max\sum_{i∈A}p_i,subject\ to\ \sum_{i∈A}w_i≤C maxiApi,subject to iAwiC

0/1背包问题——贪心法

  • 有以下几种贪心选择准则:

    • 最大价值优先——先选择最值钱的物品。

    紧着最值钱的先往上放。

    • 最小体积优先

    紧着最小体积的先放,想装的多。

    • 最大体积优先

    想着一般大的东西都比较值钱?所以先紧着大件先放?

    • 最大单位价值优先

这四个规则都有一定道理,那我们该选哪种呢?选最大价值优先?选最大单位价值优先?

  • 没有一种方法能保证得到最优解

最大价值优先

image-20230901221752374

lb是重量单位,上面是价钱)

可见,最大价值优先,放进来的不一定是最优解。

最小体积优先

image-20230901221933373

可见,最小体积优先,放进来的也不一定是最优解。

最大体积优先

image-20230901222120953

可见,最大体积优先得到的也不一定是最优解。

最大单位价值优先

image-20230901222244231

可见,这个也不一定能得到最优解。


分数背包问题

  • 对于0/1背包问题,没有最优的贪心算法。
  • 分数背包问题:可以将第i个物品的一部分放入背包。
  • 对于分数背包问题,贪心算法是其不二选择,该算法基于最大单位价值的选择准则。(感觉有点类似于微积分里的微元思想)

这个就没啥好犹豫的了,我先紧着最大单位价值的往里面放,放不下整个物品的时候,我把当前最大单位价值的物品切出来一块往里面放。

这样最后包里放的肯定是价值最大的情况。

  • 贪心算法过程:
    • 降序排序 v i / w i v_i/w_i vi/wi
    • 根据排序次序增加物品,直到这个物品装完,或是超出背包容量。
    • 如果背包没有满,选择下一个物品开始装。

最优解证明

  • 证明

  我们首先假设我们有一个最优解 A 1 A_1 A1,那么我们首先找到 A 1 A_1 A1里面平均价值最高的物品 a m a_m am,然后我们将用商品里面平均价值最高的物品 a 1 a_1 a1 a m a_m am进行全部替换或者部分替换得到解 A 2 A_2 A2,又因为 v 1 w 1 ≥ v m w m \frac{v_1}{w_1}≥\frac{v_m}{w_m} w1v1wmvm,所以 A 2 A_2 A2的总价值高于 A 1 A_1 A1的总价值,这与 A 1 A_1 A1是最优解矛盾,于是得到 A 1 A_1 A1里面包含平均价值最高的物品。


  • 小数背包问题还具有贪心选择性质,用贪心法求解更简单、更快速。
  • 0-1背包问题用贪心法求解不一定能得到最优解。

任务调度问题

  • 9个任务需要调度,每个任务运行时间为3,5,6,10,11,14,15,18,20

如果只有一个处理器,那就没啥说的,每个任务看看按照什么规则往里放就行了,反正最后总时间是一样的。

但是如果有多个处理器呢?

  • 有三个处理器执行这些任务。

当然,对于贪心而言,我们对这一问题也可以有很多种贪心策略。

  • 贪心准则:先运行时间最长的任务。

image-20230901225656081

image-20230901225708372

每次把当前需要运行最长时间的任务,分配给当前任务时间最短的处理器。

image-20230901225829341

因此,三个处理器执行这些任务,花费35分钟时间。

这个解决方法不错,但是我们可能还可以有更好的策略。

  • 另一种贪心准则:优先运行最短任务

image-20230901230002189

image-20230901230054831

这个方式还不如刚才那个,这个需要花费40分钟。

最优解

image-20230901230149638

折腾半天都不是最好的,那我们看看最优解到底是什么样的,如上图所示。

  • 这个解为什么是最优的?

很明显么。因为三个处理器刚好平均分了所有任务的总时长,没有任何的浪费。

  但是,可见,若想得到这样的一种解。你要付出的代价就会很高了。

  有必要么,实际解决一个问题来说,这样去搞,可能没这个必要。你找到最优解了之后,最优解固然能够帮你节约时间;但是不要忽视了,你寻找这个最优解也要花时间。你为了找一个最优解去节约那一点点时间,然后你花了大量的时间在寻找到最优解上,得不偿失。

