Linux 调试技术 Kprobe

news2025/1/10 20:51:03

目录

  • 用途:
  • 一、技术背景
    • 1.1 kprobes的特点与使用限制
    • 1.2 kprobe原理
  • 二、 基于kprobe探测模块的探测方式
    • 2.1、struct kprobe结构体
    • 2.2 kprobe API函数
    • 2.3 示例代码
    • 参考资料:

用途:

判断内核函数是否被调用,获取调用上下文、入参以及返回值。

一、技术背景

如果需要知道内核函数是否被调用、被调用上下文、入参以及返回值,比较简单的方法是加printk,但是效率低。

利用kprobe技术,用户可以自定义自己的回调函数,可以再几乎所有的函数中动态插入探测点。

当内核执行流程执行到指定的探测函数时,会调用该回调函数,用户即可收集所需的信息了,同时内核最后还会回到原本的正常执行流程。如果用户已经收集足够的信息,不再需要继续探测,则同样可以动态的移除探测点。

kprobes技术包括的3种探测手段分别时kprobe、jprobe和kretprobe。

首先kprobe是最基本的探测方式,是实现后两种的基础,它可以在任意的位置放置探测点(就连函数内部的某条指令处也可以),它提供了探测点的调用前、调用后和内存访问出错3种回调方式,分别是pre_handler、post_handler和fault_handler,其中pre_handler函数将在被探测指令被执行前回调,post_handler会在被探测指令执行完毕后回调(注意不是被探测函数),fault_handler会在内存访问出错时被调用;jprobe基于kprobe实现,它用于获取被探测函数的入参值;最后kretprobe从名字种就可以看出其用途了,它同样基于kprobe实现,用于获取被探测函数的返回值。

1.1 kprobes的特点与使用限制

1、kprobes允许在同一个被被探测位置注册多个kprobe,但是目前jprobe却不可以;同时也不允许以其他的jprobe回掉函数和kprobe的post_handler回调函数作为被探测点。

2、一般情况下,可以探测内核中的任何函数,包括中断处理函数。不过在kernel/kprobes.c和arch/*/kernel/kprobes.c程序中用于实现kprobes自身的函数是不允许被探测的,另外还有do_page_fault和notifier_call_chain;

3、如果以一个内联函数为探测点,则kprobes可能无法保证对该函数的所有实例都注册探测点。由于gcc可能会自动将某些函数优化为内联函数,因此可能无法达到用户预期的探测效果;

4、一个探测点的回调函数可能会修改被探测函数运行的上下文,例如通过修改内核的数据结构或者保存与struct pt_regs结构体中的触发探测之前寄存器信息。因此kprobes可以被用来安装bug修复代码或者注入故障测试代码;

5、kprobes会避免在处理探测点函数时再次调用另一个探测点的回调函数,例如在printk()函数上注册了探测点,则在它的回调函数中可能再次调用printk函数,此时将不再触发printk探测点的回调,仅仅时增加了kprobe结构体中nmissed字段的数值;

6、在kprobes的注册和注销过程中不会使用mutex锁和动态的申请内存;

7、kprobes回调函数的运行期间是关闭内核抢占的,同时也可能在关闭中断的情况下执行,具体要视CPU架构而定。因此不论在何种情况下,在回调函数中不要调用会放弃CPU的函数(如信号量、mutex锁等);

8、kretprobe通过替换返回地址为预定义的trampoline的地址来实现,因此栈回溯和gcc内嵌函数__builtin_return_address()调用将返回trampoline的地址而不是真正的被探测函数的返回地址;

9、如果一个函数的调用此处和返回次数不相等,则在类似这样的函数上注册kretprobe将可能不会达到预期的效果,例如do_exit()函数会存在问题,而do_execve()函数和do_fork()函数不会;

10、如果当在进入和退出一个函数时,CPU运行在非当前任务所有的栈上,那么往该函数上注册kretprobe可能会导致不可预料的后果,因此,kprobes不支持在X86_64的结构下为__switch_to()函数注册kretprobe,将直接返回-EINVAL。

