list(介绍与实现)

news2025/1/11 10:06:40

目录

1. list的介绍及使用

1.1 list的介绍

1.2 list的使用

1.2.1 list的构造

1.2.2 list iterator的使用

 1.2.3 list capacity

1.2.4 list element access

 1.2.5 list modififiers

1.2.6 list的迭代器失效

2. list的模拟实现

2.1 模拟实现list

2.2 list的反向迭代器


1. list的介绍及使用

1.1 list的介绍

1. list 是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。
2. list 的底层是双向链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向其前一个元素和后一个元素。
3. list forward_list 非常相似:最主要的不同在于 forward_list 是单链表,只能朝前迭代,已让其更简单高效。
4. 与其他的序列式容器相比 (array vector deque) list 通常在任意位置进行插入、移除元素的执行效率更好。
5. 与其他序列式容器相比, list forward_list 最大的缺陷是不支持任意位置的随机访问,比如:要访问 list的第6 个元素,必须从已知的位置 ( 比如头部或者尾部 ) 迭代到该位置,在这段位置上迭代需要线性的时间开销;list 还需要一些额外的空间,以保存每个节点的相关联信息 ( 对于存储类型较小元素的大 list 来说这可能是一个重要的因素)

 

1.2 list的使用

list 中的接口比较多,此处类似,只需要掌握如何正确的使用,然后再去深入研究背后的原理,已达到可扩展的能力。以下为list 中一些 常见的重要接口

1.2.1 list的构造

构造函数(
(constructor)
接口说明
list (size_type n, const value_type& val = value_type())
构造的 list 中包含 n 个值为 val 的元素
list()
构造空的 list
list (const list& x)
拷贝构造函数
list (InputIterator fifirst, InputIterator last)
[fifirst, last) 区间中的元素构造 list

1.2.2 list iterator的使用

此处,大家可暂时 将迭代器理解成一个指针,该指针指向 list 中的某个节点

 

 

【注意】
1. begin end 为正向迭代器,对迭代器执行 ++ 操作,迭代器向后移动
2. rbegin(end) rend(begin) 为反向迭代器,对迭代器执行 ++ 操作,迭代器向前移动

 1.2.3 list capacity

1.2.4 list element access

 

 1.2.5 list modififiers

函数声明
接口说明
push_front
list 首元素前插入值为 val 的元素
pop_front
删除 list 中第一个元素
push_back
list 尾部插入值为 val 的元素
pop_back
删除 list 中最后一个元素
insert
list position 位置中插入值为 val 的元素
erase
删除 list position 位置的元素
swap
交换两个 list 中的元素
clear
清空 list 中的有效元素

1.2.6 list的迭代器失效

前面说过,此处大家可将迭代器暂时理解成类似于指针, 迭代器失效即迭代器所指向的节点的无效,即该节 点被删除了 。因为 list 的底层结构为带头结点的双向循环链表 ,因此 list 中进行插入时是不会导致 list 的迭代 器失效的,只有在删除时才会失效,并且失效的只是指向被删除节点的迭代器,其他迭代器不会受到影响

2. list的模拟实现

2.1 模拟实现list

要模拟实现 list ,必须要熟悉 list 的底层结构以及其接口的含义,通过上面的学习,这些内容已基本掌握,现在我们来模拟实现list
#pragma once

#include <iostream>
using namespace std;
#include <assert.h>

namespace bite
{
	// List的节点类
	template<class T>
	struct ListNode
	{
		ListNode(const T& val = T())
			: _prev(nullptr)
			, _next(nullptr)
			, _val(val)
		{}

		ListNode<T>* _prev;
		ListNode<T>* _next;
		T _val;
	};

