基于XGBoots预测A股大盘《上证指数》(代码+数据+一键可运行)

news2024/9/25 13:19:56

 对AI炒股感兴趣的小伙伴可加WX:caihaihua057200(备注:学校/公司+名字+方向)

另外我还有些AI的应用可以一起研究(我一直开源代码)

1、引言

在这期内容中,我们回到AI预测股票,转而探索人工智能技术如何应用于另一个有趣的领域:预测A股大盘。

2、AI与股票的关系

在股票预测中,AI充当着数据分析和模式识别的角色。虽然无法确保百分之百准确的结果,但它为增加预测的洞察力和理解提供了全新的途径。

3、数据收集与处理(akshare爬实时上证指数)

import akshare as ak
import numpy as np
import pandas as pd
from pandas.tseries.offsets import CustomBusinessDay
from datetime import datetime
import xgboost as xgb


df = ak.stock_zh_index_daily_em(symbol='sh000001')  

数据预处理:时间特征转换及时间特征结合K线特征


today = datetime.today()
date_str = today.strftime("%Y%m%d")
base = int(datetime.strptime(date_str, "%Y%m%d").timestamp())
change1 = lambda x: (int(datetime.strptime(x, "%Y%m%d").timestamp()) - base) / 86400
change2 = lambda x: (datetime.strptime(str(x), "%Y%m%d")).day
change3 = lambda x: datetime.strptime(str(x), "%Y%m%d").weekday()

df['date'] = df['date'].str.replace('-', '')
X = df['date'].apply(lambda x: change1(x)).values.reshape(-1, 1)
X_month_day = df['date'].apply(lambda x: change2(x)).values.reshape(-1, 1)
X_week_day = df['date'].apply(lambda x: change3(x)).values.reshape(-1, 1)
XX = np.concatenate((X, X_week_day, X_month_day), axis=1)[29:]
FT = np.array(df.drop(columns=['date']))
min_vals = np.min(FT, axis=0)
max_vals = np.max(FT, axis=0)
FT = (FT - min_vals) / (max_vals - min_vals)

window_size = 30
num_rows, num_columns = FT.shape
new_num_rows = num_rows - window_size + 1
result1 = np.empty((new_num_rows, num_columns))
for i in range(new_num_rows):
    window = FT[i: i + window_size]
    window_mean = np.mean(window, axis=0)
    result1[i] = window_mean

result2 = np.empty((new_num_rows, num_columns))
for i in range(new_num_rows):
    window = FT[i: i + window_size]
    window_mean = np.max(window, axis=0)
    result2[i] = window_mean

result3 = np.empty((new_num_rows, num_columns))
for i in range(new_num_rows):
    window = FT[i: i + window_size]
    window_mean = np.min(window, axis=0)
    result3[i] = window_mean

result4 = np.empty((new_num_rows, num_columns))
for i in range(new_num_rows):
    window = FT[i: i + window_size]
    window_mean = np.std(window, axis=0)
    result4[i] = window_mean
result_list = [result1, result2, result3, result4]
result = np.hstack(result_list)

XX = np.concatenate((XX, result), axis=1)

4、预测模型(XGboots)


y1 = df['open'][29:]
y2 = df['close'][29:]
y3 = df['high'][29:]
y4 = df['low'][29:]
models1 = xgb.XGBRegressor()
models2 = xgb.XGBRegressor()
models3 = xgb.XGBRegressor()
models4 = xgb.XGBRegressor()
models1.fit(XX, y1)
models2.fit(XX, y2)
models3.fit(XX, y3)
models4.fit(XX, y4)

5、应用及画图


start_date = pd.to_datetime(today)

bday_cn = CustomBusinessDay(weekmask='Mon Tue Wed Thu Fri')
future_dates = pd.date_range(start=start_date, periods=6, freq=bday_cn)
future_dates_str = [date.strftime('%Y-%m-%d') for date in future_dates][1:]
future_dates_str = pd.Series(future_dates_str).str.replace('-', '')
X_x = future_dates_str.apply(lambda x: change1(x)).values.reshape(-1, 1)
X_month_day_x = future_dates_str.apply(lambda x: change2(x)).values.reshape(-1, 1)
X_week_day_x = future_dates_str.apply(lambda x: change3(x)).values.reshape(-1, 1)
XXX = np.concatenate((X_x, X_week_day_x, X_month_day_x), axis=1)
last_column = result[-1:, ]
repeated_last_column = np.tile(last_column, (5, 1))
result = repeated_last_column

