Python解决固定费用问题
具体文章参考博文
问题描述
源代码
import pulp # 导入 pulp 库
# 主程序
def main():
# 固定费用问题(Fixed cost problem)
print("固定费用问题(Fixed cost problem)")
# 问题建模:
"""
决策变量:
y(i) = 0, 不生产第 i 种产品
y(i) = 1, 生产第 i 种产品
x(i), 生产第 i 种产品的数量, i>=0 整数
i=1,2,3
目标函数:
min profit = 120x1 + 10x2+ 100x3 - 5000y1 - 2000y2 - 2000y3
约束条件:
5x1 + x2 + 4x3 <= 2000
3x1 <= 300y1
0.5x2 <= 300y2
2x3 <= 300y3
变量取值范围:
0<=x1<=100, 0<=x2<=600, 0<=x3<=150, 整数变量
y1, y2 ,y3 为 0/1 变量
"""
# 1. 固定费用问题(Fixed cost problem), 使用 PuLP 工具包求解
# (1) 建立优化问题 FixedCostP1: 求最大值(LpMaximize)
FixedCostP1 = pulp.LpProblem("Fixed_cost_problem_1", sense=pulp.LpMaximize) # 定义问题,求最大值
# (2) 建立变量
x1 = pulp.LpVariable('x1', cat='Binary') # 定义 x1,0-1变量,是否生产 A 产品
x2 = pulp.LpVariable('x2', cat='Binary') # 定义 x2,0-1变量,是否生产 B 产品
x3 = pulp.LpVariable('x3', cat='Binary') # 定义 x3,0-1变量,是否生产 C 产品
y1 = pulp.LpVariable('y1', lowBound=0, upBound=100, cat='Integer') # 定义 y1,整型变量
y2 = pulp.LpVariable('y2', lowBound=0, upBound=600, cat='Integer') # 定义 y2,整型变量
y3 = pulp.LpVariable('y3', lowBound=0, upBound=150, cat='Integer') # 定义 y3,整型变量
# (3) 设置目标函数
FixedCostP1 += pulp.lpSum(-5000*x1-2000*x2-2000*x3+120*y1+10*y2+100*y3) # 设置目标函数 f(x)
# (4) 设置约束条件
FixedCostP1 += (5*y1 + y2 + 4*y3 <= 2000) # 不等式约束
FixedCostP1 += (3*y1 - 300*x1 <= 0) # 不等式约束
FixedCostP1 += (0.5*y2 - 300*x2 <= 0) # 不等式约束
FixedCostP1 += (2*y3 - 300*x3 <= 0) # 不等式约束
# (5) 求解
FixedCostP1.solve()
# (6) 打印结果
print(FixedCostP1.name)
if pulp.LpStatus[FixedCostP1.status] == "Optimal": # 获得最优解
for v in FixedCostP1.variables():
print(v.name, "=", v.varValue) # 输出每个变量的最优值
print("F(x) = ", pulp.value(FixedCostP1.objective)) # 输出最优解的目标函数值
return
if __name__ == '__main__':
main()