2023高教社杯数学建模思路 - 复盘:校园消费行为分析

news2024/11/23 17:11:31

文章目录

  • 0 赛题思路
  • 1 赛题背景
  • 2 分析目标
  • 3 数据说明
  • 4 数据预处理
  • 5 数据分析
    • 5.1 食堂就餐行为分析
    • 5.2 学生消费行为分析
  • 建模资料

0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 赛题背景

校园一卡通是集身份认证、金融消费、数据共享等多项功能于一体的信息集成系统。在为师生提供优质、高效信息化服务的同时,系统自身也积累了大量的历史记录,其中蕴含着学生的消费行为以及学校食堂等各部门的运行状况等信息。

很多高校基于校园一卡通系统进行“智慧校园”的相关建设,例如《扬子晚报》2016年 1月 27日的报道:《南理工给贫困生“暖心饭卡补助”》。

不用申请,不用审核,饭卡上竟然能悄悄多出几百元……记者昨天从南京理工大学独家了解到,南理工教育基金会正式启动了“暖心饭卡”

项目,针对特困生的温饱问题进行“精准援助”。

项目专门针对贫困本科生的“温饱问题”进行援助。在学校一卡通中心,教育基金会的工作人员找来了全校一万六千余名在校本科生 9 月中旬到 11月中旬的刷卡记录,对所有的记录进行了大数据分析。最终圈定了 500余名“准援助对象”。

南理工教育基金会将拿出“种子基金”100万元作为启动资金,根据每位贫困学生的不同情况确定具体的补助金额,然后将这些钱“悄无声息”的打入学生的饭卡中,保证困难学生能够吃饱饭。

——《扬子晚报》2016年 1月 27日:南理工给贫困生“暖心饭卡补助”本赛题提供国内某高校校园一卡通系统一个月的运行数据,希望参赛者使用

数据分析和建模的方法,挖掘数据中所蕴含的信息,分析学生在校园内的学习生活行为,为改进学校服务并为相关部门的决策提供信息支持。

2 分析目标

  • 1. 分析学生的消费行为和食堂的运营状况,为食堂运营提供建议。

  • 2. 构建学生消费细分模型,为学校判定学生的经济状况提供参考意见。

3 数据说明

附件是某学校 2019年 4月 1 日至 4月 30日的一卡通数据

一共3个文件:data1.csv、data2.csv、data3.csv
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4 数据预处理

将附件中的 data1.csv、data2.csv、data3.csv三份文件加载到分析环境,对照附录一,理解字段含义。探查数据质量并进行缺失值和异常值等方面的必要处理。将处理结果保存为“task1_1_X.csv”(如果包含多张数据表,X可从 1 开始往后编号),并在报告中描述处理过程。

import numpy as np
import pandas as pd
import os
os.chdir('/home/kesci/input/2019B1631')
data1 = pd.read_csv("data1.csv", encoding="gbk")
data2 = pd.read_csv("data2.csv", encoding="gbk")
data3 = pd.read_csv("data3.csv", encoding="gbk")
data1.head(3)

在这里插入图片描述

data1.columns = ['序号', '校园卡号', '性别', '专业名称', '门禁卡号']
data1.dtypes

在这里插入图片描述

data1.to_csv('/home/kesci/work/output/2019B/task1_1_1.csv', index=False, encoding='gbk')
data2.head(3)

在这里插入图片描述
将 data1.csv中的学生个人信息与 data2.csv中的消费记录建立关联,处理结果保存为“task1_2_1.csv”;将 data1.csv 中的学生个人信息与data3.csv 中的门禁进出记录建立关联,处理结果保存为“task1_2_2.csv”。

data1 = pd.read_csv("/home/kesci/work/output/2019B/task1_1_1.csv", encoding="gbk")
data2 = pd.read_csv("/home/kesci/work/output/2019B/task1_1_2.csv", encoding="gbk")
data3 = pd.read_csv("/home/kesci/work/output/2019B/task1_1_3.csv", encoding="gbk")
data1.head(3)