XXX = np.concatenate((XXX, result), axis=1)
pred1 = models1.predict(XXX)
pred2 = models2.predict(XXX)
pred3 = models3.predict(XXX)
pred4 = models4.predict(XXX)


y1 = np.array(df['open'][-30:])
y2 = np.array(df['close'][-30:])
y3 = np.array(df['high'][-30:])
y4 = np.array(df['low'][-30:])
YD = np.array(df['date'][-30:])

data = {
    'open': np.concatenate([y1, pred1]),
    'close': np.concatenate([y2, pred2]),
    'high': np.concatenate([y3, pred3]),
    'low': np.concatenate([y4, pred4]),
    'date':np.concatenate([YD,np.array(future_dates_str)])
}

df = pd.DataFrame(data)

import mplfinance as mpf

# df['date'] = pd.date_range(start=RQ, periods=len(df))
df['date'] = pd.to_datetime(df['date'])
df.set_index('date', inplace=True)
# mpf.plot(df, type='candle', title='Stock K-Line')
my_color = mpf.make_marketcolors(up='red',  # 上涨时为红色
                                 down='green',  # 下跌时为绿色
                                 # edge='i',  # 隐藏k线边缘
                                 # volume='in',  # 成交量用同样的颜色
                                 inherit=True)

my_style = mpf.make_mpf_style(
    # gridaxis='both',  # 设置网格
                              # gridstyle='-.',
                              # y_on_right=True,
                              marketcolors=my_color)

mpf.plot(df, type='candle',
         style=my_style,
         # datetime_format='%Y年%m月%d日',
         title='Stock K-Line')

6、结果(预测下周上证:图中后五天是预测结果)

 总结图中所示:

1、周一到周三略微上涨一点点。

2、下周四五高开高走(令人惊讶)。

如果提前布局的话应该是选择在周四找最低点买入。

全代码,一件运行:

import akshare as ak
import numpy as np
import pandas as pd
from pandas.tseries.offsets import CustomBusinessDay
from datetime import datetime
import xgboost as xgb


df = ak.stock_zh_index_daily_em(symbol='sh000001')



today = datetime.today()
date_str = today.strftime("%Y%m%d")
base = int(datetime.strptime(date_str, "%Y%m%d").timestamp())
change1 = lambda x: (int(datetime.strptime(x, "%Y%m%d").timestamp()) - base) / 86400
change2 = lambda x: (datetime.strptime(str(x), "%Y%m%d")).day
change3 = lambda x: datetime.strptime(str(x), "%Y%m%d").weekday()

df['date'] = df['date'].str.replace('-', '')
X = df['date'].apply(lambda x: change1(x)).values.reshape(-1, 1)
X_month_day = df['date'].apply(lambda x: change2(x)).values.reshape(-1, 1)
X_week_day = df['date'].apply(lambda x: change3(x)).values.reshape(-1, 1)
XX = np.concatenate((X, X_week_day, X_month_day), axis=1)[29:]
FT = np.array(df.drop(columns=['date']))
min_vals = np.min(FT, axis=0)
max_vals = np.max(FT, axis=0)
FT = (FT - min_vals) / (max_vals - min_vals)

window_size = 30
num_rows, num_columns = FT.shape
new_num_rows = num_rows - window_size + 1
result1 = np.empty((new_num_rows, num_columns))
for i in range(new_num_rows):
    window = FT[i: i + window_size]
    window_mean = np.mean(window, axis=0)
    result1[i] = window_mean

result2 = np.empty((new_num_rows, num_columns))
for i in range(new_num_rows):
    window = FT[i: i + window_size]
    window_mean = np.max(window, axis=0)
    result2[i] = window_mean

result3 = np.empty((new_num_rows, num_columns))
for i in range(new_num_rows):
    window = FT[i: i + window_size]
    window_mean = np.min(window, axis=0)
    result3[i] = window_mean

result4 = np.empty((new_num_rows, num_columns))
for i in range(new_num_rows):
    window = FT[i: i + window_size]
    window_mean = np.std(window, axis=0)
    result4[i] = window_mean
result_list = [result1, result2, result3, result4]
result = np.hstack(result_list)

XX = np.concatenate((XX, result), axis=1)

y1 = df['open'][29:]
y2 = df['close'][29:]
y3 = df['high'][29:]
y4 = df['low'][29:]
models1 = xgb.XGBRegressor()
models2 = xgb.XGBRegressor()
models3 = xgb.XGBRegressor()
models4 = xgb.XGBRegressor()
models1.fit(XX, y1)
models2.fit(XX, y2)
models3.fit(XX, y3)
models4.fit(XX, y4)

start_date = pd.to_datetime(today)

bday_cn = CustomBusinessDay(weekmask='Mon Tue Wed Thu Fri')
future_dates = pd.date_range(start=start_date, periods=6, freq=bday_cn)
future_dates_str = [date.strftime('%Y-%m-%d') for date in future_dates][1:]
future_dates_str = pd.Series(future_dates_str).str.replace('-', '')
X_x = future_dates_str.apply(lambda x: change1(x)).values.reshape(-1, 1)
X_month_day_x = future_dates_str.apply(lambda x: change2(x)).values.reshape(-1, 1)
X_week_day_x = future_dates_str.apply(lambda x: change3(x)).values.reshape(-1, 1)
XXX = np.concatenate((X_x, X_week_day_x, X_month_day_x), axis=1)
last_column = result[-1:, ]
repeated_last_column = np.tile(last_column, (5, 1))
result = repeated_last_column