类似上图中这个最优解,是咋找到的?可能是暴力穷举吧,或者是什么方法。总之很耗时间才能找出来的。

  实际上我就用一种贪心策略,去做,就拉倒了。虽然可能不是最优,但是接近最优差不多就行了。

  对于一些特殊的问题,贪心算法能直接找出其最优解,能直接获取最优解那当然更好了。

  总之贪心算法可能找到的不是最优解,而只是局部最优解;但是它的实现是很简单的,不会耗费太多时间。


  同时,我们在贪心,贪的过程中,也可以利用回溯法的思想,对一些没必要继续探讨下去的情况进行剪枝,而没必要全部贪到底、再去排除。也就是贪心法配合回溯法进行使用。

活动选择问题

image-20230902113155194

  • 这个就是活动选择问题。

我选择哪些活动,能够让活动数量最多?

image-20230902113312495

image-20230902113456345

image-20230902113650572

活动选择——贪心法

  • 贪心法选择准则:
    • 最早开始时间优先
    • 最小持续时间优先
    • 最早完成时间优先
  • 哪个准则更有效?

image-20230902113801677

最早开始时间优先。

假设有一个从0开始的活动,但是它持续时间巨长。

那这显然不是最优解。

image-20230902113836981

如上图。

这个持续时间最小,但是可能因为做了它,它刚好介于两个活动邻接点,导致两个活动都没法做。

显然也不是最优解。

image-20230902113931701

image-20230902114012301

最早结束时间是不是能达到这个问题的最优解?

实际上,按最早结束时间优先,基本上都能取到最优解。

怎么证明这种策略的正确性?怎么知道上面的例子不是它的特例?

  • 需要证明贪心法的正确性。

最早结束时间优先——最优性证明

**定理:**如果活动 a 1 a_1 a1在所有活动中具有最早结束时间,则最优解中一定包含 a 1 a_1 a1

证明:

  • A A A是最优解, a 1 a_1 a1是贪心法选择的最早结束时间的活动。如果 a 1 ∈ A a_1∈A a1A,则定理得证。
  • 如果 a 1 ∉ A a_1∉A a1/A,我们证明 A ∗ = A − { a } + { a 1 } A^*=A-\{a\}+\{a_1\} A=A{a}+{a1}是另一个包含 a 1 a_1 a1的最优解,而 a a a A A A中具有最早结束时间的活动。
  • 因为活动的结束时间已排序好, f ( a 1 ) ≤ f ( a ) f(a_1)≤f(a) f(a1)f(a)。假设 f ( a 1 ) ≤ s ( a ) f(a_1)≤s(a) f(a1)s(a),如果我们把 a 1 a_1 a1加到 A A A,意味着 A A A不是最优的。所以 s ( a ) < f ( a 1 ) s(a)<f(a_1) s(a)<f(a1),并且 a 1 a_1 a1 a a a重叠。因为 f ( a 1 ) ≤ f ( a ) f(a_1)≤f(a) f(a1)f(a),如果我们移除 a a a添加 a 1 a_1 a1,可以得到另一个最优解 A ∗ A^* A包含了 a 1 a_1 a1 A ∗ A^* A是最优的,因为 ∣ A ∗ ∣ = ∣ A ∣ |A^*|=|A| A=A

没太看懂。

**定理:**贪心子选择一定产生最优解。

即,证明去掉一个 a 1 a_1 a1之后,对剩下的活动做最早结束时间优先策略,得到的也是子集的最优解。

证明:

  • a 1 a_1 a1是贪心算法选择的活动。
  • S ∗ S^* S是不与 a 1 a_1 a1重叠的活动子集

S ∗ = { a i ∣ i = 2 , . . . , n   a n d   s i ≥ f ( a 1 ) } S^*=\{a_i | i=2,...,n\ and\ s_i≥f(a_1)\} S={aii=2,...,n and sif(a1)}

  • B B B S ∗ S^* S的最优解。

  • S ∗ S^* S的定义可知, A ∗ = { a 1 } ∪ B A^*=\{a_1\}∪B A={a1}B是可行的,并且是原问题的解。

  • 利用反证法证明 A ∗ A^* A是最优解。

  • 假设 A ∗ A^* A不是最优解,令 A A A是包含 a 1 a_1 a1的最优解,则 ∣ A ∗ ∣ < ∣ A ∣ |A^*|<|A| A<A,且 ∣ A − { a 1 } ∣ > ∣ A ∗ − { a 1 } ∣ = ∣ B ∣ |A-\{a_1\}|>|A^*-\{a_1\}|=|B| A{a1}>A{a1}=B

  • 但是 A − { a 1 } A-\{a_1\} A{a1}也是 S ∗ S^* S的解,与 B B B S ∗ S^* S的最优解矛盾。

  • 所以 A ∗ A^* A一定是原问题的最优解。


image-20230902120102063

image-20230902120113049

Prim算法

  • 连通图的一棵生成树是包含图的所有定点的连通无环子图(一棵树)。
  • 加权连通图的一棵最小生成树是图的一棵权重最小的生成树。

image-20230902120223999

image-20230902120329176

  从某个点出发,首先找和它相邻连接的结点中,权值最小的是谁。是b结点、权值为4,那就把b结点并入进来。接着,再找下一条边,就找和a、b相邻的结点中,权值最小的是哪个边,并且把那个结点并入进来。

  总之,可以视作两个集合:一个是已并入最小生成树的结点集合,另一个是还未并入的结点集合。每次找这两个集合之间权值最小的连接(不能形成环)。

image-20230902120437092


image-20230902120832255

问题:

  一个图,按照这种方式,找出来的所有的最小生成树是不是都是一样的?