1.2 kprobe原理

kprobe工作具体流程见下图:
在这里插入图片描述

1、当用户注册一个探测点后,kprobe首先备份被探测点的对应指令,然后将原始指令的入口点替换为断点指令,该指令是CPU架构相关的,如i386和x86_64是int3,arm是设置一个未定义指令(目前的x86_64架构支持一种跳转优化方案Jump Optimization,内核需开启CONFIG_OPTPROBES选项,该种方案使用跳转指令来代替断点指令);
2、当CPU流程执行到探测点的断点指令时,就触发了一个trap,在trap处理流程中会保存当前CPU的寄存器信息并调用对应的trap处理函数,该处理函数会设置kprobe的调用状态并调用用户注册的pre_handler回调函数,kprobe会向该函数传递注册的struct kprobe结构地址以及保存的CPU寄存器信息;
3、随后kprobe单步执行前面所拷贝的被探测指令,具体执行方式各个架构不尽相同,arm会在异常处理流程中使用模拟函数执行,而x86_64架构则会设置单步调试flag并回到异常触发前的流程中执行;
4、在单步执行完成后,kprobe执行用户注册的post_handler回调函数;
5、最后,执行流程回到被探测指令之后的正常流程继续执行。

二、 基于kprobe探测模块的探测方式

2.1、struct kprobe结构体

内核提供了struct kprobe表示一个探测点,以及一系列API接口,用户可以通过这些接口实现回调函数并实现struct kprobe结构,然后将它注册到内核的kprobe子系统中来达到探测的目的。

struct kprobe {
    struct hlist_node hlist;-----------------------------------------------被用于kprobe全局hash,索引值为被探测点的地址。
    /* list of kprobes for multi-handler support */
    struct list_head list;-------------------------------------------------用于链接同一被探测点的不同探测kprobe。
    /*count the number of times this probe was temporarily disarmed */
    unsigned long nmissed;
    /* location of the probe point */
    kprobe_opcode_t *addr;-------------------------------------------------被探测点的地址。
    /* Allow user to indicate symbol name of the probe point */
    const char *symbol_name;-----------------------------------------------被探测函数的名称。
    /* Offset into the symbol */
    unsigned int offset;---------------------------------------------------被探测点在函数内部的偏移,用于探测函数内核的指令,如果该值为0表示函数的入口。
    /* Called before addr is executed. */
    kprobe_pre_handler_t pre_handler;--------------------------------------被探测点指令执行之前调用的回调函数。
    /* Called after addr is executed, unless... */
    kprobe_post_handler_t post_handler;------------------------------------被探测点指令执行之后调用的回调函数。
    kprobe_fault_handler_t fault_handler;----------------------------------在执行pre_handler、post_handler或单步执行被探测指令时出现内存异常则会调用该回调函数。
    kprobe_break_handler_t break_handler;----------------------------------在执行某一kprobe过程中出发了断点指令后会调用该函数,用于实现jprobe。
    kprobe_opcode_t opcode;------------------------------------------------保存的被探测点原始指令。
    struct arch_specific_insn ainsn;---------------------------------------被复制的被探测点的原始指令,用于单步执行,架构强相关。
    u32 flags;-------------------------------------------------------------状态标记。
};

2.2 kprobe API函数

内核使用kprobe,可以使用register_kprobe()/unregister_kprobe()进行注册/卸载,还可以临时关闭/使能探测点。

int register_kprobe(struct kprobe *p);--------------------------注册kprobe探测点
void unregister_kprobe(struct kprobe *p);-----------------------卸载kprobe探测点
int register_kprobes(struct kprobe **kps, int num);-------------注册多个kprobe探测点
void unregister_kprobes(struct kprobe **kps, int num);----------卸载多个kprobe探测点
int disable_kprobe(struct kprobe *kp);--------------------------暂停指定定kprobe探测点
int enable_kprobe(struct kprobe *kp);---------------------------回复指定kprobe探测点
void dump_kprobe(struct kprobe *kp);----------------------------打印指定kprobe探测点的名称、地址、偏移

2.3 示例代码

下面以内核中samples/kprobes/kprobe_example.c为例,介绍如何使用kprobe进行内核函数探测。
该kprobe实例实现了_do_fork的探测,该函数会在fork系统调用或者kernel_kthread创建内核线程时被调用。
对原%p修改为%pF后,可读性更强。可以显示函数名称以及偏移量。

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/kprobes.h>

#define MAX_SYMBOL_LEN    64
static char symbol[MAX_SYMBOL_LEN] = "_do_fork";
module_param_string(symbol, symbol, sizeof(symbol), 0644);