	/*
	List 的迭代器
	迭代器有两种实现方式,具体应根据容器底层数据结构实现:
	  1. 原生态指针,比如:vector
	  2. 将原生态指针进行封装,因迭代器使用形式与指针完全相同,因此在自定义的类中必须实现以下方法:
		 1. 指针可以解引用,迭代器的类中必须重载operator*()
		 2. 指针可以通过->访问其所指空间成员,迭代器类中必须重载oprator->()
		 3. 指针可以++向后移动,迭代器类中必须重载operator++()与operator++(int)
			至于operator--()/operator--(int)释放需要重载,根据具体的结构来抉择,双向链表可以向前             移动,所以需要重载,如果是forward_list就不需要重载--
		 4. 迭代器需要进行是否相等的比较,因此还需要重载operator==()与operator!=()
	*/
	template<class T, class Ref, class Ptr>
	class ListIterator
	{
		typedef ListNode<T> Node;
		typedef ListIterator<T, Ref, Ptr> Self;

		// Ref 和 Ptr 类型需要重定义下,实现反向迭代器时需要用到
	public:
		typedef Ref Ref;
		typedef Ptr Ptr;
	public:
		//
		// 构造
		ListIterator(Node* node = nullptr)
			: _node(node)
		{}

		//
		// 具有指针类似行为
		Ref operator*() 
		{ 
			return _node->_val;
		}

		Ptr operator->() 
		{ 
			return &(operator*()); 
		}

		//
		// 迭代器支持移动
		Self& operator++()
		{
			_node = _node->_next;
			return *this;
		}

		Self operator++(int)
		{
			Self temp(*this);
			_node = _node->_next;
			return temp;
		}

		Self& operator--()
		{
			_node = _node->_prev;
			return *this;
		}

		Self operator--(int)
		{
			Self temp(*this);
			_node = _node->_prev;
			return temp;
		}

		//
		// 迭代器支持比较
		bool operator!=(const Self& l)const
		{ 
			return _node != l._node;
		}

		bool operator==(const Self& l)const
		{ 
			return _node != l._node;
		}

		Node* _node;
	};

	template<class Iterator>
	class ReverseListIterator
	{
		// 注意:此处typename的作用是明确告诉编译器,Ref是Iterator类中的一个类型,而不是静态成员变量
		// 否则编译器编译时就不知道Ref是Iterator中的类型还是静态成员变量
		// 因为静态成员变量也是按照 类名::静态成员变量名 的方式访问的
	public:
		typedef typename Iterator::Ref Ref;
		typedef typename Iterator::Ptr Ptr;
		typedef ReverseListIterator<Iterator> Self;
	public:
		//
		// 构造
		ReverseListIterator(Iterator it)
			: _it(it)
		{}

		//
		// 具有指针类似行为
		Ref operator*()
		{
			Iterator temp(_it);
			--temp;
			return *temp;
		}

		Ptr operator->()
		{
			return &(operator*());
		}

		//
		// 迭代器支持移动
		Self& operator++()
		{
			--_it;
			return *this;
		}

		Self operator++(int)
		{
			Self temp(*this);
			--_it;
			return temp;
		}

		Self& operator--()
		{
			++_it;
			return *this;
		}

		Self operator--(int)
		{
			Self temp(*this);
			++_it;
			return temp;
		}

		//
		// 迭代器支持比较
		bool operator!=(const Self& l)const
		{
			return _it != l._it;
		}

		bool operator==(const Self& l)const
		{
			return _it != l._it;
		}

		Iterator _it;
	};

	template<class T>
	class list
	{
		typedef ListNode<T> Node;

	public:
		// 正向迭代器
		typedef ListIterator<T, T&, T*> iterator;
		typedef ListIterator<T, const T&, const T&> const_iterator;

		// 反向迭代器
		typedef ReverseListIterator<iterator> reverse_iterator;
		typedef ReverseListIterator<const_iterator> const_reverse_iterator;
	public:
		///
		// List的构造
		list()
		{
			CreateHead();
		}

		list(int n, const T& value = T())
		{
			CreateHead();
			for (int i = 0; i < n; ++i)
				push_back(value);
		}

		template <class Iterator>
		list(Iterator first, Iterator last)
		{
			CreateHead();
			while (first != last)
			{
				push_back(*first);
				++first;
			}
		}

		list(const list<T>& l)
		{
			CreateHead();