  它是一棵树,树的结构是由什么决定的?——我每次的起始点选取不同,它的树根结点不一样,肯定就不一样了。

image-20230902121010752

image-20230902121017904


总结

  贪心策略的选择很重要。

  贪心在某些情况下是可以拿到最优的,但是很容易得到一个局部最优而非全局最优的解。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/963139.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Electron将HTML项目打包成桌面应用exe文件】

目标&#xff1a;前端将静态页面文件夹所有页面打包成一个exe文件&#xff08;不包含其它文件&#xff09;可运行。 步骤 1、初始化 npm init此时项目多出一个package.json文件。 {"name": "my-electron-app","version": "1.0.0",…

前端面试中Vue的有经典面试题二

7. Vue中给data中的对象属性添加一个新的属性时会发生什么&#xff0c;如何解决&#xff1f; 示例&#xff1a; 点击button会发现&#xff0c; obj.b 已经成功添加&#xff0c;但是视图并未刷新&#xff1a; 原因在于在Vue实例创建时&#xff0c; obj.b 并未声明&#xff0c;因…

【多线程案例】单例模式(懒汉模式和饿汉模式)

文章目录 1. 什么是单例模式&#xff1f;2. 立即加载/“饿汉模式”3. 延时加载/“懒汉模式”3.1 第一版3.2 第二版3.3 第三版3.4 第四版 1. 什么是单例模式&#xff1f; 提起单例模式&#xff0c;就必须介绍设计模式&#xff0c;而设计模式就是在软件设计中&#xff0c;针对特殊…

无涯教程-JavaScript - HYPGEOMDIST函数

HYPGEOMDIST函数替代Excel 2010中的HYPGEOM.DIST函数。 描述 该函数返回超几何分布。 HYPGEOMDIST返回给定样本数量,给定样本数量,总体成功率和总体数量的概率。 将HYPGEOMDIST用于具有有限总体的问题,其中每个观察输出都是成功或失败,并且给定大小的每个子集的选择可能性均…

《数字图像处理-OpenCV/Python》连载(4)图像的读取与保存

《数字图像处理-OpenCV/Python》连载&#xff08;4&#xff09;图像的读取与保存 本书京东优惠购书链接&#xff1a;https://item.jd.com/14098452.html 本书CSDN独家连载专栏&#xff1a;https://blog.csdn.net/youcans/category_12418787.html 第1章 图像的基本操作 为了方…

小兔鲜商02

npm i vueuse/core -fvue插件使用&#xff1a; 许多公用的全局组件&#xff0c;&#xff0c;可以通过插件注册进去&#xff0c;就不用一个一个导入组件&#xff0c;&#xff0c; import XtxSkeleton from /components/library/xtx-skeletonexport default {install (app) {// …

ELK高级搜索(三)

文章目录 11&#xff0e;索引Index入门11.1 索引管理11.2 定制分词器11.3 type底层结构11.4 定制dynamic mapping11.5 零停机重建索引 12&#xff0e;中文分词器 IK分词器12.1 Ik分词器安装使用12.2 ik配置文件12.3 使用mysql热更新 13&#xff0e;java api 实现索引管理14&…

Spring源码解析-总览

1、前言 Spring源码一直贯穿我们Java的开发中&#xff0c;只要你是一个Java开发人员就一定知道Spring全家桶。Spring全家桶为我们一共一站式服务&#xff0c;IOC、AOP更是Spring显著特性。但是Spring到底怎么为我们提供容器&#xff0c;管理资源的呢&#xff1f;下来&#xff0…