在这里插入图片描述

5 数据分析

5.1 食堂就餐行为分析

绘制各食堂就餐人次的占比饼图,分析学生早中晚餐的就餐地点是否有显著差别,并在报告中进行描述。(提示:时间间隔非常接近的多次刷卡记录可能为一次就餐行为)

data = pd.read_csv('/home/kesci/work/output/2019B/task1_2_1.csv', encoding='gbk')
data.head()

在这里插入图片描述

import matplotlib as mpl
import matplotlib.pyplot as plt
# notebook嵌入图片
%matplotlib inline
# 提高分辨率
%config InlineBackend.figure_format='retina'
from matplotlib.font_manager import FontProperties
font = FontProperties(fname="/home/kesci/work/SimHei.ttf")
import warnings
warnings.filterwarnings('ignore')
canteen1 = data['消费地点'].apply(str).str.contains('第一食堂').sum()
canteen2 = data['消费地点'].apply(str).str.contains('第二食堂').sum()
canteen3 = data['消费地点'].apply(str).str.contains('第三食堂').sum()
canteen4 = data['消费地点'].apply(str).str.contains('第四食堂').sum()
canteen5 = data['消费地点'].apply(str).str.contains('第五食堂').sum()
# 绘制饼图
canteen_name = ['食堂1', '食堂2', '食堂3', '食堂4', '食堂5']
man_count = [canteen1,canteen2,canteen3,canteen4,canteen5]
# 创建画布
plt.figure(figsize=(10, 6), dpi=50)
# 绘制饼图
plt.pie(man_count, labels=canteen_name, autopct='%1.2f%%', shadow=False, startangle=90, textprops={'fontproperties':font})
# 显示图例
plt.legend(prop=font)
# 添加标题
plt.title("食堂就餐人次占比饼图", fontproperties=font)
# 饼图保持圆形
plt.axis('equal')
# 显示图像
plt.show()

在这里插入图片描述
通过食堂刷卡记录,分别绘制工作日和非工作日食堂就餐时间曲线图,分析食堂早中晚餐的就餐峰值,并在报告中进行描述。

在这里插入图片描述

# 对data中消费时间数据进行时间格式转换,转换后可作运算,coerce将无效解析设置为NaT
data.loc[:,'消费时间'] = pd.to_datetime(data.loc[:,'消费时间'],format='%Y-%m-%d %H:%M',errors='coerce')
data.dtypes
# 创建一个消费星期列,根据消费时间计算出消费时间是星期几,Monday=1, Sunday=7
data['消费星期'] = data['消费时间'].dt.dayofweek + 1
data.head(3)
# 以周一至周五作为工作日,周六日作为非工作日,拆分为两组数据
work_day_query = data.loc[:,'消费星期'] <= 5
unwork_day_query = data.loc[:,'消费星期'] > 5

work_day_data = data.loc[work_day_query,:]
unwork_day_data = data.loc[unwork_day_query,:]
# 计算工作日消费时间对应的各时间的消费次数
work_day_times = []
for i in range(24):
    work_day_times.append(work_day_data['消费时间'].apply(str).str.contains(' {:02d}:'.format(i)).sum())
    # 以时间段作为x轴,同一时间段出现的次数和作为y轴,作曲线图
x = []
for i in range(24):
    x.append('{:02d}:00'.format(i))
# 绘图
plt.plot(x, work_day_times, label='工作日')
# x,y轴标签
plt.xlabel('时间', fontproperties=font);
plt.ylabel('次数', fontproperties=font)
# 标题
plt.title('工作日消费曲线图', fontproperties=font)
# x轴倾斜60度
plt.xticks(rotation=60)
# 显示label
plt.legend(prop=font)
# 加网格
plt.grid()

在这里插入图片描述

# 计算飞工作日消费时间对应的各时间的消费次数
unwork_day_times = []
for i in range(24):
    unwork_day_times.append(unwork_day_data['消费时间'].apply(str).str.contains(' {:02d}:'.format(i)).sum())
    # 以时间段作为x轴,同一时间段出现的次数和作为y轴,作曲线图
x = []
for i in range(24): 
    x.append('{:02d}:00'.format(i))
plt.plot(x, unwork_day_times, label='非工作日')
plt.xlabel('时间', fontproperties=font);
plt.ylabel('次数', fontproperties=font)
plt.title('非工作日消费曲线图', fontproperties=font)
plt.xticks(rotation=60)
plt.legend(prop=font)
plt.grid()