/* For each probe you need to allocate a kprobe structure */
static struct kprobe kp = {---------------------------------------------------------定义一个实例kp并初始化symbol_name为"_do_fork",将探测_do_fork函数。
    .symbol_name    = symbol,
};

/* kprobe pre_handler: called just before the probed instruction is executed */
static int handler_pre(struct kprobe *p, struct pt_regs *regs)
{
#ifdef CONFIG_X86
    pr_info("<%s> pre_handler: p->addr = %pF, ip = %lx, flags = 0x%lx\n",
        p->symbol_name, p->addr, regs->ip, regs->flags);
#endif
#ifdef CONFIG_ARM64
    pr_info("<%s> pre_handler: p->addr = %pF, pc = 0x%lx,"
            " pstate = 0x%lx\n",
        p->symbol_name, p->addr, (long)regs->pc, (long)regs->pstate);
#endif

    /* A dump_stack() here will give a stack backtrace */
    return 0;
}

/* kprobe post_handler: called after the probed instruction is executed */
static void handler_post(struct kprobe *p, struct pt_regs *regs,
                unsigned long flags)
{
#ifdef CONFIG_X86
    pr_info("<%s> post_handler: p->addr = %pF, flags = 0x%lx\n",
        p->symbol_name, p->addr, regs->flags);
#endif
#ifdef CONFIG_ARM64
    pr_info("<%s> post_handler: p->addr = %pF, pstate = 0x%lx\n",
        p->symbol_name, p->addr, (long)regs->pstate);
#endif
}

/*
 * fault_handler: this is called if an exception is generated for any
 * instruction within the pre- or post-handler, or when Kprobes
 * single-steps the probed instruction.
 */
static int handler_fault(struct kprobe *p, struct pt_regs *regs, int trapnr)
{
    pr_info("fault_handler: p->addr = %pF, trap #%dn", p->addr, trapnr);
    /* Return 0 because we don't handle the fault. */
    return 0;
}

static int __init kprobe_init(void)
{
    int ret;
    kp.pre_handler = handler_pre;---------------------------------------------------初始化kp的三个回调函数。
    kp.post_handler = handler_post;
    kp.fault_handler = handler_fault;

    ret = register_kprobe(&kp);-----------------------------------------------------注册kp探测点到内核。
    if (ret < 0) {
        pr_err("register_kprobe failed, returned %d\n", ret);
        return ret;
    }
    pr_info("Planted kprobe at %pF\n", kp.addr);
    return 0;
}

static void __exit kprobe_exit(void)
{
    unregister_kprobe(&kp);
    pr_info("kprobe at %pF unregistered\n", kp.addr);
}

module_init(kprobe_init)
module_exit(kprobe_exit)
MODULE_LICENSE("GPL");

模块的编译Makefile如下:

obj-m := kprobe_example.o

CROSS_COMPILE=''

KDIR := /lib/modules/$(shell uname -r)/build
all:
    make -C $(KDIR) M=$(PWD) modules 
clean:
    rm -f *.ko *.o *.mod.o *.mod.c .*.cmd *.symvers  modul*

执行结果如下:

[ 9363.905687] Planted kprobe at _do_fork+0x0/0x3f0
[ 9366.924852] <_do_fork> pre_handler: p->addr = _do_fork+0x0/0x3f0, ip = ffffffff88a86a61, flags = 0x246
[ 9366.924858] <_do_fork> post_handler: p->addr = _do_fork+0x0/0x3f0, flags = 0x246
[ 9366.932935] <_do_fork> pre_handler: p->addr = _do_fork+0x0/0x3f0, ip = ffffffff88a86a61, flags = 0x246
[ 9366.932938] <_do_fork> post_handler: p->addr = _do_fork+0x0/0x3f0, flags = 0x246
[ 9366.957594] kprobe at _do_fork+0x0/0x3f0 unregistered

可以通过sudo cat /proc/kallsyms | grep l_do_fork来验证地址和符号是否对应。
若没有sudo,看不到真实的地址。


参考资料:

  1. Linux kprobe调试技术使用
  2. Linux内核调试技术——kprobe使用与实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/962089.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