			// 用l中的元素构造临时的temp,然后与当前对象交换
			list<T> temp(l.begin(), l.end());
			this->swap(temp);
		}

		list<T>& operator=(list<T> l)
		{
			this->swap(l);
			return *this;
		}

		~list()
		{
			clear();
			delete _head;
			_head = nullptr;
		}

		///
		// List的迭代器
		iterator begin() 
		{ 
			return iterator(_head->_next); 
		}

		iterator end() 
		{ 
			return iterator(_head); 
		}

		const_iterator begin()const 
		{ 
			return const_iterator(_head->_next); 
		}

		const_iterator end()const
		{ 
			return const_iterator(_head); 
		}

		reverse_iterator rbegin()
		{
			return reverse_iterator(end());
		}

		reverse_iterator rend()
		{
			return reverse_iterator(begin());
		}

		const_reverse_iterator rbegin()const
		{
			return const_reverse_iterator(end());
		}

		const_reverse_iterator rend()const
		{
			return const_reverse_iterator(begin());
		}

		///
		// List的容量相关
		size_t size()const
		{
			Node* cur = _head->_next;
			size_t count = 0;
			while (cur != _head)
			{
				count++;
				cur = cur->_next;
			}

			return count;
		}

		bool empty()const
		{
			return _head->_next == _head;
		}

		void resize(size_t newsize, const T& data = T())
		{
			size_t oldsize = size();
			if (newsize <= oldsize)
			{
				// 有效元素个数减少到newsize
				while (newsize < oldsize)
				{
					pop_back();
					oldsize--;
				}
			}
			else
			{
				while (oldsize < newsize)
				{
					push_back(data);
					oldsize++;
				}
			}
		}
		
		// List的元素访问操作
		// 注意:List不支持operator[]
		T& front()
		{
			return _head->_next->_val;
		}

		const T& front()const
		{
			return _head->_next->_val;
		}

		T& back()
		{
			return _head->_prev->_val;
		}

		const T& back()const
		{
			return _head->_prev->_val;
		}

		
		// List的插入和删除
		void push_back(const T& val) 
		{ 
			insert(end(), val); 
		}

		void pop_back() 
		{ 
			erase(--end()); 
		}

		void push_front(const T& val) 
		{ 
			insert(begin(), val); 
		}

		void pop_front() 
		{ 
			erase(begin()); 
		}

		// 在pos位置前插入值为val的节点
		iterator insert(iterator pos, const T& val)
		{
			Node* pNewNode = new Node(val);
			Node* pCur = pos._node;
			// 先将新节点插入
			pNewNode->_prev = pCur->_prev;
			pNewNode->_next = pCur;
			pNewNode->_prev->_next = pNewNode;
			pCur->_prev = pNewNode;
			return iterator(pNewNode);
		}

		// 删除pos位置的节点,返回该节点的下一个位置
		iterator erase(iterator pos)
		{
			// 找到待删除的节点
			Node* pDel = pos._node;
			Node* pRet = pDel->_next;

			// 将该节点从链表中拆下来并删除
			pDel->_prev->_next = pDel->_next;
			pDel->_next->_prev = pDel->_prev;
			delete pDel;

			return iterator(pRet);
		}

		void clear()
		{
			Node* cur = _head->_next;
			
			// 采用头删除删除
			while (cur != _head)
			{
				_head->_next = cur->_next;
				delete cur;
				cur = _head->_next;
			}

			_head->_next = _head->_prev = _head;
		}

		void swap(bite::list<T>& l)
		{
			std::swap(_head, l._head);
		}

	private:
		void CreateHead()
		{
			_head = new Node;
			_head->_prev = _head;
			_head->_next = _head;
		}
	private:
		Node* _head;
	};
}