XXX = np.concatenate((XXX, result), axis=1)
pred1 = models1.predict(XXX)
pred2 = models2.predict(XXX)
pred3 = models3.predict(XXX)
pred4 = models4.predict(XXX)


y1 = np.array(df['open'][-30:])
y2 = np.array(df['close'][-30:])
y3 = np.array(df['high'][-30:])
y4 = np.array(df['low'][-30:])
YD = np.array(df['date'][-30:])

data = {
    'open': np.concatenate([y1, pred1]),
    'close': np.concatenate([y2, pred2]),
    'high': np.concatenate([y3, pred3]),
    'low': np.concatenate([y4, pred4]),
    'date':np.concatenate([YD,np.array(future_dates_str)])
}

df = pd.DataFrame(data)

import mplfinance as mpf

# df['date'] = pd.date_range(start=RQ, periods=len(df))
df['date'] = pd.to_datetime(df['date'])
df.set_index('date', inplace=True)
# mpf.plot(df, type='candle', title='Stock K-Line')
my_color = mpf.make_marketcolors(up='red',  # 上涨时为红色
                                 down='green',  # 下跌时为绿色
                                 # edge='i',  # 隐藏k线边缘
                                 # volume='in',  # 成交量用同样的颜色
                                 inherit=True)

my_style = mpf.make_mpf_style(
    # gridaxis='both',  # 设置网格
                              # gridstyle='-.',
                              # y_on_right=True,
                              marketcolors=my_color)

mpf.plot(df, type='candle',
         style=my_style,
         # datetime_format='%Y年%m月%d日',
         title='Stock K-Line')

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/935077.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

知识图谱实战应用25-基于py2neo的超市商品的图谱构建与商品推荐系统的实现

大家好,我是微学AI,今天给大家介绍一下知识图谱实战应用25-基于py2neo的超市商品的图谱构建与商品推荐系统的实现,本篇文章,我将指导大家如何使用py2neo和Neo4j构建一个实用的超市商品知识图谱和推荐系统。该系统可以帮助用户快速找到感兴趣的商品,并提供个性化的推荐服务…

【mysql】MySQL服务无法启动 NET HELPMSG 3534

MySQL服务无法启动 NET HELPMSG 3534 错误描述寻找原因解决方法 错误描述 mysql版本:8.1.0 mysql安装成功之后,使用net start mysql来启动mysql,然后出现了报错 MySQL服务无法启动 NET HELPMSG 3534 寻找原因 1、在cmd中,进入…

【论文笔记】最近看的时空数据挖掘综述整理8.27

Deep Learning for Spatio-Temporal Data Mining: A Survey 被引用次数:392 [Submitted on 11 Jun 2019 (v1), last revised 24 Jun 2019 (this version, v2)] 主要内容: 该论文是一篇关于深度学习在时空数据挖掘中的应用的综述。论文首先介绍了时空数…

css background实现四角边框

2023.8.27今天我学习了如何使用css制作一个四角边框,效果如下: .style{background: linear-gradient(#33cdfa, #33cdfa) left top,linear-gradient(#33cdfa, #33cdfa) left top,linear-gradient(#33cdfa, #33cdfa) right top,linear-gradient(#33cdfa, #…

阿里云 Serverless 应用引擎 2.0,正式公测!

阿里云 Serverless 应用引擎 SAE2.0 正式公测上线!全面升级后的 SAE2.0 具备极简体验、标准开放、极致弹性三大优势,应用冷启动全面提效,秒级完成创建发布应用,应用成本下降 40% 以上。 此外,阿里云还带来容器服务 Se…

【Python】基于Python的电话簿(Phonebook project)设计(代码详解)

👉博__主👈:米码收割机 👉技__能👈:C/Python语言 👉公众号👈:测试开发自动化【获取源码商业合作】 👉荣__誉👈:阿里云博客专家博主、5…

【农业生产模拟】WOFOST模型与PCSE模型实践

实现作物产量的准确估算对于农田生态系统响应全球变化、可持续发展、科学粮食政策制定、粮食安全维护都至关重要。传统的经验模型、光能利用率模型等估产模型原理简单,数据容易获取,但是作物生长发育非常复杂,中间涉及众多生理生化过程&#…