『SpringBoot 源码分析』run() 方法执行流程:(2)刷新应用上下文-准备阶段

『SpringBoot 源码分析』run() 方法执行流程&#xff1a;&#xff08;2&#xff09;刷新应用上下文-准备阶段 基于 2.2.9.RELEASE问题&#xff1a;当方法进行了注释标记之后&#xff0c;springboot 又是怎么注入到容器中并创建类呢&#xff1f; 首先创建测试主程序 package …

第49节:cesium 倾斜模型osgb转3dtiles,并加载(含源码+视频)

结果示例: 完整步骤: 1、启动并登陆cesiumlab 2、准备OSGB模型数据(含下载地址) 链接:https://pan.quark.cn/s/46ac7b0b2bed 提取码:TvWL3、倾斜模型切片 选择倾斜模型data文件夹 空间参考、零点坐标 默认 强制双面关闭、无光照 打开

天津和则百顺国际贸易有限公司被选为中国自主创新企业

在2023年4月,天津和则百顺国际贸易有限公司凭借在全国自主创新企业宣传推广活动中的出色表现,经过相关单位审核,正式被评选为中国自主创新企业,并荣获《中国自主创新企业》荣誉证书。 作为始终走在中国自主创新前沿的企业,天津和则百顺国际贸易有限公司,以下简称和则百顺,对于获…

console.log封装,显示调用的位置

背景 一般我们都哦说直接调用console.log&#xff0c;但是有时候console.log太多了&#xff0c;非常影响效率&#xff0c;我们想统一开启console.log&#xff08;不是生产环境移除console.log&#xff09; 可能封装的代码是这样 window.mylog()>conosle.log但是控制面板哪…

【大数据】Flink 详解(六):源码篇 Ⅰ

Flink 详解&#xff08;六&#xff09;&#xff1a;源码篇 Ⅰ 55、Flink 作业的提交流程&#xff1f;56、Flink 作业提交分为几种方式&#xff1f;57、Flink JobGraph 是在什么时候生成的&#xff1f;58、那在 JobGraph 提交集群之前都经历哪些过程&#xff1f;59、看你提到 Pi…

命令执行漏洞复现攻击:识别威胁并加强安全

环境准备 这篇文章旨在用于网络安全学习&#xff0c;请勿进行任何非法行为&#xff0c;否则后果自负。 一、攻击相关介绍 原理 主要是输入验证不严格、代码逻辑错误、应用程序或系统中缺少安全机制等。攻击者可以通过构造特定的输入向应用程序或系统注入恶意代码&#xff…

sql:SQL优化知识点记录(七)

&#xff08;1&#xff09;索引优化5 &#xff08;2&#xff09;索引优化6 &#xff08;3&#xff09;索引优化7 查询*&#xff0c; 百分号加右边&#xff0c;否则索引会失效 没建立索引之前都是全表扫描 没建立索引 建立索引&#xff1a; 建立索引 id是主键&#xff0c;他也…

零信任安全模型详解:探讨零信任安全策略的原理、实施方法和最佳实践,确保在网络中实现最小特权原则

在当今日益复杂和危险的网络环境中&#xff0c;传统的网络安全模型已经不再能够满足对抗不断进化的威胁。零信任安全模型应运而生&#xff0c;以其强调“不信任&#xff0c;始终验证”的理念&#xff0c;成为了当今信息技术领域中的热门话题。本文将深入探讨零信任安全模型&…

(leetcode802,拓扑排序,深搜+三色标记)-------------------Java实现

&#xff08;leetcode802&#xff0c;拓扑排序&#xff0c;深搜三色标记&#xff09;找到最终的安全状态-------------------Java实现 题目表述 有一个有 n 个节点的有向图&#xff0c;节点按 0 到 n - 1 编号。图由一个 索引从 0 开始 的 2D 整数数组 graph表示&#xff0c;…

【RPC 协议】序列化与反序列化 | lua-cjson | lua-protobuf

文章目录 RPC 协议gRPCJSON-RPC 数据序列化与反序列化lua-cjsonlua-protobuf RPC 协议 在分布式计算&#xff0c;远程过程调用&#xff08;英语&#xff1a;Remote Procedure Call&#xff0c;缩写为 RPC&#xff09;是一个计算机通信协议。该协议允许运行于一台计算机的程序调…