在这里插入图片描述
根据上述分析的结果,很容易为食堂的运营提供建议,比如错开高峰等等。

5.2 学生消费行为分析

根据学生的整体校园消费数据,计算本月人均刷卡频次和人均消费额,并选择 3个专业,分析不同专业间不同性别学生群体的消费特点。

data = pd.read_csv('/home/kesci/work/output/2019B/task1_2_1.csv', encoding='gbk')
data.head()

在这里插入图片描述

# 计算人均刷卡频次(总刷卡次数/学生总人数)
cost_count = data['消费时间'].count()
student_count = data['校园卡号'].value_counts(dropna=False).count()
average_cost_count = int(round(cost_count / student_count))
average_cost_count


# 计算人均消费额(总消费金额/学生总人数)
cost_sum = data['消费金额'].sum()
average_cost_money = int(round(cost_sum / student_count))
average_cost_money


# 选择消费次数最多的3个专业进行分析
data['专业名称'].value_counts(dropna=False)

在这里插入图片描述

# 消费次数最多的3个专业为 连锁经营、机械制造、会计
major1 = data['专业名称'].apply(str).str.contains('18连锁经营')
major2 = data['专业名称'].apply(str).str.contains('18机械制造')
major3 = data['专业名称'].apply(str).str.contains('18会计')
major4 = data['专业名称'].apply(str).str.contains('18机械制造(学徒)')

data_new = data[(major1 | major2 | major3) ^ major4]
data_new['专业名称'].value_counts(dropna=False)


 分析 每个专业,不同性别 的学生消费特点
data_male = data_new[data_new['性别'] == '男']
data_female = data_new[data_new['性别'] == '女']
data_female.head()

在这里插入图片描述
根据学生的整体校园消费行为,选择合适的特征,构建聚类模型,分析每一类学生群体的消费特点。

data['专业名称'].value_counts(dropna=False).count()
# 选择特征:性别、总消费金额、总消费次数
data_1 = data[['校园卡号','性别']].drop_duplicates().reset_index(drop=True)
data_1['性别'] = data_1['性别'].astype(str).replace(({'男': 1, '女': 0}))
data_1.set_index(['校园卡号'], inplace=True)
data_2 = data.groupby('校园卡号').sum()[['消费金额']]
data_2.columns = ['总消费金额']
data_3 = data.groupby('校园卡号').count()[['消费时间']]
data_3.columns = ['总消费次数']
data_123 =  pd.concat([data_1, data_2, data_3], axis=1)#.reset_index(drop=True)
data_123.head()

# 构建聚类模型
from sklearn.cluster import KMeans
# k为聚类类别,iteration为聚类最大循环次数,data_zs为标准化后的数据
k = 3    # 分成几类可以在此处调整
iteration = 500
data_zs = 1.0 * (data_123 - data_123.mean()) / data_123.std()
# n_jobs为并发数
model = KMeans(n_clusters=k, n_jobs=4, max_iter=iteration, random_state=1234)
model.fit(data_zs)
# r1统计各个类别的数目,r2找出聚类中心
r1 = pd.Series(model.labels_).value_counts()
r2 = pd.DataFrame(model.cluster_centers_)
r = pd.concat([r2,r1], axis=1)
r.columns = list(data_123.columns) + ['类别数目']


# 选出消费总额最低的500名学生的消费信息
data_500 = data.groupby('校园卡号').sum()[['消费金额']]
data_500.sort_values(by=['消费金额'],ascending=True,inplace=True,na_position='first')
data_500 = data_500.head(500)
data_500_index = data_500.index.values
data_500 = data[data['校园卡号'].isin(data_500_index)]
data_500.head(10)