1.4状态机模型

状态机简介&#xff1a; 1.大盗阿福 阿福是一名经验丰富的大盗。趁着月黑风高&#xff0c;阿福打算今晚洗劫一条街上的店铺。 这条街上一共有 N N N家店铺&#xff0c;每家店中都有一些现金。 阿福事先调查得知&#xff0c;只有当他同时洗劫了两家相邻的店铺时&#xff0…

js对中文进行base64编码和解码操作,解决中文乱码问题

我使用github api的接口获取文件内容&#xff0c;然后使用atob进行解码&#xff0c;但是发现&#xff1a;乱码.......糟心啊 所以就有了我封装的方法&#xff1a; export const encode64 (str) > {// 首先&#xff0c;我们使用 encodeURIComponent 来获得百分比编码的UTF…

m1芯片macOS系统卡顿问题解决方法

m1芯片的MacBook在使用过程中会出现“假死”的情况。主要表现为鼠标转圈圈&#xff0c;很多操作都不能实现&#xff0c;不能输入文本&#xff0c;系统ui也响应十分慢&#xff0c;而资源监视却看不到很高的占用。一般出现此类情况只能关机或重启。这其中的"罪魁祸首"便…

管理类联考——逻辑——形式逻辑——汇总篇——知识点突破——形式逻辑——联言选言假言——矛盾

角度 角度——汇总——持续优化 性质 &#xff08;1&#xff09; 所有的 S 是 P 所有的S是P 所有的S是P 与 有的 S 不是 P 有的S不是P 有的S不是P矛盾 &#xff08;2&#xff09; 所有的 S 不是 P 所有的S不是P 所有的S不是P 与 有的 S 是 P 有的S是P 有的S是P 矛盾 &#xf…

Spring源码解析(十):spring整合mybatis源码

Spring源码系列文章 Spring源码解析(一)&#xff1a;环境搭建 Spring源码解析(二)&#xff1a;bean容器的创建、默认后置处理器、扫描包路径bean Spring源码解析(三)&#xff1a;bean容器的刷新 Spring源码解析(四)&#xff1a;单例bean的创建流程 Spring源码解析(五)&…

计算机毕设之基于数据可视化的智慧社区内网平台python+django+mysql(含开题+源码+部署教程)

系统阐述的是一款基于数据可视化的智慧社区内网平台的设计与实现&#xff0c;对于Python、B/S结构、MySql进行了较为深入的学习与应用。主要针对系统的设计&#xff0c;描述&#xff0c;实现和分析与测试方面来表明开发的过程。开发中使用了 django框架和MySql数据库技术搭建系…

el表达式和标签库的简单使用!!!

备工作1&#xff1a;tomcat10.1.13版本&#xff0c;可去官网下载&#xff0c;不会下载的童靴看过来&#xff1a;如何正确下载tomcat&#xff1f;&#xff1f;&#xff1f;_明天更新的博客-CSDN博客 准备工作2&#xff1a;添加架包&#xff08;需要三个架包&#xff09; jstl架包…

老师们快看过来,这里有使用ChatGPT当助教的方法

最近OpenAI官方博客发布了一篇文章How teachers are using ChatGPT&#xff08;老师们如何使用ChatGPT&#xff09;&#xff0c;讲的是老师们如何在教学中使用ChatGPT&#xff0c;其中有几个例子挺好的&#xff0c;我转述一下&#xff0c;希望对你有用。 制定教案 第一个例子…

[git]分支操作

Checkout 相当于切换到该分支&#xff0c;但是因为不能直接操作远程分支&#xff0c;会在本地同步一个完全一样的分支。 注意&#xff1a;切换分支前本地先进行提交&#xff08;addcommit&#xff09;&#xff0c;否则有可能代码会丢失。 New Branch from Selected... 创建一…

【小沐学Unity3d】3ds Max 多维子材质编辑(Multi/Sub-object)

文章目录 1、简介2、精简材质编辑器2.1 先创建多维子材质&#xff0c;后指定它2.2 先指定标准材质&#xff0c;后自动创建多维子材质 3、Slate材质编辑器3.1 编辑器简介3.2 编辑器使用 结语 1、简介 多维子材质&#xff08;Multi/Sub-object&#xff09;是为一个模形&#xff0…

信息安全检测和应用信息系统安全测试

安全测试 信息安全检测&#xff0c;为软件/信息系统出具的软件检测报告&#xff08;或第三方检测报告、软件安全测试报告&#xff09;&#xff0c;是信息系统/软件上线前都需要的测试报告。 信息安全检测的标准&#xff1a; 信息安全检测依据DB31/T272-2008《计算机信息系统…

【ICer的脚本练习】“精通各种语言的hello world!“

系列的目录说明请见&#xff1a;ICer的脚本练习专栏介绍与全流程目录_尼德兰的喵的博客-CSDN博客 前言 这一节呢主要是检查一下Linux和win环境是不是能正常的支持咱们的脚本学习&#xff0c;所以来答应各种语言的hello world!&#xff0c;毕竟打印了就是学会了٩(๑❛ᴗ❛๑)۶…