Unity Android 之 在Unity 中引入 OkHttp的操作注意(OKHttp4.xx- kotlin 的包)简单记录

Unity Android 之 在Unity 中引入 OkHttp的操作注意(OKHttp4.xx- kotlin 的包)简单记录 目录 Unity Android 之 在Unity 中引入 OkHttp的操作注意(OKHttp4.xx- kotlin 的包)简单记录 一、简单介绍 二、OKHttp 4.xx 的 SDK 封装 aar 给 Unity 的使用注意 三、附录 OKHttp 的…

一米ip流量池系统

PC端快速切换移动网络IP 支持全网通sim卡槽&#xff0c;国内三大运营商IP池动态切换&#xff0c;实现真实移动端IP切换。从此换IP再也不用vpn或代理&#xff0c;一个设备搞定 1.兼容国内电信&#xff0c;移动&#xff0c;联通三网通的sim卡4G连接&#xff0c;快速稳定2.可直接…

《算法竞赛·快冲300题》每日一题:“简化农场”

《算法竞赛快冲300题》将于2024年出版&#xff0c;是《算法竞赛》的辅助练习册。 所有题目放在自建的OJ New Online Judge。 用C/C、Java、Python三种语言给出代码&#xff0c;以中低档题为主&#xff0c;适合入门、进阶。 文章目录 题目描述题解C代码Java代码Python代码 “ 简…

SpringBoot自定义消息总线

一、前言 在现代的分布式系统中&#xff0c;消息传递已成为一个非常流行的模式。它使得系统内的不同部分可以松耦合地通信&#xff0c;从而实现更高效、更可靠的应用程序。本博客将介绍SpringBoot如何提供简单易用的消息传递机制&#xff0c;并展示如何自定义消息总线以满足特定…

安装使用 d3graph 时出现 TypeError 的解决方法

使用 python 3.7 pip 22.3.1 在清华镜像源 https://pypi.tuna.tsinghua.edu.cn/simple 安装 d3blocks 1.3.2 时&#xff0c;安装成功后导入包时出错&#xff1a; 观察报错信息可以看到出错的代码&#xff08;902 行&#xff09;使用了类型指定语法&#xff0c;这是最新的 pyth…

stable diffusion实践操作-电脑硬件查看

本文专门开一节写电脑硬件相关的内容&#xff0c;在看之前&#xff0c;可以同步关注&#xff1a; stable diffusion实践操作 正文 1、检查电脑显存的方法&#xff08;win10&#xff09;&#xff1a; 鼠标放在工具栏&#xff0c;单击右键打开“任务管理器”&#xff0c;选择顶…

jmeter 固定定时器

固定定时器&#xff08;Constant Timer&#xff09;是一个定时器元件&#xff0c;可以在线程组中的每个线程之间添加固定的延迟时间。固定定时器会对每个线程的执行进行一定的暂停。 聊一下和线程组中的调度器对线程组执行时长的影响&#xff1a; 相同&#xff1a; 都会影响线…

【线性代数】矩阵求导的本质与分子布局、分母布局的本质(矩阵求导——本质篇)

矩阵求导的本质与分子布局、分母布局的本质&#xff08;矩阵求导——本质篇&#xff09; 说在前面一. 函数与标量、向量、矩阵二. 矩阵求导的本质三. 矩阵求导结果的布局四. 分子布局、分母布局的本质五. 向量变元的实值标量函数 说在前面 我将严谨地说明矩阵求导的本质与分子布…

游戏思考30(补充版):关于逆水寒铁牢关副本、白石副本和技能的一些注释(2023/0902)

前期介绍 我是一名逆水寒的玩家&#xff0c;做一些游戏的笔记当作攻略记录下来&#xff0c;荣光不朽-帝霸来源视频连接 传送门 一、旧版铁牢关&#xff08;非逆水寒老兵服&#xff09; &#xff08;1&#xff09;老一&#xff1a;巨鹰 1&#xff09;机制一&#xff1a;三阵风…

多通道振弦数据记录仪应用桥梁安全监测的关键要点

多通道振弦数据记录仪应用桥梁安全监测的关键要点 随着近年来桥梁建设和维护的不断推进&#xff0c;桥梁安全监测越来越成为公共关注的焦点。多通道振弦数据记录仪因其高效、准确的数据采集和处理能力&#xff0c;已经成为桥梁安全监测中不可或缺的设备。本文将从以下几个方面…