在这里插入图片描述

# 绘制饼图
canteen_name = list(data_max_place.index)
man_count = list(data_max_place.values)
# 创建画布
plt.figure(figsize=(10, 6), dpi=50)
# 绘制饼图
plt.pie(man_count, labels=canteen_name, autopct='%1.2f%%', shadow=False, startangle=90, textprops={'fontproperties':font})
# 显示图例
plt.legend(prop=font)
# 添加标题
plt.title("低消费学生常消费地点占比饼图", fontproperties=font)
# 饼图保持圆形
plt.axis('equal')
# 显示图像
plt.show()

在这里插入图片描述

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/940010.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

揭秘视频号创收计划:松松一个月赚1300+

我是卢松松&#xff0c;点点上面的头像&#xff0c;欢迎关注我哦&#xff01; 这是卢松松一个月视频号的收益&#xff0c;1300元。自从视频号在五月份推出创作者分成计划以来&#xff0c;许许多多的视频号创作者开始获得了一些收益&#xff0c;这绝对是一项挺不错的进展。 目前…

Prometheus监控(一)

文章目录 监控对于企业和运维工作的重要性监控&#xff1f;告警&#xff1f;数据采集 Prometheus介绍Prometheus相对于老牌监控的优势和不足理想的监控系统的实现监控系统设计&#xff08;架构师&#xff09;监控系统的搭建数据采集的编写监控数据分析和算法稳定性测试监控自动…

无风扇迷你电脑信息与购买指南

本文将解释什么是无风扇迷你电脑&#xff0c;以及计算产品组合中你可以购买的一些不同的无风扇迷你电脑的信息指南。 无风扇迷你电脑是一种小型工业计算机&#xff0c;旨在处理复杂的工业工作负载。迷你电脑是通过散热器被动冷却可在各种类型的易失性环境中部署。无风扇微型计…

自动化运维:Ansible基础与命令行模块操作

目录 一、理论 1. Ansible 2.部署Ansible自动化运维工具 3.Ansible常用模块 4.hostsinverntory主机清单 二、实验 1.部署Ansible自动化运维工具 2.ansible 命令行模块 3.hostsinverntory主机清单 三、问题 1. ansible远程shell失败 2.组变量查看webservers内主机ip报…

开源在企业中的角色和价值

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…

Java集合大揭秘:优雅管理数据的智慧舞台

集合&#xff08;Collections&#xff09;是一种用于存储、组织和操作数据的重要工具。它们提供了各种数据结构和算法&#xff0c;帮助开发者高效地处理不同类型的数据。本文将带您深入了解Java集合框架&#xff0c;探索其核心概念、常用接口和类&#xff0c;以及在实际应用中的…

一个插件实现代码自由,快来试试吧

效果如下 开始操作 1.插件下载并解压 2.打开chrome浏览器,点击扩展程序–》管理扩展程序 3.打开开发者模式&#xff0c;加载已解压的扩展程序 4.加载AI工具 5.打开插件 6.回到主页&#xff0c;效果如下 7.点击ChatGPT 8.大概过30秒&#xff0c;邮箱注册 9.注册完成,可以…

智能气象站丨自动采集、自动存储、自动传输

智能气象站&#xff0c;能够同时自动采集周围环境中的空气湿度、空气温度、风速、风向、雨量、太阳辐射及大气压力、PM2.5、PM10等&#xff0c;多用户可以在手机或者电脑上同时查看实时数据。智能气象站与传统的气象站不同&#xff0c;采用了多种传感器技术对空气中的各项要素进…

谁说银行U盾有OK键,就不能远程连接调用?

如今很多公司都在用USB Server管理U盾&#xff0c;但是有的U盾不是要按OK键吗&#xff1f;怎么远程连接呢&#xff1f; 了解一下U盾OK键远程点按器&#xff01; 有了它就可以配合USB Server自动点按OK键、远程连接调用网银U盾&#xff01; 把U盾固定在点按器上&#xff0c; 将…

突破边界:文本检测算法的革新与应用前景

突破边界&#xff1a;文本检测算法的革新与应用前景 1.文本检测理论篇&#xff08;文本检测方法介绍&#xff09; 文本检测任务是找出图像或视频中的文字位置。不同于目标检测任务&#xff0c;目标检测不仅要解决定位问题&#xff0c;还要解决目标分类问题。 文本在图像中的…