///
// 对模拟实现的list进行测试
// 正向打印链表
template<class T>
void PrintList(const bite::list<T>& l)
{
	auto it = l.begin();
	while (it != l.end())
	{
		cout << *it << " ";
		++it;
	}

	cout << endl;
}

// 测试List的构造
void TestBiteList1()
{
	bite::list<int> l1;
	bite::list<int> l2(10, 5);
	PrintList(l2);

	int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
	bite::list<int> l3(array, array + sizeof(array) / sizeof(array[0]));
	PrintList(l3);

	bite::list<int> l4(l3);
	PrintList(l4);

	l1 = l4;
	PrintList(l1);
}

// PushBack()/PopBack()/PushFront()/PopFront()
void TestBiteList2()
{
	// 测试PushBack与PopBack
	bite::list<int> l;
	l.push_back(1);
	l.push_back(2);
	l.push_back(3);
	PrintList(l);

	l.pop_back();
	l.pop_back();
	PrintList(l);

	l.pop_back();
	cout << l.size() << endl;

	// 测试PushFront与PopFront
	l.push_front(1);
	l.push_front(2);
	l.push_front(3);
	PrintList(l);

	l.pop_front();
	l.pop_front();
	PrintList(l);

	l.pop_front();
	cout << l.size() << endl;
}

// 测试insert和erase
void TestBiteList3()
{
	int array[] = { 1, 2, 3, 4, 5 };
	bite::list<int> l(array, array + sizeof(array) / sizeof(array[0]));

	auto pos = l.begin();
	l.insert(l.begin(), 0);
	PrintList(l);

	++pos;
	l.insert(pos, 2);
	PrintList(l);

	l.erase(l.begin());
	l.erase(pos);
	PrintList(l);

	// pos指向的节点已经被删除,pos迭代器失效
	cout << *pos << endl;

	auto it = l.begin();
	while (it != l.end())
	{
		it = l.erase(it);
	}
	cout << l.size() << endl;
}

// 测试反向迭代器
void TestBiteList4()
{
	int array[] = { 1, 2, 3, 4, 5 };
	bite::list<int> l(array, array + sizeof(array) / sizeof(array[0]));

	auto rit = l.rbegin();
	while (rit != l.rend())
	{
		cout << *rit << " ";
		++rit;
	}
	cout << endl;

	const bite::list<int> cl(l);
	auto crit = l.rbegin();
	while (crit != l.rend())
	{
		cout << *crit << " ";
		++crit;
	}
	cout << endl;
}

2.2 list的反向迭代器

通过前面例子知道,反向迭代器的 ++ 就是正向迭代器的 -- ,反向迭代器的 -- 就是正向迭代器的 ++ ,因此反向迭代器的实现可以借助正向迭代器,即:反向迭代器内部可以包含一个正向迭代器,对正向迭代器的接口进行包装即可。
template<class Iterator>
class ReverseListIterator
{
 // 注意:此处typename的作用是明确告诉编译器,Ref是Iterator类中的类型,而不是静态成员变量
 // 否则编译器编译时就不知道Ref是Iterator中的类型还是静态成员变量
 // 因为静态成员变量也是按照 类名::静态成员变量名 的方式访问的
public:
 typedef typename Iterator::Ref Ref;
 typedef typename Iterator::Ptr Ptr;
 typedef ReverseListIterator<Iterator> Self;
public:
 //
 // 构造
 ReverseListIterator(Iterator it): _it(it){}
 //
 // 具有指针类似行为
 Ref operator*(){
 Iterator temp(_it);
 --temp;
 return *temp;
 }
 Ptr operator->(){ return &(operator*());}
 //
 // 迭代器支持移动
 Self& operator++(){
--_it;
 return *this;
 }
 Self operator++(int){
 Self temp(*this);
 --_it;
 return temp;
 }
 Self& operator--(){
 ++_it;
 return *this;
 }
 Self operator--(int)
 {
 Self temp(*this);
 ++_it;
 return temp;
 }
 //
 // 迭代器支持比较
 bool operator!=(const Self& l)const{ return _it != l._it;}
 bool operator==(const Self& l)const{ return _it != l._it;}
 Iterator _it;
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/936639.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Python 潮流周刊#17:Excel 终于支持 Python 了、Meta 重磅开源新项目、Mojo 新得 1 亿美元融资...