Yandex SEO和Google SEO有啥区别?5000字说必须要了解的一些事儿

最近筋斗云SEO服务有做一些俄罗斯市场的SEO,而做俄罗斯的SEO相当于就是要做Yandex的SEO。对比Google的SEO优化,其实有比较多的区别,但总体算法、逻辑等等都大致相似。本文从Linus自己的研究和搜集的公开信息,对比一下Google和Yand…

校园安全Ai视频分析预警算法

校园安全Ai视频分析预警算法通过yolov5python深度学习算法网络模型,校园安全Ai视频分析预警算法对学生的行为进行智能监测和预警如识别学生打架斗殴、抽烟、翻墙、倒地以及异常聚集等行为,及时发出预警通知。YOLO的结构非常简单,就是单纯的卷…

Python框架【模板继承 、继承模板实战、类视图 、类视图的好处 、类视图使用场景、基于调度方法的类视图】(四)

👏作者简介:大家好,我是爱敲代码的小王,CSDN博客博主,Python小白 📕系列专栏:python入门到实战、Python爬虫开发、Python办公自动化、Python数据分析、Python前后端开发 📧如果文章知识点有错误…

【Apollo学习笔记】——规划模块TASK之PIECEWISE_JERK_PATH_OPTIMIZER

文章目录 前言PIECEWISE_JERK_PATH_OPTIMIZER功能简介PIECEWISE_JERK_PATH_OPTIMIZER相关配置PIECEWISE_JERK_PATH_OPTIMIZER总体流程OptimizePathpiecewise_jerk_problem二次规划问题标准形式定义优化变量定义目标函数设计约束OptimizeFormulateProblem计算QP系数矩阵Calculat…

MERN Stack 教程

This tutorial will show you how to build a full-stack MERN application—in this case, an employee database—with the most current tools available. Before you begin, make sure that you are familiar with Node.js and React.js basics and have Node and Create R…

数据结构队列的实现

本章介绍数据结构队列的内容,我们会从队列的定义以及使用和OJ题来了解队列,话不多说,我们来实现吧 队列 1。队列的概念及结构 队列:只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表,…

MATLAB图论合集(三)Dijkstra算法计算最短路径

本贴介绍最短路径的计算,实现方式为迪杰斯特拉算法;对于弗洛伊德算法,区别在于计算了所有结点之间的最短路径,考虑到MATLAB计算的便捷性,计算时只需要反复使用迪杰斯特拉即可,暂不介绍弗洛伊德的实现&#…

搜索二叉树的算法解析与实例演示

目录 一.搜索二叉树的特性与实现1.特点2.实现二.搜索二叉树的性能 一.搜索二叉树的特性与实现 1.特点 二叉搜索树是特殊的二叉树,它有着更严格的数据结构特点: (1)非空左子树的所有键值小于其根结点的键值。 (2&…

讯飞AI-SparkDesk

网址:https://m.xfyun.cn/login?callbackaHR0cHM6Ly94aW5naHVvLnhmeXVuLmNuL2NoYXQ/aWQ9MTUzMzc1MjA&website_namesparkdesk

【C++题解】[NOIP2018]龙虎斗

P a r t Part Part 1 1 1 读题 题目描述 轩轩和凯凯正在玩一款叫《龙虎斗》的游戏,游戏的棋盘是一条线段,线段上有 n n n个兵营(自左至右编号 1 − n 1-n 1−n),相邻编号的兵营之间相隔 1 1 1厘米,即棋盘…

springcloud初窥门径

一、概述 SprinfCloud组成部分 SpringCloud主流组件

【CSS】网站 网格商品展示 模块制作 ( 清除浮动需求 | 没有设置高度的盒子且内部设置了浮动 | 使用双伪元素清除浮动 )

一、清除浮动需求 ( 没有设置高度的盒子且内部设置了浮动 ) 绘制的如下模块 : 在上面的盒子中 , 没有设置高度 , 只设置了一个 1215px 的宽度 ; 在列表中每个列表项都设置了 浮动 ; /* 网格商品展示 */ .box-bd {/* 处理列表间隙导致意外换行问题一排有 5 个 228x270 的盒子…

Navisworks2020~2023安装包分享(附安装教程)

目录 一、软件介绍 二、下载地址 一、软件介绍 Navisworks是一款专业的建筑、工厂、机械和设备设计软件工具,旨在帮助项目相关方可靠地整合、分享和审阅详细的三维设计模型。它提供了一系列功能强大的工具,使设计师、工程师和建筑师能够更好地协作、沟…