大数据项目实战(Sqoop安装)

一&#xff0c;搭建大数据集群环境 1.4 Sqoop安装 1.sqoop安装 &#xff08;1&#xff09;上传安装包 &#xff08;2&#xff09;解压安装包 tar -zxvf sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz -C /export/servers &#xff08;3&#xff09;重命名 mv sqoop-1.4.6.b…

新生军训报到须知情况发布

军训是每位高中生开学的第一课&#xff0c;它不仅能锻炼身体&#xff0c;培养毅力和团队合作精神&#xff0c;更能培养学生坚强的意志和自律的品质。作为班主任&#xff0c;应该与军训教官紧密合作&#xff0c;共同努力&#xff0c;为学生们提供一个有益的军训经验。 好消息&am…

AIGC:初学者使用“C知道”实现AI人脸识别

文章目录 前言人脸识别介绍准备工作创作过程生成人脸识别代码下载分类文件安装 OpenCV生成人脸识别代码&#xff08;图片&#xff09; 创作成果总结 前言 从前&#xff0c;我们依靠各种搜索引擎来获取内容&#xff0c;但随着各类数据在互联网世界的爆炸式增长&#xff0c;加上…

缓存技术实现

大家好 , 我是苏麟 , 今天聊一聊缓存 . 这里需要一些Redis基础 (可以看相关文章等) 本文章资料来自于 : 黑马程序员 如果想要了解更详细的资料去黑马官网查看 前言:什么是缓存? 缓存,就是数据交换的 缓冲区 (称作Cache [ kʃ ] ),俗称的缓存就是缓冲区内的数据,是存贮数据的…

SpringBoot异步方法支持注解@Async应用

SpringBoot异步方法支持注解Async应用 1.为什么需要异步方法&#xff1f; 合理使用异步方法可以有效的提高执行效率 同步执行(同在一个线程中): 异步执行(开启额外线程来执行): 2.SpringBoot中的异步方法支持 在SpringBoot中并不需要我们自己去创建维护线程或者线程池来异…

RTSP/Onvif协议安防视频平台EasyNVR录像模式自定义操作

TSINGSEE青犀视频安防监控平台EasyNVR可支持设备通过RTSP/Onvif流媒体协议接入&#xff0c;并能对接入的视频流进行处理与多端分发&#xff0c;包括RTSP、RTMP、HTTP-FLV、WS-FLV、HLS、WebRTC等多种格式。在智慧安防等视频监控场景中&#xff0c;EasyNVR可提供视频实时监控直播…

【通用消息通知服务】0x3 - 发送我们第一条消息(Websocket)

【通用消息通知服务】0x3 - 发送我们第一条消息 项目地址: A generic message notification system[Github] 实现接收/发送Websocket消息 Websocket Connection Pool import asyncio from asyncio.queues import Queue from asyncio.queues import QueueEmpty from contextli…

Triplet Fingerprinting(三元组网站指纹攻击)

文章信息 论文题目&#xff1a;《Triplet Fingerprinting: More Practical and Portable Website Fingerprinting with N-shot Learning》 期刊&#xff08;会议&#xff09;&#xff1a;Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Secur…

【Java 中级】一文精通 Spring MVC - 上传(十)

&#x1f449;博主介绍&#xff1a; 博主从事应用安全和大数据领域&#xff0c;有8年研发经验&#xff0c;5年面试官经验&#xff0c;Java技术专家&#xff0c;WEB架构师&#xff0c;阿里云专家博主&#xff0c;华为云云享专家&#xff0c;51CTO 专家博主 ⛪️ 个人社区&#x…

LeetCode第11~15题解

CONTENTS LeetCode 11. 盛最多水的容器&#xff08;中等&#xff09;LeetCode 12. 整数转罗马数字&#xff08;中等&#xff09;LeetCode 13. 罗马数字转整数&#xff08;简单&#xff09; LeetCode 11. 盛最多水的容器&#xff08;中等&#xff09; 【题目描述】 给定一个长…