△点击上方“Python猫”关注 &#xff0c;回复“1”领取电子书 你好&#xff0c;我是猫哥。这里每周分享优质的 Python、AI 及通用技术内容&#xff0c;大部分为英文。标题取自其中三则分享&#xff0c;不代表全部内容都是该主题&#xff0c;特此声明。 本周刊由 Python猫 出品…

内核模块添加功能及使用(静态、动态)

一、向内核添加新功能 1.1 静态加载法&#xff1a; 即新功能源码与内核其它代码一起编译进uImage文件内 新功能源码与Linux内核源码在同一目录结构下 在linux-3.14/driver/char/目录下编写myhello.c&#xff0c;文件内容如下&#xff1a; #include <linux/module.h> #i…

如何使用腾讯云服务器搭建网站?

使用腾讯云服务器搭建网站全流程&#xff0c;包括轻量应用服务器和云服务器CVM建站教程&#xff0c;轻量可以使用应用镜像一键建站&#xff0c;云服务器CVM可以通过安装宝塔面板的方式来搭建网站&#xff0c;腾讯云服务器网分享使用腾讯云服务器建站教程&#xff0c;新手站长搭…

【深度学习】Pytorch训练过程中损失值出现NaN

项目场景 利用Pytorch框架&#xff0c;结合FEDformer开源代码&#xff08;https://github.com/MAZiqing/FEDformer&#xff09;&#xff0c;将自己的数据集作为输入训练模型。 问题描述 训练过程中&#xff0c;发现打印出来的Train loss, Test loss, Test loss中&#xff0c…

【产品文档】团队介绍PPT模板

今天和大家免费分享团队介绍的PPT模板。团队介绍是向他人展示团队的实力、专业性和能力的重要方式。通过一个有力的团队介绍&#xff0c;您可以突出团队的成员、经验、技能和取得的成就&#xff0c;从而增加信任、吸引合作伙伴、客户或投资者的兴趣 【模板预览】 动态演示效果…

API管理风险:如何确保您的API安全与可靠?

API管理风险&#xff1a;如何确保您的API安全与可靠&#xff1f; 随着数字化时代的到来&#xff0c;应用程序接口&#xff08;API&#xff09;在现代软件开发中发挥着关键的作用。然而&#xff0c;API管理过程中存在着各种潜在的风险。本文将探讨如何有效地管理和缓解这些风险…

前端将file文件传给后台,后台将文件传给前台(包含上传下载)

前端将file文件传给后台&#xff0c;后台将文件传给前台&#xff08;包含上传下载&#xff09; 在开发过程中&#xff0c;经常会遇见对文件的处理。 例如&#xff1a;在上传、下载文件时&#xff0c;需要在前端选完文件传到后台传到服务器&#xff1b;或者文件从后台&#xf…

001微信小程序云开发 API数据库-导入/导出

文章目录 微信小程序云开发 API数据库-导入案例代码微信小程序云开发API数据库-导出案例代码 微信小程序云开发 API数据库-导入 随着移动互联网的普及&#xff0c;微信小程序已经成为一种受欢迎的应用形式。微信小程序云开发 API 数据库是微信小程序的一项重要功能&#xff0c…

msvcp140.dll重新安装的解决方法,msvcp140.dll丢失解决方案

今天&#xff0c;我将向大家传授一种与我们的日常生活紧密相连的技巧——解决msvcp140.dll重新安装的方法。在这个信息爆炸的时代&#xff0c;每个人就像是在纷繁复杂的电脑问题中航行的船只&#xff0c;随时可能遭遇各种故障和问题。 首先&#xff0c;让我们来了解一下msvcp14…

Modbus转Profinet网关应用在自动上料机案例

该案例中的自动上料机通过使用Modbus转Profinet网关实现了与1200PLC和G120变频器的通信。这种通信方式能够实现设备之间的数据交换和控制命令传输&#xff0c;大大提升了自动上料机的运行效率和精度。通过使用该网关&#xff0c;1200PLC可以准确地向G120变频器发送控制命令&…

RK3399平台开发系列讲解(存储篇)Linux 存储系统的 I/O 栈

平台内核版本安卓版本RK3399Linux4.4Android7.1🚀返回专栏总目录 文章目录 一、Linux 存储系统全景二、Linux 存储系统的缓存沉淀、分享、成长,让自己和他人都能有所收获!😄 📢本篇将介绍 Linux 存储系统的 I/O 原理。 一、Linux 存储系统全景 我们可以把 Linux 存储系…

vue2 路由进阶,VueCli 自定义创建项目

一、声明式导航-导航链接 1.需求 实现导航高亮效果 如果使用a标签进行跳转的话&#xff0c;需要给当前跳转的导航加样式&#xff0c;同时要移除上一个a标签的样式&#xff0c;太麻烦&#xff01;&#xff01;&#xff01; 2.解决方案 vue-router 提供了一个全局组件 router…

2000-2021年上市公司绿色投资环保投资与营业收入之比数据(原始数据+计算代码+计算结果)

2000-2021年上市公司绿色投资环保投资与营业收入之比数据&#xff08;原始数据计算代码计算结果&#xff09; 1、时间&#xff1a;2000-2021年 2、来源&#xff1a;上市公司年报 3、指标&#xff1a;证券代码、企业名称、年份、管理费用环保投资、管理费用环保投资/营业收入…

ARTS打卡第二周之链表环的检测、gdb中disassemble的使用、底层学习建议、学习分享

Algorithm 题目&#xff1a;链表中环的检测 自己的分析见博客《检测链表中是否存在环》 Review disassemble command是我读的一篇英语文章&#xff0c;这篇文章主要是介绍gdb反汇编命令的使用和参数。自己为了能够演示这篇文章里边的内容&#xff0c;特意自己使用汇编语言编…

枫叶时代:《超能一家人》喜剧电影引发观众无限笑点

近期&#xff0c;由浙江开心麻花影业有限公司、中国电影股份有限公司和上海阿里巴巴影业有限公司三家公司联合出品的喜剧电影《超能一家人》引起了观众们的热烈关注。这部影片由宋阳导演执导&#xff0c;他曾执导过备受好评的作品《羞羞的铁拳》。时长108分钟的《超能一家人》以…

Modbus转Profinet网关与流量变送器兼容转ModbusTCP协议博图配置

首先&#xff0c;我们需要明确电磁流量计的通信协议是Modbus&#xff0c;而西门子1200PLC的通信协议是Profinet。这两种协议在功能和特性上存在一定的差异&#xff0c;因此需要使用兴达易控Modbus转Profinet网关设备进行转换。兴达易控的XD-MDPN100是Profinet转ModbusTCP的网关…

402. 移掉 K 位数字

链接&#xff1a; 402. 移掉 K 位数字 题解&#xff1a; class Solution { public:string removeKdigits(string num, int k) {vector<char> stk;for (auto& digit: num) {while (stk.size() > 0 && stk.back() > digit && k) {stk.pop_bac…

Adobe Illustrator 2023 for mac安装教程,可用。

Adobe Illustrator 是行业标准的矢量图形应用程序&#xff0c;可以为印刷、网络、视频和移动设备创建logos、图标、绘图、排版和插图。数以百万计的设计师和艺术家使用Illustrator CC创作&#xff0c;从网页图标和产品包装到书籍插图和广告牌。此版本是2023版本&#xff0c;适配…

LeetCode-455-分发饼干-贪心算法

题目描述&#xff1a; 假设你是一位很棒的家长&#xff0c;想要给你的孩子们一些小饼干。但是&#xff0c;每个孩子最多只能给一块饼干。 对每个孩子 i&#xff0c;都有一个胃口值 g[i]&#xff0c;这是能让孩子们满足胃口的饼干的最小尺寸&#xff1b;并且每块饼干 j&#xff…